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Summary: The Kalman filter is a statistically optimized data assimilation method.
From its formulation in its present form in the early 1960’s, it has seen widespread
application in the engineering community. Since it is a filter, as opposed to a smoother,
the result of its application takes into account only observations taken at the time at
which the analysis is being conducted and at earlier times. In this respect, it is suitable
for forecast systems, but less so for retrospective analyses in which analysis is desired
for past times, and the analysis at a given time may be improved by consideration of
future data, i.e., data gathered at subsequent times.

The Kalman filter is easily formulated as a weak-constraint method, i.e., the as-
sumption that the model and forcing fields are perfectly known is unnecessary and
does not make implementation any more convenient. All weak constraint methods
are computationally demanding, and the choice between the Kalman filter and other
weak-constraint techniques is often a tactical one, depending on such considerations
as programming convenience. '

The Kalman filter depends on prior estimates of error statistics; as such, it can be
viewed as an exercise in Bayesian statistics: at a given time fy, the “present,” given a
first guess up for the system state as the mean of a prior estimate of the probability
density of the solution space, and the fact that a measurement has occurred at time -
to, what is the posterior conditional probability density, conditioned upon the fact
that the observation has taken place with the given results? Under the assumptions
that the dynamics are linear and the initial distribution and the distributions of the
observation and forcing errors are Gaussian, the distribution of the filtered solution
will remain Gaussian, and therefore completely specified by its mean and covariance.

Formulated in these statistical terms, the Kalman filter allows a posteriori analysis
in terms of formal statistical hypothesis testing. One can then establish formal confi-
dence limits on whether the filter is actually functioning in an optimal fashion, which
it will be if the prior assumptions are in fact valid.

Here we derive the Kalman filter as part of the explicit solution to a weak constraint
variational problem for a linear system. This relatively unconventional approach is
intended to show the close relation between the Kalman filter and other variational
methods such as 4DVAR.

Following the derivation, we give an example of application of the Kalman filter to a
problem in ocean data assimilation, and then go on to discuss a posteriori statistical
validation.

1. INTRODUCTION

The Kalman filter is an optimized method. It shares this attribute with the variational methods
such as 4DVAR. Here I shall derive the Kalman filter directly from a simple minimization procedure

for a discrete data assimilation system.
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1.1 Data assimilation: smoothers and filters

In this section, we shall derive a very general data assimilation scheme based on a very simple
discrete assimilation cycle. Let ug be our best guess for the state of the system at time f. Assume

the state vector ugy to have dimension N. The assumed prediction model is linear, and given by:

w=Lug+T1 (1)

The subscript “1” denotes quantities evaluated at time ¢;, and 7 is the forcing. Now, at this point
in the assimilation cycle, a vector y of m observations becomes available. We do not assume that
y is a direct observation of the entire state vector u;. We only assume that the quantity measured
is linearly related to uy, i.e., if our model were perfect and had perfect initial conditions, and there
were no observation errors, we would have y = Hu;, where H is a given m x N matrix. For example,
if y consisted of the observation of the 4t component of u;, then H would consist of a single row
vector with a 1 in the j%* position and zeros elsewhere. We may look at Hu; as our prior estimate
of y, based on past measurements and on our knowledge of the system.

The updating operation consists of finding optimal corrections vo and v; to up and u; based on
y. The easiest assumption to make is that L and 7 are known exactly, and all of the errors in the

system are due to mis-specification of ug. The optimized solution will be of the form:

u; +vi1 = L(ug +vo) + 7 (2)
ie.,

vi = Lvg (3)
We choose vy to minimize the cost function J, given by:

J =v3 Pylvo + (2 — Hv1)TR Yz — Hv1) + A(v1 — Lvo) (4)

‘where z = y — Hu; and the row vector of Lagrange multipliers A enforces the strong constraint:

vi = Lvy _ (5)

Now look at the first variation dJ of J:

60 = J(V0+50,V1+51)—J(V0,V1) (6)
= P16, — 2(z — Hvi)TR™1Hé; + M6y — Léo) + O(8%) (7)
= @vIP 1= AL)6o +2(\— (z— Hv1)"RT'H)4; (8)

The expressions in parentheses in (8) represent the gradient of the cost function in the vy and v;

directions. We can always choose A to make the second expression vanish by the strong constraint
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(5). This value of A can then be substituted into the first expression which may look a bit more

familiar as a transpose:
VJ|v, = 2P vg — LXAT (9)

where the expression on the left hand side is the gradient of J in the v directions, L* is the adjoint of
L and XA must be transposed because of our convention of choosing ) as a row vector. So application
of the adjoint operator L* on the Lagrange multiplier A allows us to calculate the gradient of the
cost function. We can then use this gradient in a descent method to find the optimal choice of vy.
This is the adjoint method 4DVAR.

