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1. Introduction and motivation

The study of atmospheric predictability is primarily concerned with the question of how
rapidly and by what physical processes perturbations of small amplitude are amplifying
in the afmosphere (Lorenz 1982, 1990). Experience with extremely simplified atmospheric
models (e.g., Lorenz 1963), as well as with complex numerical weather prediction (NWP)
models has indicated that two initially slightly different states — each evolving according
to the same physical laws — may over time develop into states no more similar than two
randomly chosen observed states of the atmosphere. This inherent error growth is not an
artifact of NWP models, but is a consequence of the nonlinearity and instability of atmo-
spheric dynamics (Leith 1978, Tribbia 1996). It is this internal error-growth mechanism
that has been the principal subject of predictability studies (e.g., Leith 1983, Shukla 1985,
Thompson 1985, Boer 1994). As a consequence, such error growth, in conjunction with
unavoidable inaccuracies in the specification of the initial model state, necessarily leads to

limited predictability of the atmosphere.
1.1. Mesoscale predictability

In the present paper the emphasis is on investigating in some detail the predictability of at-
mospheric flows within a regional mesoscale primitive-equation model. The predictability
of mesoscale circulations (considered here on horizontal scales of order a hundred kilome-
ters) has, and still is, been a subject of considerable controversy. Based on a simplified
model that included a wide range of different spatial scales, Lorenz (1969) demonstrated
that smaller-scale phenomena and, especially, mesoscale phenomena should be less pre-
dictable (i.e., have shorter error—doubling times) than synoptic— or planetary-scale cir-

culations (see also, Tennekes 1978). Consequently, as small-scale errors introduce errors
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in the larger scales through an inverse cascade of error to larger scales (e.g., Tribbia and
Anthes 1987, Leith 1971), he concluded that the time over which prediction of instanta-
neous weather patterns is possible is intrinsically limited by a finite range of predictability,
currently conservatively estimated to be about ten days. This predictability limit must be
distinguished from the considerably longer limit for low—frequency, planetary-scale anoma-
lies (see, e.g., Cane 1992, Kumar et al. 1996, Palmer and Anderson 1994).

In contrast to the results of Lorenz (1969), Anthes et al. (1985) found from numerical
integrations of a primitive-equation regional model that initial perturbations of consider-
able size only grew very slowly (if at all) over integration periods of several days. This
behavior led to the hypothesis that mesoscale circulations are inherently more predictable,
as they are controlled (possibly to a large degree) by the specification of the lateral bound-
ary conditions, the influence of the large-scale flow, and orographic forcing.

In view of these seemingly contradictory results, Errico and Baumhefner (1987) un-
dertook a detailed investigation of the reasons responsible for this behavior. They showed
that three maJor constraining influences (1 €. strong numencal d1551pat10n acting to damp
spatlally uncorrelated perturbatlons effective reduction of initial variance through dynam-
ically uncorrelated perturbatmns projecting onto gravity waves, lack of boundary pertur-
bations) dominated the results of Anthes et al. (1985), while errors in quasi-geostrophic
components of the flow were growing with short doubling times. In further studies (e-g.,
Van Tuyl and Errico 1989, Vukiéevié and Errico 1990, Vukiéevié 1991) it was pomted out
that results depended conmderably on the structure of the initial perturbatlons (spemﬁcally
' their correlation structure). In addition, one m1ght make the comment that the sources
of possible dynamical instabilities should be expected to remain largely unchanged when
atmospheric circulations are considered at mesoscale resolution, until scales of convective
instability are resolved. | - 4 o

The motivation for the present study has been to investigate the question of mesoscale
predictability from the viewpoint of optimally-growing perturbations, as the spectrum of
these perturbations might allow one to draw some more general-conclusions about the
chance of finding error growth in a regional mesoscale model. The study by Ehrendorfer
and Errico (1995), that formes the basis for much of this presentation, investigated the
question of how likely it was to encounter a growing initial perturbation in a regional model
similar to the one that had been used in the above-mentioned predictability studies. The
- framework used here to. assess this likelihood, as well as relevant results are presented in
the following sections.
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1.2. Atmospheric prediétability: amplification of perturbations

Consider the expansion of a (random) initial perturbation in terms of a complete basis set
Y; as:

m

r=Yc= Z C.L'Yi, (1.2.1)
=]
where m denotes the dimension of r. The size of r may be measured in terms of a norm,

described in finite dimension through the matrix M:
| ¢ ||*= " Mr, (1.2.2)

where the superscript 7 denotes a transpose. In atmospheric predictability experiments
carried out with NWP models, the time-evolution of the initial perturbation r is usually
determined as the difference between two nonlinear integrations of the relevant NWP model
(i.e., the difference of perturbed nonlinear and control integration). The time-evolution of
this difference can, to a high degree of accuracy (depending on the initial size of r and the
forecast time) be approximated by the tangent-linear model (TLM) corresponding to the
relevant NWP model and a control integration (e.g., Lacarra and Talagrand 1988, Errico
et al. 1993, Buizza 1995). Under this approximation, and denoting the resolvent of the
TLM by the operator L, the magnitude of the time-evolved perturbation r becomes:

| Lr [|>= (Lr)TM(Lr). (1.2.3)

From the foregoing, the amplification a? of r over the time period considered (this time
period is implicitly contained in L) when measured using the same norm both at the initial

and the final times is given by:

o I Lr]*  (Lr)™™(Lr)  (LYc)TM(LYc) cT(YTLTMLY)c
Tl T T oMr T T (YoTMYe | I(YIMY)e

