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" -Abstract

Stability of time dependent flows is examined extendmg methods recently developed
for analyzing stability of time mdependent flows. These methods approach the stability
problem by analyzing the non-normality of the underlying dynamical operator. For both
autonomous and non-autonomous operators this approach leads to identification of a
complete set of optimal perturbations ordered according to extent of growth over a chosen
time interval as measured in a chosen norm. The long time asymptotic structure in
the case of an autonomous operator is the norm independent least stable normal mode
while in the case of the non-autonomous operator it is the first Lyapunov. vector which
is also norm independent and grows exponentially in the mean at the rate of the first
Lyapunov exponent. While structure, growth rates and energetics of the normal mode and
therefore the asymptotic stability properties of autonomous systems are easily accessible
through eigenanalysis of the associated dynamical operator, analogous information for
the Lyapunov vector is less readily obtained. In this work the stability of time dependent
deterministic and stochastic dynamical operators is examined in order to obtain a better
understanding of the dynamics of asymptotic instability in time dependent systems. It is
found that the physical mechanism producing asymptotic error growth in time dependent
systems can be traced to the generic non-normality of the non-autonomous operator.
Implications for the Lyapunov exponent magnitude and associated vector structure in
tangent linear equations for forecast error growth are discussed

1 INTRODUCTION

Linear stability theory addresses a set of phenomena in the dynamics of the atmosphere which
include the origin, energetics, structure and growth to finite amplitude of perturbations ul-
timately responsible for such macroscopic phenomena as cyclones and upper level waves. In
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addition these same methods are used to approach the conceptually distinct problem of pre-
dictability and error growth in-which the focus is on the rate of divergence. of initially nearby
trajectories in the configuration space of the forecast model. While the operator in both the sta-
bility and the predictability problems is in general time dependent, traditional stability analysis
confined attention to the t — co asymptotic of the least stable mode in autonomous dynamical
operators. However, recent generalizations of stability theory have addressed the more physi-
cally relevant finite time stability problem for both autonomous and non-autonomous systems
(Farrell and Ioannou, 1996a, 1996b). In the case of an autonomous operator, asymptotic error
growth or growth of an initially arbitrarily small perturbation occurs at the rate of the least
stable eigenvalue of the linear dynamical opérator and takes the form of the associated normal
mode. The analogous structure and growth rate in the case of a non-autonomous operator
are given by the time dependent first Lyapunov vector for the structure and in the mean by
the first Lyapunov exponent for the growth (Oseledec, 1968). While asymptotic structure and
growth are readily obtained for autonomous systems through eigenanalysis of the dynamical
operator and a variety of theorems typically involving the vorticity distribution of the back-
ground state are known to constrain asymptotic stability of autonomous systems (Rayleigh,
1800; Fjortoft, 1950) these rather strict results are not available for non-autonomous systems
in which constraints on growth take the form of more general energy bounds which are less
restrictive. Moreover, growth rates and structures of Lyapunov vectors for realistic physical
systems are not commonly available, presumably because of the nongeneric nature of time
dependent systems; consequently, intuition concerning such issues as the variability with time
of Lyapunov vectors and their energetics lacks example. Given that all physical systems are
to a greater or lesser extent time dependent and that the atmosphere in particular is highly
time dependent it is of more than strictly theoretical interest to understand better asymptotic
stability in such systems. Indeed, forecast accuracy is ultimately limited by asymptotic error
growth rate and the time at which this limit is approached starting from a sufficiently small
perturbation as well as the universal structure taken by the disturbance in this limit have
important practical implications. '

2 STABILITY THEORY FOR NON- AUTONOMOUS
DYNAMICAL SYSTEMS.

The linear time dependent dynamical system

du : P
E=-A(t)u; ;‘ , - . (1)

has solution : o , . 7
u(t) = Ppig ulto) . | (2)

The propagator ®y; 4, maps the state of the system at time £y to its state at time t. It is given
by the following time ordered exponential:

t t rr ' Lo :
B = I—{—/t0 A(s)ds+/t0 A(r)dr /to A(s)ds+---, ) (3)
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which is equivalent in the limit to the ordered product of infinitesimal propagators :

: . |
: Q[t,to] = }%En)o H eA(tj):st ) ‘ R : (4)
. . j=1 . , e ' . '
for tj lying in the mesh to+ (j —1)6t < t; < to+ 56t andt = toy-l-b'nét. The.propagatqr obeys
the semigroup property: @, ‘I)ls,to],, = fI)[Hs,to] and solves
d® .