Now let us derive a weak constraint system, i.e., one in which the model is assumed to be imperfect.
Let @ be the covariance matrix of the model error. If we set @ = 0, we should recover the strong

constraint method. For the strong constraint system, @ = 0 so it does no harm to write:

vi — Lvg = Q)T (10)
So

A= (vi — Ivo)TQ! (11)

When the norm of Q@ is small, the norm of Q! must be large so it is at least plausible that we should

recover the strong constraint problem smoothly in the limit as @ — 0; for details, see Bennett (1992).

The weak constraint cost function then becomes:
J = v{P{lvo + (z — Hvl)TR"l(z — Hvi) + (v — LVO)TQ“I(vl — Lvyg) (12)

The rightmost expression in (12) is a positive definite bilinear form on pairs of vectors of state

dimension. We may write:
(vi = Ivo)TQ Y (vy — Lvg) + v P lvy =<< vy, vi; v, Vi >> (13)

Following our previous procedure, the first variation of the new cost function is given by:

6J = J(vo+do,v1+61)— J(vo,v1) (14)
= 2vi Pyloo—2(z — Hvy)TR™IHE, + 2X\(6; — Léo) + O(6?) (15)
= 2(viP7' ~AL)d +2(\ — (z — Hv1)'R™1H)6; (16)

Setting the gradients equal to zero leads to:
LN — P vy = 0 (17)
A—(z—-Hv)TR'H = 0 (18)

Equations (17), (18) and (10) make up the Euler-Lagrange equations for this variational problem.
Note that these equations are coupled; this is the essential practical difference between this system

and the strong constraint system, in which (5) could be used to solve explicitly for X in (8).
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We note from (16) that ) is a linear function of H. We may decouple the system by writing o = H
and A = (z — Hv1)TR la. Now write: v = PL*aTR™!(z — Hv;) = roR™Y(z — Hvy) where
ro = PL*HT and 1y = Lrg+QHT = (LPL* + Q)HT The sequence (r(()j ). r1)y, where the superscript
(-)7 denotes the 4§t column of the matrix is the representer of the j** observation. Now look for
solutions to the variational problem of the form:
vog = Trgb (19)
vi = rb=(LPL*+Q)H™ (20)

by construction:
’l°1b - L’l"ob = (’T‘l - L’I‘o)b = QHTb ) (21)

So according to (10), b must satisfy:

HTb = HTR Y(z — H(LPL* + Q)HTDb) (22)
hence:

[H(LPL*+ Q)HT + R|b=1z (23)
and:

vi = (LPL* + Q)HT [H(LPL* + QHT + K] = (24)
Recall that vy is the correction to the first guess u;, and z = y — Hu; so the optimal solution can
be written:

iy = up+rgb (25)

= ug+PL*HT [H(LPL* +Q)HT + R] i (y — Huy) (26)
and:

@ = u; + (LPL* + Q)HT [I—I(LPL* +QHT + R] - (y — Huy) | (27)

Equation (27) is the definition of the Kalman filter. The matrix:
* T * T -1
K = (LPL* + Q)HT [H(LPL* + Q)H +R]

is often referred to as the Kalman gain matriz.
We can now explain why the sequence (rg,r;) is referred to as the representer. Consider an

arbitrary pair of vectors (xg,x;) of dimension N. We have:

<<l rTixg,x1 >> = ra P lxg+ (r1 — Lro)T Q™ (x1 — Lxq) , (28)
= HLx+ H(x; — Lxo) (29)
_ Hxy (30)
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where, with some abuse of notation, the bilinear form on the left hand side of (28) is calculated for
individual columns of r§ and r{. Any linear function f of a vector v can be represented as a dot
product with some fixed vector u, so that fv) =u-v. We might then call u the representer of
f. In this way, the measurement model, i.e., the linear function which relates an arbitrary sequence
of state vectors xg,x; to the measurement of state x; at time #; can be represented by the bilinear
form << rg,r1;%0,%x1 >>.

If we wish to continue this process, the updated vector @; must become our first guess for the
next step. We must therefore find an expression for its error covariance, corresponding to P.