(1.2.4)

2

This expression for the amplification a? simplifies to:

a? = c:;‘cc - (i c?A,-)/(Em: cf) (1.2.5)

i=1 1=1

for a set 'Y with:
Y'LTMLY =A and YTMY=1 (1.2.6)

The set of singular vectors (SVs) as defined below (see section 2.2) possesses the properties

(1.2.6) and may therefore be used advantageously for the expansion (1.2.1). Consequently,
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given (part of) the matrix A (i.e., the amplifications of the leading SVs) which is similar to
LTML (through the SVs Y) the (expected) amplification of any given perturbation r may
be C’omputed from (1.2.5)A, if the expansion coefficients ¢; (or their statistical properties) are
known. This approach forms the basis for assessing the expected amplification of random

perturbations in the present work (see section 3.2).
2, Background
2.1. Non—modal finite—time instability

In the consideration of the stability properties of linear(ized) dynamical systems, written
generically in the form: : ~ o v
dt

where w denotes the model state vector, and H describes the linearized dynamics, it is

— Hw, | o (2.10)

“advantageous to distinguish between systems characterized through normal and nonnormal

operators H. An operator H is said to be normal, if it commutes with its adjoint ui.
! = mig, 1 | (2.1.2)

where the adjoint of H is defined as the unique operé,tor Hi satisfyihg the following

relationship for a given inner product:
(u,Hv) = (HTu, v) | (2.1.3)

(here u and v are two arbitrary elements of the Hilbert space considered). Obviously,
symmetric (self-adjoint) operators/matrices, as well as unitary (orthonormal) matrices
are normal (for the Euclidean inner product). The class of normal operators is important
with regard to its spectral properties. Normal operators/ matrices possess a complete and
orthogonal set of eigenvectors (achievable even in degenerate situations). In fact, it is true
that a matrix H is normal if and only if it is unitarily similar to a diagonal matrix. For
nonnormal matrices an orthogonal set of eigenvectors does not exist (in general), and the
set of eigenvectors may (or may not) be complete.

Clearly, through the above definition, normality of an operator (and the associated
orthogonality of its eigenvectors) depend on the inner product considered, since the form
of the adjoint operator H‘Jr Willidepend on this speciﬁcatibn. It should therefore be pointed
out that, for given H, it is always possible to consider an inner product such that normality

of H will result; or, in other words, there is always an inner product in terms of which
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the eigenvectors of H are orthogonal. In fact, this very special inner product depends
in its construction explicitly on the eigenstructure of H (see, Farrell and Ioannou 1993a,
b). However, it should also be pointed out that, in general, such very specific norms are
not physically meaningful; in fact, for physically meaningful norms (e.g., an energy or
enstrophy norm), H is in meteorologically relevant applications, in general, nonnormal.

The implication of the above considerations for the study of the stability of atmo-
spheric flows relates to the fact that the governing equations, when linearized about com-
plex basic states lead (in general) to nonnormal dynamical systems. As a consequence, the
non—orthogonality of the accompanying eigenvectors will allow for finite~time growth that
may be quite different from growth described by exponentially growing shape—preserving
normal-mode solutions (because of interacting non-orthogonal eigenvectors). In fact,
through th‘e‘process of interacting hon—orthogonal eigenvectors, growth is possible, over a
finite time at least, even for systems found to be stable in a conventional normal-mode
analysis. ‘ ‘ v

Such growth over finite times has first been studied in a meteorological context by
Lorenz (1965), and has received considerable attention recently as being potentially impor-
tant for explaining growth of synoptic-scale disturbances (e.g., Farrell 1988, 1989, 1990).
In a tangent-linear context the optimally-growing structure can be found by solving a sym-
metric eigenvalue problem (see below). The property of these optimal perturbations (used
synonymously with the term SV) of amplifying most rapidly over a finite—time interval
makes them a highly useful concept for studying various questions, including atmospheric
predictability and growth arising from instabilities (e.g., Mukougawa et al. 1991, Molteni
and Palmer 1993, Yoden and Nomura 1993, Palmer 1993, Buizza and Palmer 1995, Nicolis
et al. 1995, Trevisan and Legnani 1995). Further, expansions of the form (1.2.1) in terms
of the normal modes of linearized evolution equations (such as (2.1.1)) were, for exam-
‘ple, considered by Farrell and Moore (1992), Borges and Hartmann (1992), and Borges
and Sardeshmukh (1995) in the study of finite-time growth in nonnormal systems. Tt is
of interest to note in this context that the adjoint modes (i.e., the eigenfunctions of the
adjoint operator) are used to determine the operators for projecting fields onto partic-
ular exponentially-growing normal modes. In addition, optimal perturbations allow the
investigation of the stability properties of non-autonomous linear systems (for which the
normal-mode concept is not immediately applicable), that result when linearization is
performed about time-varying basic states (as is usually the case for TLMs).