Analyms of the stablhty propertles of this dynarmcal system dlffers from analy51s of the sta-
bility of autonomous ~operators in that system (5) has asymptotlc behavior that can not be
determined by examining the behavior of the temporal eigenmodes of A(t) which are not de-
ﬁned for general time dependence. However, the optimal perturbations retain their meaning
and provide the required description of the stability of the system for all time. In fact it re-
mains possible to uniquely define an asymptotic exponential rate of growth or decay for time
dependent operators which is the first Lyapunov exponent (Lyapunov, 1907) defined as

A = lim sup ﬂ“(};—(t)—ﬂ-)- (6)

The first Lyapunov exponent assumes the role played by the most rapidly growing mode in
autonomous systems and reduces to the most rapidly growing mode in the limit that the system
becomes independent of time. Any dynamical system.with A > 0 is asymptotically unstable.

If we assume that the time dependent operator is comprised of a sum of a time independent
mean operator and a stochastic operator then an extension of the Lyapunov results of Oseledec
(1968) establishes the existence of unique Lyapunov exponents almost surely in probability.
All the properties.established for deterministic operators carry over to the stochastic case with
the exception that the first Lyapunov vector and its optimal excitation depend on the specific
time realization while the associated first Lyapunov exponent is independent of the particular
realization (Arnold and Kliemann, 1983).

3 PARAMETRIC IN STABILITY IS A CONSEQUENCE
OF THE NON-NORMALITY OF THE OPERATOR

We obtain a bound on the Lyapunov exponent by con51der1ng the evolutlon of

r(t) = | u(t)||* which is easily seen to obey :
T = WA+ AT Q
implying

Q/t)\min(s ds .S log(r(((t))) S 2/ ,\max(s )ds o (10)

where Ap.x and Apin are the maximum and minimum elgenvalues of the Hermitian operator
(A(t) + Af(t))/2. This leads to the bound for the Lyapunov exponent:
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¢ t
' }H& sup _fg;%‘ﬁ‘ﬁ;_(s.)g_s < A < tll»rglo sup &”‘?ﬂ‘? . (11)

‘For autonomous dynamical systems the right inequality leads to the energy bound of Joseph
(1976) based on the numerical range Apq; which is typically indicative of the optimal growth
only for very small times. after which decay ensues if the operator is asymptotically. stable. It.
is p0551ble for time dependent operators to forestall this decay and sustain some portlon of
the instantaneous growth predicted by the numerical range leading in the asymptotlc limit
to instability. This process is referred to as parametric instability and is exemplified by the
destabilization of the harmonic oscillator by sinusoidal perturbation of its restoring force; an
instability famlharly associated with the Mathieu equation. Despite its at most neutral stability
at each time instant the time dependent operator associated with the perturbed harmonic
oscillator is unstable for specific intervals in frequency of the restorlng force perturbation. It
is immediate from (11) that non—normahty of the evolution operator is' a necessary condition
for parametnc asymptotlc 1nstab1hty to occur in an operator Wthh is stable at each 1nstant of
time.

As an example of the role of non—normahty in parametric instability con51der the harmonlc
oscillator with time dependent acceleration proportional to displacement:

z (%) - (o —2y) (1) - (12

The operator in (12) has commutator

| S R TP VUS B 122
S AAl - ATA = (27(1+w(2()t)) i(fw'%(t)())) 1)

1nd1cat1ng that A is non-normal except for v = 0 and w constant and equal to unity. If the
frequency is constant and v = 0 we are at liberty to rescale time by 1/w to make w = 1
and render the operator formally normal in the Ly norm.  This scaling is equivalent to the
coordinate transformation: =z , ¥ = v/w. But such a transformatlon with constant w can
not succeed in making the operator uniformly normal when the operator is time dependent
leaving open the possibility of positive Lyapunov exponents according to (11). It can be shown
that th1s destablhzatlon persmts even When 'y > 0 so that the operator is stable at each time
instant.. : ‘ :