We assume that the errors in our prediction model (1) are characterized by white noise, i.e., the

system in nature is described by a Langevin equation:
) =Lub+7+by (31)

where the superscript (-)* denotes the true system and b is a random white sequence with E (bjbf) =
Q6 where E(-) denotes expected value. We began with the assumption that P, was the error

covariance matrix of the initial guess ug. We then have the expression for the forecast covariance
f.
P}

P = B((uf - w)(uj - u)?) (32)
= E((L(uf — o) + b1)(L(u§ — uo) + b)) (33)
= LPL*+Q (34)
So we may write the gain matrix K in terms of the forecast error covariance Plf :
K = P/HT(HP{HT + R)™! (35)

The error covariance Py, where the superscript (-)? denotes “analysis,” i.e., the state estimate

containing current information, of the updated state estimate is given by:

PP = E((u] - &)(uf - a1)7) (36)
= (I- KH)Pl (I - KH)' + KRKT (37)
= (I-KH)P{ - P/H"KT + KHP{H'K" + KRK" (38)
= (I-KH)P| (39)

We may now repeat the cycle, defining a new cost function with the same form as (12), but with

T in place of Py and 1ii; in place of ug. It is worth noting here that it is often advantageous to
use the form (38) rather than the simpler (39) for stability reasons, since it is more likely to remain
positive definite in the course of large calculations which will inevitably be contaminated by roundoff
errors. One intuitive explanation for this is that in the case of localized accurate observations in
a large-scale calculation, some of the estimated error variances, i.e., the diagonal elements of Pf
may become very much smaller than others. This means that in the course of computation of (39),

very small numbers may be obtained as differences of numbers orders of magnitude larger. This
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is the a common recipe for computational difficulty due to roundoff error. A detailed treatment
of computational instabilities one may encounter in application of the Kalman filter, along with
suggested remedies may be found in Bierman (1977).

Because we are interested in prediction, the correction to the first guess ug at time ¢y according

to (26) is not computed. We may summarize the Kalman filter in the following equations: State

prediction:

w =Lug+71 ' (40)
Covariance evolution:

P{ =LRLT +Q (41)
State update:

i = u; + K(y — Huy) | (42)
where the Kalman gain K is given by:

K = P/HT(HP/HT + R)™ (43)
Covariance update:

P = (I - KH)P] | (44)

So the Kalman filter consists of explicitly computing the solution to a weak constraint variational
problem for the state at the end of the interval. Previous states are left unchanged; this is the
definition of a filter. The solution is therefore optimal only at the final time. A new cost function
is defined for the next assimilation cycle, based on the updated error covariance P{. Only current
observations are used directly in the calculation of the updated state. Previous observations impact

the current state through the filtered value and the covariance matrix.

2. PRACTICAL CONSIDERATIONS _
How do you actually do this? In all cases of interest, the bulk of the computational resources are

spent on the covariance update:

P/ = LRL*+Q (45)
= LILP)*+Q . (46)

In the straightforward implementation of the Kalman filter, this is done by applying the model to
the analysis covariance column by column, finally replacing Py by LFp. The evolution operator L is
then applied to the result row by row, and finally Q is added to the result. This means that for a
system with state dimension N, 2N prediction steps are necessary for a single step of the covariance

evolution. Typical models of the ocean and atmosphere can have N =~ 10%, which makes direct
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application of the Kalman filter a daunting task. Practical computations of the Kalman filter have
been performed with systems with thousands of state variables (see, e.g., Miller et al., 1995). For
larger systems, given state of the art computing resources, some compromises must be made.

- An example of the application of the Kalman filter to a problem in ocean modeling was presented
by Miller et al., 1995. In that work, the Kalman filter was applied to a linear shallow water model of
the tropical Pacific. Details of the model itself are given by Cane and Patton (1984). Observations
consisted of tide gauge data taken at island stations and temperature profiles taken from volunteer
observing ships. These latter platforms are merchant ships which carry instruments and whose crews
are trained to deploy them. Here we focus on the tide gauge data.

The model domain was the tropical Pacific basin, shown here in figure 1.
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Figure 1: Model domain for Pacific Kalman filter experiments. Filled circles denote locations from
which data were assimilated. Open circles denote locations from which data were available, but were
held back from the assimilation process for the purpose of verification.