Many further applications exist that are related to the concept of optimal perturba-
tions. For example, Penland and Sardeshmukh (1995) investigated optimal growth oc-

curing through the constructive interference of decaying normal modes in a low—order
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dynamical model describing tropical sea surface temperature anomalies. The potential ap-
plicability of SVs for the problem of predicting forecast skill (e.g., the efficient generation
of initial perturbations) as well as within the area of data assimilation has been studied
within various classes of models by, for example, Buizza et al. (1993), Mureau et al. (1993),
Thépaut et al. (1993, 1996), Molteni et al. (1996), Jarvinen et al. (1996), Rabier et-al.
(1996), Houtekamer (1995), Houtekamer and Derome (1995), and Ehrendorfer and Tribbia
(1995, 1996). Additional reference in the context of predicting forecast skill is made here
to the work by Epstein (1969), Thompson (1986), and Toth and Kalnay (1993).

2.2. Definition of optimal perturbations

Optimal perturbations are defined here as the sequence of solutions to the following‘max-

imization problem.

Maximize : J(xq) = (PLxO)TC(Pon) (2.2.1a)
‘subject. to: (Pxo)TC (Pxo) =1 and xo= Qyo : (2.2.1b)

where:
C=ATA>0 o (2.2.2)

is a symmetric, positive-definite norm-defining matrix. The operator L denotes (as before)
the resolvent of the TLM suitable in any given context to propagate an n-dimensional
initial perturbation xq over a specified time interval (e.g., the solution of system (1.2.1)).
The matrices A, P, and Q defining the choice of the norm considered here will be specified
in section 3.1. The first constraint in-(2.2.1b) ensures that J(xg) is unity initially (i.e., for
L the identity); the second constraint is required for constraining the components of xo not
constrained by the first one; that is, for a well-posed maximization problem it is necessary
that xg be specified in terms of an m—dimensional initial perturbation yo (m < n), if
PTCP is of rank m. Clearly, an optimization problem different from the above may be
stated in a way such that J does not degenerate to the initial constraint for L the identity;
‘this may be desira_ble in certain applications, but, for the reasons discussed below, is not
done here. | .

Using the second constraint in (2.2.1b), the maximization problem stated above may
be equivalently formulated in terms of yq as:

maximize:  J(yo) = (PLQyo) C(PLQyo) ~ (2.2.3a)

subject to: (PQyo)TC(PQyo) = 1. - (2.2.3b)
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This problem therefore asks for the initial perturbation yq givingi a maximum value for
the quadratic function J(yo), when the initial value of J is constrained by (2.2.3b). Due
to the special form of the problem (2.2.3), specifically its quadratic form, it may be solved
efficiently through the following eigenproblem (as may be seen by defining and subsequently
differentiating a Lagrangian):

(BTB) ™" (QTLTPTCPLQ)yo = Ayo st. yIBTBys=1 (2.2.4)

S

4

where:
B = APQ. (2.2.5)

The set of eigenvectors of the eigenproblem (2.2.4) is referred to as optimal perturbations,
or szngular vectors (SVs). Any given SV, correspondmg to an eigenvalue A, when used in
(2 2. 3a), will lead to J = A. Therefore, and due to the constraint (2.2.3b), the eigenvalues
directly reveal the amplification a? [see (1.2.4)] of a given SV. The function J and the initial
constraint in (2.2.3) éorrespond closely, in the sense that (2.2.3a) reduces to (2.2.3b) at
the initial time (i.e., for L = I). Such correspondence may not appear, for example, if no
- projections are used initially, but if projections are used at the final time (in other words,
different norms are used at initial and final times); in this case, an eigenvalue )\ does no
longer (necessarily) correspond to amplifications. Note also that the set of SVs y, satisfies
a relationship of the form (1.2.6), as is immediately seen by operating on the first part of
(2.2.4) by y§ BTB. Also, if yo is a solution to (2.2.3), then Qyy is clearly a solution to
(2.2.1). |
In order to point out the relationship between the optimal perturbations yo and the
right and left singular vectors of the modified (by the norm-defining matrices) resolvent L
one may define:

Zo = Byg : : (2.2.6)

which allows (2.2.4) to be rewritten in standard (symmetric) form:

(B~ ) SB~lzg =Mz st zlzg=1 (2.2.7)
=LTL
where:
f=APLQB™'. | (2.2.8)

Introducing the singular value decomposition (SVD) (e.g., Golub and Van Loan 1989) of
L as: '

L=U2VT with: UTU=1, VIV=], (2.2.9)
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one obtains:
LTL = ve2vT (2.2.10)

which, when compared with (2.2.7) in the form:
LTL = ZoAZY, | (2.2.11)

shows that the matrix Zo contains the right singular vectors (i.e., V) of L, since U and V
are (by definition) the matrices of left and right singular vectors of L, respectively. The left
singular vectors may be obtained as multiples of the time-evolved right singular vectors
(see, e.g., Buizza et al. 1995, Ehrendorfer and Tribbia 1996). The positive square-root of
A is the matrix of singular values 3. Thus, the optimal perturbations, or SVs, yo, defined
in the context of (2.2.3, 4) are obtained from the right singular vectors Zg of L through
(226) Clearly, one may also define the singular value decomposition of L itself, and then
establish the norm—dependent relationship of that SVD to the SVD of L discussed above.