This synerglsm of non—normahty and tlme dependence leadmg to asymptotlc 1nstab1hty
can be succinctly demonstrated by considering a discontinuous change in w between wy and wy
every T units of time. With y = 0 the propagator after a full period takes the form

@2T = H |:I COS(LU,'T) + Ai §En_f:‘)’z'_)':| H | | | (14)
i=1,2 _— ‘ 1

with I the identity and

w3

0 1 | |
A = (_ \ o) . | (15)
The ﬁrst Lyapunov exponent can be readlly calculated from -

n ' N '15
A= Jlm ————2 T , (15)
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where 7 is the number of periods. Unless the switchover time T is near an integer multiple of
one-half the natural period of one of the oscillations it can be verified that positive Lyapunov
exponents are obtained (Fig. 1). The reason for the instability is that transient growth
instigated at the starting time is continued with further growth when the switch to the second
operator takes place forestalling the decay which would occur in the autonomous case.

It is natural to inquire whether this support of parametric instability by non-normal sys-
tems with periodic parameter modulation leads also to asymptotic instability for parameter
modulations of more general form. One limit of parametric modulation is stochastic modu-
lation of the system’s parameters and it is remarkable that under the broadest assumptions
stochastic modulation of the restoring force leads to asymptotic instability (Arnold et al., 1986;
Colonius and Kliemann, 1993). In the sequel we inquire whether this generic destabilization
carries over to highly non-normal operators such as those governing evolution of perturbations
to the large scale atmospheric flow.
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0 1 2 .. 3 4 5 6
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Figure 1: Lyapunov exponent for the switched oscillator example as a function of the period of
the switch T nondimensionalized by 7 /wy for wy = 0.5 and w, = 3. Although instantaneously
neutral at all times, the oscillator is destabilized except in the neighborhood of integer values
of the switching period.
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4 STABILITY OF TIME DEPENDENT ATMOSPHERIC
FLOWS

The tangent linear system governing the evolution of small initial perturbations to a solution
of the nonlinear equations of motion can be cast as a non-autonomous linear system of form
(1). We can decompose this non-autonomous operator as A(t) = A + A'(t) where A is the
time mean operator and A’(t) is the operator arising from fluctuations which will be taken -
to be stochastic. In the case of the atmosphere A is the mean dynamical operator which is
asymptotically stable. We model the tangent linear system as:

T
where ¢ is the r.m.s. magnitude of the fluctuations, B; are time independent noise matrices,
and the noise processes &;(t) are identically distributed processes with zero mean and with
covariances :
< f,,(t) 5_7'(3) > = (5,;]' (5(t— S) , (17)
where < . > denotes ensemble averaging.

A dynamical system is necessarily characterized by a positive Lyapunov exponent for strong
enough noise € provided the dimensionality of the system is greater than 2 and the noise ma-
trices are neither skew-symmetric nor commute with the deterministic operator (Has’minskii,
1980; Colonius and Kliemann, 1993). This universal stochastic instability resulting from the
non- normahty of the dynamical operator underlies the asymptotic increase in separation of
initially adjacent trajectories in atmospheric flows.

To demonstrate the destabilization of an atmospheric tangent linear system consider a
three layer approximation of the midlatitude atmosphere. The geostrophic streamfunction is
assumed to be of the form 1;(t) € +#¥ with i=1, 2, 3 in the three vertical layers and harmonic
dependence in the zonal (z) and meridional () dlI‘eCtIOIl The dynamical equatlon for the three
components of the streamfunction is:

d ¢’1 ,6 wl ‘ .

= || = P‘l[—ik(A + -0751) - rI] Y2 | (27)
Vs , ‘ | Vs

with |
—(Uy + U X% /) U122 /a? 0
A = U2)\2/a2 —-(U2 + (U1 + U3)/\2v/012) ‘U2A2/a2 , (28)
0 U2A2/02 ' ""(Us + U2)\2/O£2) '
—(1+ A%/a?). A2 /a? 0 |
P = A%/a? —(1 4 A%/a?) A /a? : (29)
0 Nt —(1+X/eh)