The model was further simplified by a long-wave approximation, so the state vector at each
point on the grid consisted of the zonal advection velocity and the mass anomaly for each of two
baroclinic modes. The meridional velocity is calculated diagnostically, consistent with the long-wave
approximation. This system had apprommately 4000 state variables. ‘

The tropical ocean is an excellent test bed for advanced data assimilation methods. Linear
models describe the large scale low frequency behavior of the tropical ocean adequately, so methods
such as the Kalman filter can be applied directly without further approximation, and data are sparse,
so it is necessary to make the best use of all the data available.

Construction of the system noise covariance () proceeded from the assumption that the errors
were dominated by errors in the wind forcing. () was estimated by a large Monte-Carlo experiment,
in which, for each trial, a random wind field with given covariance characteristics was generated and
used to force the model for a single time step. For each of these trials, the model was Initialized

with the state vector set to zero. The covariances among the state variables were calculated for each

53



MILLER, ROBERT N: INTRODUCTION TO THE KALMAN FILTER

trial, and the results averaged afterwards.

Random forcing with arbitrary admissible covariance is easily generated. Assume the wind errors
have covariance matrix C. Write the Cholesky decomposition of C: C = BBT where B is a lower
triangular matrix. If a random vector q is generated with the dimension of the forcing 7 and
covariance given by E(qqT) = I, where I is the identity matrix of appropriate dimension, i.e., the
elements of g have unit variance and are uncorrelated, then a simple calculation will show that the
vector Bq has covariance C. For details, see Miller et al. (1995).

In a dissipative system such as this one, if the observing array, described by the matrix H remains
constant throughout the run, the error covariance reaches a steady equilibrium value, so it is possible
to examine the observations and the model output and compare the actual variance of the data misfit

with the prior estimate. Figure 2 shows the result of assimilation of data at Penrhyn:
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Figure 2: Results of Kalman filter experiment with shallow water model of the tropical Pacific.
Comparison of raw model output, filter output and observations for Penrhyn Island. Data from the
Penrhyn tide gauge participated in the assimilation

Tt is, of course, to be expected that the output of the filter is close to the observations; in fact,
the agreement can be made arbitrarily good by the simple expedient of decreasing R or increasing
Q; this is clearly not the intent of such an exercise. Results at Penrhyn are, in fact, quite good.
The variance of the time series of data misfits was 34cm?, while the prior estimate was 38cm?.
After assimilation, the variance of the data misfit was 2.0cm?, while the prior estimate was 2.8cm?.
One can take some comfort from the fact that these numbers seem close, but closer investigation is
required to evaluate how close those numbers should be.

One way to assess success or failure of a data assimilation experiment is to hold back data, and
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see if the assimilation improves the estimate of those observations which the system didn’t know

about. Figure 3 shows the results for sea level anomalies at Truk, which did not participate in the

assimilation.
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Figure 3: Results of Kalman filter experiment with shallow water model of the tropical Pacific.
Comparison of raw model output, filter output and observations for Truk Island. Data from the
Truk tide gauge did not participate in the assimilation: ' o '

The assimilation clearly improves the analysis at Truk, and the prior estimates are reasonably
reliable. The variance of the time series of data misfits in the run without assimilation was 41cm?
as was the prior estimate. The variance of the time series of data misfits following assimilation of
data at the tide gauges indicated in figure 1 was 29¢m2. The prior estimate was 26cm?2. Not all of
the comparisons of the model output with data were this reliable, and some were very far ﬁom the
prior estimates. Comparisons such as these are useful in that they provide guidance, but without
more detailed statistical analysis, we have no quantitative measure of how good our prior estimates

are.

3. POSTERIOR VALIDATION OF KALMAN FILTER RESULTS

Having performed a Kalman filter experiment, it is necessary to decide whether it worked or not.
Sometimes, as in the case of the tropical Pacific described in the previous section, one can withhold
data and examine whether the results of assimilation matches the withheld data. Statistics such
as RMS differences between the observations and the assimilation results can be computed, and
compared to their prior estimates based on the estimated error covariance matrices. Sometimes

these numbers match reasonably well, but it is difficult to determine how well one expects them to
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match. Miller (1990) attempted to apply bootstrap methods to answer this question, but practical
Kalman filters are suboptimal, and the time series of residuals are autocorrelated. The validity of
bootstrap estimates of the variation of the variance of the data misfit from sample to sample is
therefore questionable.