2.3. The mesoscale model MAMS1

The model used in the study discussed here is the dry-adiabatic (with the exception of
section 4) version of the Mesoscale Adjoint Modeling System version 1 (Errico et al. 1994).
This model is in important aspects closely related to the model used for the predictability
experiments described by Anthes et al. (1985) (see also, Anthes et al. 1987). Results
~are presented here for two cases, namely a rapid cyclogenesis off the East Coast of North
America, and a lee cyclogenesis over the Mediterranean (see also section 3.2). A nonlinear
integration (including a nonlinear normal-mode initialization) over 24 hours defines the
basic states that are used to define the TLM (and its corresponding adjoint). The horizon-
tal grid spacing in the numerical integrations is 120 km; the domain considered includes all
“of the contiguous United States and parts of the Atlantic ocean (for case 1), and parts of
the Eastern Atlantic and western Europe (‘for case 2). In the TLM integrations, no pertur-
bations are considered at the boundaries of the domain; however, as these boundaries are
far removed from the storms in the interior of the domain, their influence on the growth

of perturbations is considered to be small.
2.4. The Lanczos algorithm

The Lanczos algorithm (Lanczos 1950; see also, e.g., Strang 1986, Grimes et al. 1994) is
a semi~direct method for finding an approximation to the eigenstructure of a symmetric

matrix G, in the situation in which the elements of G are not explicitly known and/or G
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is too large to be kept in computer memory. Both of these restrictions usually apply when
dealing with primitive-equation NWP models. For the problem of computing optimal
perturbations, the matrix G is identified with the matrix LTL [see (2.2.7)]; from the
eigenvectors of LTL, the SVs are immediately obtained from (2.2.6).

The Lanczos—algorithm is based on the fact that for any symmetrlc matrix G there

exists an orthonormal sequence qy, qz, ... such that:
Gq; = bj_19j-1+ajq; + b;jq;+1. (2.4.1)

Through the orthogonal matrix Q (different from the Q used in other sections of this
paper), G is similar to the tridiagonal matrix T (described by the sequence a;, b;; see
below):

| Q'eQ=T, ¢ GQ=QT. o (2.4.2)

By rewriting (2.4.1) and (242) as

bjqj+1 = Ga; — ajq; — bj-195-1, (2.4.3)
ap bl 0 e 0
. b1 ag b2 ce 0
(Ga: Gaq an):(ql 92 - Qn)| ... b2 az by ... |, (2.4.4)
0 ... 0 boa an

1t is seen that the following Lanczos iteration can be used for the computatlon of the a, b,
and q sequences: ' ‘

start : J=0 q=0 b=1 So = qu : (2.4.5)
(0) ae=si/b; (i) j=j+1 | |
iterate : (i) x=Gaq; (iv) a¢j=qjx (2.4.6)
(v) 85 =x~0;q; - bj-10;-1 (vi) b;=/sTs;

It should be pointed out that each new vector q;+1 is orthogonal to all previous vectors q.
The destruction of this orthogonality by numerical roundoff errors poses one of the main
difficulties in practical implementations of the Lanczos iteration. Note that within the
Lanczos iteration, the only information about G enters through the matrix~vector product
Gq;, which provides an adequate way for dealing with the two restrictions mentioned
above. As a semi-direct method, the Lanczos algorithm rapidly provides, through the
approximation of T, good estimates for the leading portion of the eigenspectrum of G.

Experience indicates that k Lanczos iterations provide reliable (i.e., converged) information
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about the first k/3 eigenvalues/vectors of G. Since the matrices G and T are similar, the
eigenvectors of G are obtained by operating with Q on the eigenvectors of T. In the work
presented here, the Lanczos iteration was performed with code written by B.N. Parlett,
and provided through the Numerical Algorithms Group (NAG).

3. SV-Spectra for a dry version of MAMS1

The computation of singular vectors requires the specification of a norm (see (2.2.3)).
In the work presented here, attention is restricted to results obtained with a rotational-
modes norm (R-norm). In the model version rélevant for the computations discussed here,
the R~norm proved to have a number of advantages (e.g., geostrophic-adjustment related
processes that might contribute to growth are efficiently excluded) when compared to the
total energy norm that has been used in other studies (e.g., Buizza et al. 1993, Molteni et
al. 1996). A brief description of this norm, as well as of results relevant for predictability,
are contained in the following two subsections. |

3.1. A rotational-modes norm (R—norm)

The main goal in the design of the R-norm was to allow only SVs that were 1n1t1a11y
geostrophically balanced and to omit the potential influence of gravity waves on measurmg
growth. This aim is achieved by considering the normal-mode representation of the model
variables. Specifically, the operators P, Q, and C introduced in sect1on 2.2 take on the
following forms (for a more complete descrlptlon, refer to Ehrendorfer and EI‘I‘lCO 1995)
The (m X n) operator P represents the prOJectlon of the physmal fields u, v, T and ps
(horizontal wind, temperature, and surface pressure) onto the amplitudes of the rotational

modes II 5.7 % in the normal-mode space of the model (horizontal wavenumbers m, 71):

u
R N
Ds

where { is the normal-mode representation of the vertical component of relative vorticity,
fo is the Coriolis parameter at the center of the grid, g is gravity, and Hj, is the equivalent
depth of the kth vertical mode; @ is the normal-mode representation of the linearized
model form of the pseudo—geopotential : ’

¢ =¢+RTIn %_5—, , . (312)
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where ¢ is hydrostatic geopotential (compare also, Errico 1991, Errico et al. 1994). As
a consequence, Yo, introduced in (2.2.1), consists of spectral components ﬁm,ﬁ,fc and has
dimension m.