and I the identity__rﬁafrix.
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The top layer is indexed first and each layer velocity is considered to be of the form
U: = U; + €&(t), with & being an independent white noise process as in (17). The
mean velocities (m/s) have been expressed in terms of the mean shear over each layer, AU,
as U; = 10+ (3 — §)AU (i = 1,2,3). The total horizontal wavenumber is & = (k? 4 12)1/2,
the meridional wavelength I = 7/Y, corresponds to the gravest mode in a channel of merid-
ional extent Y. = 4000 km. The Rossby deformation wavenumber is \ = fo/(d¥/%6p) with
fo=10"* s and f = 1.65 x 10~ m~1s71, the midlatitude value of Coriolis parameter
and its northward derivative respectively, and 0 = 2 x 105 Pa~25"2m2 the stratification
parameter typical of the troposphere. Equally spaced pressure surfaces have been taken with
6p = 10°/3 Pa. The coefficient of potential vorticity damping is denoted by . Equations (27),
(28) are presented in non-dimensional form. Time has been non-dimensionalized by Ty =1
day; horizontal lengths by L, the perimeter of the latitude circle at 457, and velocities by
L,/ Ty. -

The first Lyapunov exponent as a function of shear AU and r.m.s. noise variance € for
global wavenumber 11 and non-dimensional potential vorticity damping r = 0.2 corresponding
to an e-folding of 5 days is shown in Fig. 2. Note the destabilization of this system as noise
increases. The threshold noise required to destabilize the system is seen to gradually decrease
as the non-normality of the mean operator, indicated by the shear, increases. The typical
midlatitude shear corresponds in this three layer model to AU = 10 m/s. This simplified
model of the midlatitude atmosphere suggests existence of a positive Lyapunov exponent for
r.m.s. temporal fluctuations of the order of 10%, while for 30% fluctuations a Lyapunov
exponent of the order of 1/5 day™! is expected.

Although useful for constructing simple examples, white noise forcing is unrealistic for
modeling physical systems in that maintaining finite variance on passing to the limit of delta
correllation of the noise requires unbounded amplitude of the forcing. More realistic modeling
requires using temporal variation with finite correlation time in the operator which permits
the ampitude of the forcing to remain bounded.

5 Discussion

Two distinct problems are addressed by analysis of the linear stability of time dependent op-
erators: the growth of errors and the growth of perturbations. Calculation of error growth
usually involves the time dependent system of tangent linear equations in which the lineariza-

tion has been performed about a known time dependent Vtrajectory and the perturbation is
regarded as a small error in specifying the initial conditions. The result of the calculation
is the difference between the perturbed and the unperturbed trajectories and it is valid until
nonlinear effects become important. If a positive Lyapunov exponent exists then an arbitrarily
small perturbation to initial conditions eventually produce an order one change in the trajec-
tory and after a period of adjustment this change assumes the form of the time dependent first

Lyapunov vector. In this case the asymptotic stability calculation is interpreted as constraining
the predictability of the system.
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Lyapunov exponent ( 1/d )

Figure 2: The Lyapunov exponent for the baroclinic three-layer model as a function of shear
and strength of the multiplicative noise forcing. The global zonal wavenumber at 45° of latitude
is 11, the meridional wavenumber is I = 7/4, and dissipation corresponding to 7 = 0.2 has
been included. A finite magnitude of both shear and parametric forcing is required to produce
a positive Lyapunov exponent. The Lyapunov exponent increases with both the shear and the
magnitude of multiplicative noise forcing. k
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The growth of perturbations problem by contrast envisions development to finite ampli-
tude of a disturbance on a time dependent flow such as the atmospheric jet and the result
is interpreted as a generalization of the transient growth to finite amplitude of perturbations
on stationary flows. An example of this type of problem would be an instability calculation
studied as a model for cyclogenesis. Such instability problems have most often been exam-
ined assuming that the underlying operator to be autonomous. This assumption is seldom
critically evaluated and it would be of interest, for example, to find that the mid-latitude jet
while stable if its time mean is analyzed were found to be unstable if realistic vacillation were
included in its specification. It could then be that the stable mean jet spontaneously gives rise
to perturbations in the form of the Lyapunov vector. The nature of these perturbations and
their relationship to cyclogenesis and the maintenance of long waves would then be of great
interest to understanding the general circulation of the atmosphere.