In fact, there are several objective tests one can apply to the output of the Kalman filter to
verify proper operation. Probably the most important time series to examine is the sequence of
differences between the observations and their forecast values, i.e., the sequence y; — H ui , Where
the subscript (-); denotes the k** time step, and the superscript (-)¢ denoted the forecast value, i.e.,
the estimate of the quantity dt time ¢; without assimilation of data at time t;. This series is known
as the innovation sequence. | |

A simple calculation shows that the covariance of the innovation sequence is given by H P,{ HT+R.

If we now look at the sequence:

(yx — Hul)T(HP{HT + R)\(y, — Huf) = ' : (47)

> (H (uf, — Uﬁ) + b°); (H (ul, — u,{) + bﬂ)j(HpkaT + R)i_jl

Without loss of generality, we can consider the matrix (H P,{ HT + R) to be diagonal; we know that
this must be so in a coordinate system related to the original one by a simple orthogonal change of
coordinates, and the quadratic form in (47) is invariant under orthogonal change of coordinates. In
these coordinates, the components of the innovation are exactly the principal components, whose
variances are the diagonal elements of (H P,{ HT +R). A straightforward algebraic calculation then
shows that: |

(ve — Huf)T(HP{H” + R)™ (v — Hu]) = > (v — Hul)}/X} | (48)

where )? is the ith diagonal element of (H P,{ HT +R). This is clearly a x? variable on N — 1 degrees
of freedom, so the validity of the errdr estimates from the Kalman filter are subject to classical
hypothesis testing. In the engineering community, this x° test is known as a “sanity check,” (J.
Thorp, personal communication). ‘

The autocovariance properties of the innovation sequence can also be used to evaluate the per-
formance of a Kalman filter. Kailath (1968) showed in general that the innovation sequence is white
in a Kalman filter which is functioning optimally. The intuition for this comes from the fact that
the innovation sequence is the connection between the Kalman filter and the real world. A white
sequence contains no information. If the innovation sequence is not white, then there is real world in-
formation remaining in the innovation sequence which is not accounted for. An optimal filter would
extract all of the available informatidn, leaving behind only white noise. Daley (1992) described
direct use of the statistics of the innovation sequence as a performance diagnostic for the Kalman
filter.
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If an implementation of the Kalman filter is found to have a consistent autoregressive structure
in the innovation sequence, it is possible to modify the Kalman filter to include an explicit autore-
gressive model in the filter itself. This was done with a model of the tropical Pacific by Chan et al.
(1996). They incorporated a first order autoregressive model of the innovations with a one-month
lag into the Kalman filter of Miller and Cane (1989), and the result was a new filter which gave
rise to a white innovation sequence. The origin of this one month autoregressive structure could be
the obsérvation error or the wind forcing error, or it could be a consequence of some simplification
made in the derivation of the physical model. Whatever the most important defect of this data

assimilation system turns out to be, it has the signature of a one-month autoregressive process.

4.  DISCUSSION AND SUMMARY

The Kalman filter was derived as the solution to a weak-constraint variational problem in order
to illustrate its explicit relation to the strong a‘nd’ weak constraint variational methods. The Kalman
filter is usually presented as a discrete time algorithm in the oceanic and atmospheric modeling
communities, even though a continuous time Kalman filter is easily derived in a similar fashion;
see Bennett (1992). Variational data assimilation methods are often presented in continuous time
and/or space form, in order to take advantage of the tools of the calculus of variations. The fact
that the variational methods are often described in the setting of continuous time and /or space, and
the Kalman filter is almost always described in discrete time can hinder understanding of the close
relation between the commonly described methods.

The most common derivation of the Kalman filter is as a simple least squares method. This is
the approach taken in Gelb (1974), and in the work of Ghil et al. (1981) in which the Kalman filter
was first set in context of numerical weather prediction. All of these methods are formally free of
assumptions about the underlying distributions — one can calculate minimum variance estimators
for any reasonably well behaved distribution. Details regarding the underlying distributions are
necessary if one wishes to assign confidence limits based on the prior estimates of error covariances.

A variety of strategies for reducing the extreme computational burden associated with the
Kalman filter have been introduced recently. Fukumori (1995), Fukumori and Malanotte-Rizzoli
(1995) and Hackert et al. (1996) have adopted the strategy of computing the covariance evolution
with lower resolution than the underlying model. This reduces not only the number of actual arith-
metic operations required, but also reduces the memory requirements to manageable size. All of
these efforts were at least moderately successful.