The (n x m) operator Q can be regarded as an inverse to P (as the relation PQ =1
holds) and describes the construction of balanced fields u, v, T, and p, from fImn;c In
this construction, the constraints of geostrophy and non-divergence are enforced in the
following form: :
fo¢ — V3¢ =0, § =0, (3.1.3)

to get divergence-free, geostrophically balanced u, v, and . With an additional closure
assumption (i.e., minimization of the sum of squares of the temperature gradients from
level to level), the T' and p; fields are determined from . The property PQ = I implies
that the projection (through P) of balanced fields Qyo results again in the rotational
normal-mode coefficients yq (or, ﬂm,ﬁ,ic)~ ‘

The (m x m) matrix of weights C in normal-miode space is taken as a diagonal matrix,
but with wave-number dependent entries: ‘ |

21 o ' (3.1.4)

Ky

Ch,ak X

leading to larger weights for larger horizontal scales. In addition to the projections, ex-
pressed through P and Q, the normal-mode representations have been truncated in the
vertical and also horizontally. The truncation is such that small horizontal and vertical
scales were explicitly excluded (these scales should not contribute to growth in the model,
as they are strongly damped in the model formulation). Through this procedure the re-
sulting state vector is of size m = 4830. This number, in turn, defines the size of the
(m x m) eigenproblem (2.2.4) (or, (2.2.7)) to be solved for the determination of the SVs.

3.2. R—norm spectra and implications for predictability

The leading portions of singular vector spectra were computed for the R—norm for two
different cases, or basic states (case 1 is an explosive cyclogenesis over the Atlantic off the
East Coast of North America, case 2 is a rapid lee cyclogenesis over the Mediterranean).
In both cases the optimization interval has been taken to be T = 24 hours which ensures
that the effect of the lateral boundaries is small. The R-norm spectra are shown in Fig. 1
in terms of the eigenvalues ); (see eq. (2.2.4)) as crosses (case 1) and dots (case 2).

The largest eigenvalues are 29.7 (=5.45%, case 1) and 39.8 (=6.312, case 2), indicating
that the first SVs amplify — in terms of the R—norm — by about a factor of six. Assuming
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Fig. 1. Spectra of eigenvalues ); of I:TI: (See (2.2.7)) for dry experiments with the R~
norm (crosses for case 1, dots for case 2), as well as for the two norms considered in the
moist experiments for case 1 (diamonds for Rm-norm, squares for MR-norm). Note that
the square-roots of the A; correspond to increases in length (as measured by the relevant

norm) of the corresponding SV. Only the converged parts of the spectra are shown.

exponential growth, these amplifications may be related to an e—folding time 7 (7 = T/ 1n A;
recall that A is, in the situation in which the same norms are used at initial and final times,
as done here, the ratio of the respective values of J). The e—folding times are 7.1 and 6.5
hours, respectively, translating into error—doubling times (denoted in Table 1 as 73) of 4.9

and 4.5 hours, respectively. These doubling times are significantly smaller than the error—
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a
U FOR SV = 1 EIGENVALUE = 2.97E+01 + 0.0E+00 ¢=0.55 ¢ PS FOR SV = 1 EIGENVALUE = 2.97E+01 + 0.0E+00 ¢=1.00
o L L. i . :
f“'}\;l- iy %
< ™
H . - Haoo
2 v L_o00 Ha
Ha g
\ \
. Hy ¢ !
- ) Hogo
T FORSV = 1 EIGENVALUE = 2.97E+01 + 0.0E+00 0¢=0.55
' Haoo
L_sq <
H,
HM L—ZI
: R Hy
H, EE -

Fig. 2. First R-norm SV (at initial time) for case 1. Selected fields, that is, (a) zonal
wind, and (b) temperature perturbations at o = 0.55 (approximately 550 hPa), and (c) the
surface pressure perturbation, are shown before carrying out the scaling for the tangent—

linear integration.

doubling times between one and two days reported recently by Simmons et al. (1995) for
the global forecast model at ECMWF.

Selected spatial patterns, that is, zonal wind and temperature perturbations at o =
0.55 (approximately 550 hPa) and the surface pressure perturbation, of the first R—norm
SV of case 1 are shown in Fig. 2 for the initial time. These fields are part of the first
R-norm SV yq, as defined in (2.2.4), transformed into physical space according to (2.2.1b).
Consequently, they satisfy the relevant normalization to one. The first SV is of considerable
horizontal extent, but its structures are at the same time clearly connected to the upper—
level trough at 500 hPa. The vertical structure (not shown) of this SV is strongly baroclinic.

Fig. 3 shows the corresponding tangent—linearly time-evolved patterns at the end of the
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u' linear

for t= 24.00 0¢=0.55

ps' linear

for t= 24.00 0=1.00

[k A P A \

T’ linear

L

M,

Hooo - -

Fig. 3. Time—evolved first R-norm SV (at final time T'=24 hours) for case 1, for the same
selected fields as in Fig. 2. Note that this SV has been scaled at initial time by a factor of
0.7923 before the tangent-linear integration. '

optimization interval. Before time—evolving the SV, it was scaled by a factor of 0.7923,
in order to make its magnitude more comparable to current analysis errors. After this
rescaling, the maximum initial perturbations in u, T', and p, were 1.67 m s~1, 0.24 K, and
1.0 hPa, respectively. At the end of the tangent-linear time evolution, the corresponding
maxima are 6.1 m s~1, 2.2 K, and 2.7 hPa, indicating that most of the growth occurs in
the wind and temperature fields, resulting in the overall amplification of A = 5.452 (see
above). Also, the spatial structures of the time—evolved perturbation have followed the
movement of the trough at 500 hPa. ’