Given that all physical problems are to a greater or lesser extent time dependent it follows
that the stability of realistic flows must take account of time dependence in some way. For
short enough time intervals the time dependence of forecast model tangent linear trajectories
may be ignored without undue effect on the calculation of forecast error growth; moreover,
the dominant energetics of the mid-latitude atmosphere appear to be associated with growth
on short enough time scales that the statistics of the atmosphere can be accurately modeled
using autonomous time mean operators (Farrell and Ioannou, 1993). However, for longer time
periods such as are associated with medium and longer range forecast and with asymptotic
error growth, explicit account of time dependence needs to be taken. To this end the methods
of non-normal dynamics can be straightforwardly extended from the study of growth of pertur-
bations over finite time in autonomous systems to study the growth of perturbations over finite
time in non-autonomous systems. The optimal perturbations and the structures into which
these evolve over a given interval of time can be obtained by singular value decomposition
of the propagator whether the propagator arises from an autonomous or a non-autonomous
system. In the limit of long time the analogue of the most rapidly growing normal mode
which asymptotically dominates in the autonomous system is the first Lyapunov vector which
asymptotically dominates in the non-autonomous system. This asymptotic growth in the non-
autonomous system can also be analyzed through the non-normal dynamics of the underlying
dynamical operator given a specification of the time dependence of the system. But this raises
an issue concerning the methods required in the study of non-autonomous operators. While a
stationary state can be easily specified by a deterministic function, a time dependent system
such as the atmosphere can only be specified in general terms through its statistical properties.
We would like to turn this limitation to advantage to obtain results that transcend the partic-
ularities of a given realization of the system to reveal rather the general statistical properties
of the system’s time dependent stability. We have studied this problem by using stochastic
perturbation of the mean operator with the perturbations chosen to model statistically the
observed deviations from the mean of the atmospheric jet within the limitations of simple
models. We found that asymptotic stability properties of time dependent systems can be un-
derstood in general terms through considerations employed by Zeldovitch et al. (1984) in his
analysis of vector growth in random unitary systems; that is instability results because growth
of a randomly chosen vector over a finite time interval can dominate over decay even when
the development of a randomly chosen vector over the numerical range results in decay. For
a given temporal correlation interval this mechanism can be modeled by extension of Floquet
analysis from a periodic to an aperiodic model system (Farrell and Ioannou, 1996b).
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Using this theory and given statistical properties of the time dependence of the operator,
the asymptotic stability properties and the characteristics of the associated Lyapunov vector
can be obtained. This allows us to evaluate circumstances under which destabilization of the
system due to time dependence is likely and to understand the resulting growing structures.
Some further results using this approach follow (Farrell and Ioannou, 1998). For the example
of the barotropic jet we found that increasing the amplitude of jet vacillation is destabilizing
provided the vacillation does not have the same functional form as the mean flow. Increasing the
spatially uniform value of constant 3 is stabilizing although no generalization of the Rayleigh
or Fjortoft theorems exist: examples demonstrate that it is possible for a time dependent
system which satisfies necessary conditions for stability at each instant of time to be unstable.
Sufficient spatial and temporal variation of effective J was found to be destabilizing and this was
identified as the mechanism by which variation of jet structure with time produces instability.
In the case of a stable time mean operator, asymptotic stability is retained when a time
dependent perturbation of bounded amplitude is added provided the temporal correlation of
the time dependence of the jet vacillation is either sufficiently long or sufficiently short. The
optimal correlation time for instability at an intermediate value of temporal correlation.

General considerations of destabilization of stable mean operators by time dependence show
that the Lyapunov vector can not be simply the least stable mode of the mean operator which
has been destabilized by time dependence; rather, a mixture of modes in the non-orthogonal
subspace of the operator must take part in producing the Lyapunov vector and as a result the
asymptotic instability possesses a character distinct from the individual modes.

It is not necessary for a turbulent flow to have a positive Lyapunov exponent. Consider a
forced but highly damped flow; the forcing can produce an arbitrarily complex flow field which
is completely determined by the, in principle, known forcing. Meanwhile the damping could
in principle be sufficiently great that no positive Lyapunov exponent exists. The atmosphere
in summer may be such a forced system. While this would mean that an arbitrarily small
perturbation would not result in a completely different atmospheric state after sufficient time
has passed it would not mean that the atmospheric state would be predictable given that the
forcing; arising e.g. from latent heat release, is unknown.
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