A similar approach was adopted by Cane et al. (1996), who devised a reduced dynamical model
to calculate the covariance evolution in a system very similar to that investigated by Miller et al.
(1995) with the full Kalman filter and a low resolution model. The prediction model used by Cane et
al. (1996) had higher resolution than that used by Miller et al. (1995), but the covariance evolution
was performed on a subspace of the space of empirical orthogonal functions (EOF’s) of a long time

series of state vectors generated by a long model run. Less than 100 EOF’s accounted for more than
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95% of the variance in the original model run. The evolution operator which transformed the EOF
amplitudes at one time into those at the next time step was determined empirically. Their results
were essentially identical to those of Miller et al. (1995), at a much lower cost in computational
resources. A survey of reductions of the Kalman filter was given by Cohn and Todling (1996).

Generalizations of the Kalman filter to nonlinear problems have attracted a fair amount of
attention of late. The simplest generalization is the eztended Kalman filter (see, e.g., Gelb, 1974),
in which the linearized prediction operator at the current state vector is used to calculate the
covariance evolution (34). This has been shown to be unsatisfactory in some cases. Examples in
which the covariance evolution was modified by using ensemble calculations to account explicitly for
the nonlinearity can be found in Evensen (1994) and Miller et al. (1994).

4. REFERENCES
Bennett, A. F., 1992: “Inverse Methods in Physical Oceanography,” Cambridge University Press,
New York, 346pp.

Bierman, G. J., 1977: “Factorization Methods for Discrete Sequential Estimation,” Academic Press,
New York. 241pp.

Cane, M. A., A. Kaplan, R. N. Miller, B. Tang, E. C. Hackert and A. J. Busalacchi, 1996: Mapping
tropical Pacific sea level: data assimilation via a reduced state space Kalman filter, J. Geophys.

Res., in press.

Cane, M. A. and R. J. Patton, 1984: A numerical model for low-frequency equatorial dynamics. J.
Phys. Oceanogr., 14, 1853-1863.

Chan, N. H., J. B. Kadane, R. N. Miller and W. Palma, 1996: Estimation of tropical sea level
anomaly by an improved Kalman filter. J. Phys. Oceanogr., 26, 1286-1303.

Cohn, S. E. and R. Todling, 1996: Approximate data assimilation schemes for stable and unstable
dynamics, J. Meteor. Soc. Japan, 74, 63-75.

Daley, R., 1992: The lagged innovation covariance: A performance diagnostic for atmospheric data
assimilation. Mon. Wea. Rewv., 120, 178-196.

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using
Monte-Carlo methods to forecast error statistics. J. Geophys. Res.. 99, 10143-10162.

Fukumori, I., 1995: Assimilation of TOPEX sea level measurements with a reduced-gravity shallow
water model of the tropical Pacific ocean, J. Geophys. Res., 100, 25027-25039.

Fukumori, I. and P. Malanotte-Rizzoli, 1995: An approximate Kalman filter for ocean data assimi-

lation; an example with an idealized Gulf Stream model. J. Geophys. Res., 100, 6777-6793.

Gelb, A., 1974: “Applied Optimal Estimation”, MIT Press, Cambridge, MA. 374pp.

58



MILLER, ROBERT N: INTRODUCTION TO THE KALMAN FILTER

Ghil, M., S. E. Cohn, J. Tavantzis, K. Bube and E. Isaacson, 1981: Applications of estimation theory
to numerical weather prediction. in Dynamical Meteorology: Data Assimilation Methods, edited by
L. Bengtsson, M. Ghil and E Kallen, Springer-Verlag, NY, pp139-224.

Hackert, E. C., R. N. Miller and A. J. Busalacchi, 1996: An optimized design for a moored instrument

array in the tropical Atlantic ocean. J. Geophys. Res., subjudice.

Kailath, T., 1968: An innovations control approach to least square estimation — Part I: Linear
filtering in additive white noise. IEEE Trans. Automat. Control, 13, 646-655.

Miller, R. N., 1990: Tropical data assimilation experiments with simulated data: The impact of the
tropical ocean and global atmosphere thermal array for the ocean. J. Geophys. Res., 95, 11461
11482.

Miller, R. N., A. J. Busalacchi and E. C. Hackert, 1995: Sea surface topography fields of the tropical
Pacific from data assimilation. J. Geophys. Res., 100, 13389-13425.

Miller, R. N., M. Ghil and F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear
dynamical systems. J. Atmos. Sci., 51, 1037-1056.

Miller, R. N. and M. A. Cane, 1989: A Kalman filter analysis of sea level height in the tropical
Pacific. J. Phys. Oceanogr., 19, 773-790.

59