At this point, the amplification of a perturbation expanded in terms of a given set of
SVs Y will be derived using the result (1.2.5). Since the SVs possess the property (1.2.6)
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(see section 2.2), (1.2.5) may be immediately used here in the form:

m m ‘

a? = (Z c,?/\,-) / (Z c,?), | (3.2.1)
=1 i=1 ) .

where the c; are the expansion coefficients of a perturbation r in terms of the R-norm SVs

(see eq. (1.2.1)). Since the SVs are normalized at the initial time to unity (see (2.2.4)), it

is reasonable to normalize r similarly:
| r|?=TBTBr =1, | (3.2.2)

which, together with (2.2.4) and (1.2.1) implies:

Y d=1 ' (3.2.3)

Note that any other initial normalization for r may be chosen without consequence for the
following, as it will cancel in the expression for a2. If r is randomly drawn from a certain
ensemble with as yet unspecified distribution, the corresponding expectation operator,
< ... >, can be applied to (3.2.1) to yield the following expression for expected growth
(taking into account (3.2.3)): -

m
<a?>=) A<l > (3.2.4)

i=1
From this expression, further insight with regard to expected amplifications may be ob-
tained by making the assumption that the perturbations r have a white spectrum in terms
of the SVs, which means that the < ¢ > are independent of index i. As such, the < c? >
take on a constant value, say c?. This assumption, together with (3.2.3), implies that
2 1

¢ =m™", or, in terms of expected growth:

1
2 .
<a® >= E Ai. (3.2.5)

Thus, for normalized random perturbations with a spectrum that is white in terms of the
SVs, the expected growth is the mean of the amplifications of the individual SVs (see also,
Farrell 1990). Thus, assuming a white noise spectrum, this result may be used to assess
whether it is likely to observe growth of such perturbations, or not, once the SV spectrum
is available.
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Table 1. Upper bounds p? on expected values of growth. Shown is norm and case con-
sidered, the dimension m of the eigenproblem, the largest eigenvalue obtained (/\max) and
the associated error—doubling time 73, the number k of accurately computed eigenvalues,
as well as the last converged eigenvalue A, the sum of the eigenvalues up to index k, and

the upper bound u? as defined in (3.2.6), together with its square-root p.

norm m Amax. Ty -k Ak Zi;l i p? B

R/1 4830 2974  49h 207 0.693 - 557.8  0.779  0.882

R/2 4830 39.78 4.5h 268 0.695 995.7 0.863 0.929
Rm/1 4830 79.67 3.8h 115 1.546 812.8 1.677 1.295
MR/1 29770 208.63 3.1h 258 1.332  .2670.87 1.410 1.188

In the present high-dimensional contexts, only the leading portions of the SV—spectra
have been computed to limit computational costs (see Fig. 1). Therefore, only an up-
per bound on < a? > (as given by (3.2.5)), denoted below as p?, may be derived from
that information, 'assu‘ming that the amplifications of higher SVs are not larger than the
amplification A; of the last SV computed (index k):

m k m k
‘ <Cl.2 >=—7%E/\i=;rz[2)\i+ Z /\i]ﬁi—[Z)\i+)\k(m—k)]Eu2. (3.2.6)
i=1 i=1 i=k-+1 i=1

S

<(m—k)Ax
- The values of u? derived from the spectra shown in Fig. 1, are listed in Table 1. For the
experiments with the dry-adiabatic model version, these bounds are considerably smaller
than one, indicating that growth of a random perturbation (assumed white in terms of the
SVs) is not likely for these basic states; in fact, decay, as indicated by p? < 1 should be
expected. It appears that the unstable subspace of the model is small (on the order of 150
to 200 growing SVs; see Fig. 1); in addition, the associated growth rates are too small to
achieve growth of perturbations introduced without favoring projections on growing SVs.
It should be emphasized, however, that this property of the model phase space cannot,
without further investigation be used to vindicate the hypothesis put forward by Anthes et
al. (1985) that mesoscale phenomena are inherently more predictable, partly also because
the timescale considered here may be more responsible for the small unstable subspace

rather than the fact that the spatial scales considered are mesoscale.
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One may, at this point, question the degree of validity of the hypothesis that the
perturbations considered are white in terms of the set of SVs. It is, however, arguable
that the perturbations used in previous predictability studies would be white to a good
approximation in terms of the R—norm SVs, since they were specified randomly with no
prescribed correlation structures. Nevertheless, this hypothesis should clearly undergo
more detailed investigation; for example, ongoing research concentrates on the question of
how current analysis errors (as typical perturbation patterns) would project on the SVs
spanning the unstable model subspace.

4. SVs in the presence of moist convection: preliminary results

Given the results obtained with the dry-adiabatic version of MAMSI, a few preliminary
results relevant for finite~time nonmodal optimal growth are presented here that were
obtained with a moist version of MAMSI. In this moist version, specific humidity is
a prognostic variable; in addition, moist convection is parameterized using a stability—
dependent mass flux representation of moist convective processes. This representation is
used in the NCAR Community Climate Model (see, Haek 1994), but has been slightly
modified in the present context (see, Errico et al. 1994).

One of the difficulties encountered when moist processes such as convection are consid-
ered in investigating optimal growth in terms of SVs is the construction of an appropriate
tangent,—linear model. Various aspects of this problem related to the above—mentioned
scheme, as well as to other schemes (e.g., Moorthi and Suarez 1992) are presently under
investigation (see also below). In the computations described here, the linearization of the
scheme was computed numerically (instead of coding a tangent-linear model) by differenc-
ing a perturbed and unperturbed calculation of the convective parameterization module
(see, Errico et al. 1994).

Another problem encountered when dealing with moist processes is associated with
the choice of an appropriate norm to account for moisture. In the dry situation, reference
to quantities conserved under (idealized) conditions (e.g., energy) allows for a physical
justification for the choice of a specific norm. Such justification is no longer necessarily
available when moist processes are taken into consideration.

In the present context, two norms were considered. In the first one, denoted as Rm-—
norm, the moist TLM is used, but specific humidity is not measured at the final time,
and set to zero at the initial time; the dry fields are measured as within the R—norm. In

the second one, denoted as moist R—norm (MR-norm), moisture is accounted for in the
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following way: , ,
‘ 1 2 2 . . o
J=Ja+ 5wy (Bo)nalj = Jat Tms (4.1)
ik

where J represents the measurement of the magnitude of the state vector (see 2.2.3a). The
" two terms J, (dry contribution) and J,, (moist contribution) represent the magnitudes of
the dry fields (horizontal wind components, temperature, and surface pressure) as mea-
sured through the R—norm (see section 3.1), and of the specific humidity field ¢ in physical
space over the full three-dimensional model domain, respectively. The vertical grid spac-
ing (Ao) is included in J,. In addition, the weighting factor w (taken independent of
horizontal and vertical position) is included to allow varying the relative contributions of
Jq and J,, to J.

In the experiments described here, w takes on the value of 10%5. This particular
We1ght was chosen after some expernnentatlon in order to have about equal contributions
of dry and moist fields to J at the 1n1t1a1 tlme This rationale seems to be appropriate
since otherwise the results asymptotlcally approach the same as when initially perturbing
only dry fields but measuring only moisture at the forecast’s end (as w is made larger) or
v1ce—versa (as w is made smaller) It should be emphas1zed at this pomt that for both
norms (Rm—- and MR-norm) both dry fields and q at the final time will depend on both
dry and moist initial fields, due to the interactions described by the moist TLM.

As in the dry experiments, the variational problem to be solved results from maximiz-
ing J subject to J = 1 at the initial time. For the Rm-norm, the relevant eigenproblem
is of the same size in the dry situation, since g is not included in the control variable; for
the MR—norm, the eigenproblem is of size m = 29770. As in the dry situation, the results
presented in this section refer to an optimization time interval of T'=24 hours; however,
only the situation of case 1 with the basic state computed with the moist nonlinear model
is considered here. ‘ ‘

The portion of the eigenspectrum of the relevant operator LTL that has been com-
puted reliably is included in Fig. 1 as open diamonds (Rm-norm), and as small squares
(MR-norm). Relevant additional results are included in Table 1. The largest eigenvalues
are 79.67 and 208.63, respectively, corresponding to amplifications of 8.92 and 14.44, re-
spectively (for spatial patterns of selected SVs, reference is made to Errico and Ehrendorfer
1995). Comparison of these results with the R—norm computations using the dry model
(crosses and dots in Fig. 1) shows clearly that the inclusion of moisture leads to (dra-
matically) increased amplification factors (e.g., the largest amplification factor for the dry
model when measured with the R—norm was 5.45). Obviously, however, these differences

depend considerably on the specification of the weights w. Another important difference
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Fig. 4. Tangent-linear (panel a) and nonlinear (panel b) evolution of the surface pressure
perturbation at a given grid point for case 1, as obtained from the first SV with the moist
model and the MR-norm. The initial perturbation at this grid point is approximately
0.3 hPa.

compared to the dry experiments reported in section 3 (see also, Ehrendorfer and Errico
1995) is the fact that the number of growing perturbations has increased due to the inclu-
sion of moisture. From Fig. 1 it can be seen that the number of growing perturbations is
now (possibly significantly) larger than 250, whereas in the corresponding dry experiment
approximately 150 growing SVs were found.

Under the same assumptions as have been made in section 3.2, upper bounds on the
expected amplifications have been computed from the two moist spectra shown in Fig. 1.
The relevant numbers for these two experiments are 1.677 (Rm-norm) and 1.410 (MR~
norm) (see column 8 in Table 1). These numbers are slightly larger than one, and would
in fact indicate that growth should be expected. Nevertheless, it should be pointed out
that only small fractions (on the order of 1%) of the entire spectra are available (due to
the extremely large cost of computing these spectra) for the assessment of these (highly

conservative) upper bounds (eq. (3.2.6)) that consequently must decrease if amplifications
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of higher—order SVs were included. Again, in terms of implications for predictability, the
growth of random perturbations, white in terms of the SVs defined through the above
norms, appears unlikely (in agreement with Anthes et al. 1985). However, as apparent
from the short error-doubling times (less than four hours; see Table 1) this property of
the phase space does not imply enhanced predictability of the processes represented in this
model.

One of the problems encountered in the process of linearization of the moist convec-
tive parameterization is shown in terms of an example in Fig. 4, comparing tangent-linear
(Fig. 4a) and nonlinear (Fig. 4b) time evolution of the surface pressure perturbation at a
given grid point in the model domain. Apparently, the agreement between tangent-linear
and nonlinear perturbation evolution for this perturbation size (approximately 0.3 hPa) is
not satisfactory (note the large spike present in the tangent-linear time series). Clearly,
such disagreement limits the validity of the TLM and, in turn, limits the inferences that -
can be made on the basis of tangent-linear optimal growth with regard to nonlinear error
growth. Also, apparently the computation of SVs allows easy detection of potentially un-
stable segments in parameterizations. Even though'time series at certain points appear to
be having problems, the agreement between patterns appears to be reasonably good (for
examples relevant for the present scheme, see Errico and Ehrendorfer 1995). Further inves-
tigation of this behavior is underWay. Among other things, the ‘corres‘ponding behavior of
different moist convective parameterizations (e.g., the relaxed Arakawa—Schubert scheme;
see Moorthi and Suarez 1992) is investigated. Results from latest relevant experiments

approximately will be reported in subsequent papers.
5. Summary and concluding remarks

The predictability of mesoscale circulations has been investigated on the basis of singu-
lar vectors for a regional, primitive-equation model. Singular vectors represent a highly
useful generalization of the concept of normal modes, since they allow one to address in
a general way the question of error growth in linearized dynamical systems that might be
nonnormal, that is, possess a set of non—orthogonal eigenvectors for a given inner product.
In such systems, even if they are found to be stable in a traditional normal-mode analysis,
nonmodal perturbation growth is possible over finite times through the constructive inter-
ference of non—orthogonal (possibly decaying) normal modes. In addition, singular vectors
also present a useful framework for stability studies in the situation of non-autonomous
systems, such as those resulting from linearization about time-dependent basic states.
Amplification spectra of singular vectors were computed for two different basic states

for a dry—adiabatic model version; preliminary results obtained using a model version that
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included a linearized moist convective parameterization were discussed. Under certain
assumptions these spectra allow derivation of bounds for expected amplifications of per-
turbations inserted into the model. Most notably, in the computation of the expected
amplifications it has been assumed that the relevant perturbations have a white spectrum
in terms of the SVs. More specifically, it is assumed that the variance of the expansion
coeflicients with which the SVs enter into the representation of the perturbations is the
same for all SVs considered in the expansion. The validity of this assumption in the situa-
tion of typical perturbations (e.g., analysis errors) will require more detailed further study,
but it should be reasonably valid for the norm considered here in view of the nature of
perturbations used in previous mesoscale predictability studies.

One of the main results presented here is that these expected amplifications are smaller
than one, or, at the most bounded from above by numbers slightly larger than one. This
result indicates that such perturbations should not be expected to grow over the time
period of one day considered here. In other words, the unstable subspace of the model
identified through the growing SVs is a small fraction of the entire model phase space. It
has been emphasized, however, that this property does not support the hypothesis made in
previous predictability studies that mesoscale circulations are inherently more predictable
than synoptic-scale, or planetary—scale circulations; one of the indications against such
enhanced predictability are the short error-doubling times (of a few hours) found for the
most rapidly growing SVs computed here. | | |

Preliminary results of SV computations with a model version accounting for moist
processes, especially moist convection parameterized in terms of the mass flux scheme de-
scribed by Hack (1994), showed substantial differences when cdmpared to the dry results.
Specifically, for both norms considered (Rm—norm and MR-norm; see section 4),'the am-
pliﬁcatioﬁs of the leading SVs were considerably higher (e.g., by a factor of seven when
comparing MR—norm and R—norm; see Table 1) In addition, the number of growing SVs
has also been found to be substantially larger. However, these preliminary findings depend
on a number of impor'tant’ issues. One issue relates to the'no‘i'm that should be used to
measure growth when moist processes are included. Here, it was decided to investigate
growth through a straightforward extension of a rotational-modes amplitudes norm that
was developed for measuring growth in a dry-adiabatic model. Another important ques-
tion concerns the degree of the validity of the tangent-linear approximation — that is made
in order to be able to compute the finite—time most unstable structures by (partially) solv-
ing an eigenproblem — in the presence of moist processes. Both issues will requirev further
attention in future work, especially in view of the problems encountered with the linearized
‘version of the moist convection scheme.
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The study of structures growing optimally over finite times has recently been gaining
increased attention for various reasons. As a generalization of normal-mode stability
analysis they allow for studying the possibility -of growth in nonnormal systems; in such
systems the constructive interaction of nonorthogonal modes may lead to growth (over
finite times) even if the system has been found to possess only stable normal modes.
The relevance of such growth is currently an area of active research (e.g., predictability,
cyclogenesis). For the purpose of studying the predictability of atmospheric flows, the
relevance of SVs relates to the fact that their growth rates represent bounds on error
growth rates maximally achievable in linearized situations. SVs are also heavily relied upon
in the development of systems (ensemble prediction systems) designed for assessing the
uncertainty of forecasts made with NWP models. In this latter context, the SV-property of
most rapid finite~time amplification may allow one to base upon them sampling strategies
that are highly efficient for achieving a given objective (such as covariance prediction)
in view of extremely high-dimensional model phase spaces. In addition, for certain such
objectives, SVs.may also prove to be highly useful in data assimilation contexts.” Given
the potential of SVs for such wide applications, the further study of their properties and

relevance, as initiated by Lorenz (1965), will likely continue to see wide interest in various

-areas.
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