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Abstract

In the first part of this paper the KNMI ensemble prediction system
(KEPS) is presented. The method is based on the assumption of linear
error growth. It uses adjoint models and is applied for the short term
only. ‘ DL

In the second part the sensitivity of the onset of two weather regimes
with respect to initial conditions is studied. The weather regimes are
a FEuro-Atlantic blocking regime and a Euro-Atlantic strong zonal flow
regime. Perturbations are computed which trigger the onset of a weather
regime in the linear range as well as in the nonlinear range. It is
shown that moderate initial perturbations occasionally trigger a transi-
tion from a blocking regime to a zonal flow regime, or vice versa, within
three days. For an optimization time of six days, the iteratively com-
puted perturbations generate such transitions for almost all investigated
cases.

1 Introduction

One of the intriguing aspects of present weather forecasting is the variability
in the quality of the forecasts. Sometimes a forecast is accurate for up to a
week but it also occurs that a forecast has lost skill after a few days. Part of
the variability in skill can be explained as a statistical effect. This is because
the initial error partly results from random observational errors. The forecast
error will therefore have a random component. Thus one particular forecast
must be considered as an arbitrary member of a probability distribution.

Lorenz (1965) proposed the Monte Carlo method for studying the quality of
forecasts. A small ensemble of randomly chosen initial states is integrated with
the forecast model. The spread between the ensemble members is considered
as a measure of the atmospheric predictability. However, the complexity of
the current forecast models greatly obstructs the operational use of the Monte
Carlo method.. A more fundamental problem is how to obtain a good statistical
description of the initial errors. Such a description is necessary for selecting
a representative sample. All current skill prediction methods suffer from the
lack of knowledge on the statistics of the initial error.

A major development in meteorology was the introduction of adjoint mod-
els (Marchuk 1974). The great advantage of adjoint models is that one can
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easily compute gradients of multi-variable functions. In predictability research
this property is employed to study error growth in an efficient manner (Errico
and Vukicevic 1992, Barkmeijer 1992) by determining the sensitivity of one
aspect of the forecast, such as local pressure, to uncertainties in the initial
conditions. With an adjoint model, it is possible to retrieve this sensitivity
pattern in the initial conditions by integrating the adjoint model only once
backwards in time. Thus, it is not necessary to integrate the forecast model
with a perturbation once for each coordinate in order to obtain the impact
of an arbitrary initial perturbation. From this, it is clear that adjoint models
are useful in computing the patterns that give the maximal forecast error in
a certain area at a pre-chosen forecast time. These sensitivity patterns are
usually referred to as singular vectors (Farrell 1989, Zhang 1988). At a fixed
forecast time, they show a larger error growth than the exponentially growing
normal modes. Molteni and Palmer (1993) and Mureau et al (1993) employ
singular vectors for ensemble forecasting.

A basic assumption in using adjoint models is that the error dynamics is
linear. Studies by Vukicevic (1991) and Errico et al(1993) indicate that this
is the case for forecast periods up to 72 hours. In Barkmeijer and Opsteegh
(1992) a predictor for regional forecast skill is suggested which can benefit
from the use of adjoint models. The predictor of the skill is the maximum
likely amplitude of the squared error in the streamfunction field at 500 hPa
for a pre-chosen area and forecast period. It is given by the largest value of
the covariance matrix of the local forecast error. Results indicate that the
predictor gives significant information about the quality of the local forecast.

This work has led to the introduction of an ensemble prediction system in
the operational division of the Netherlands Weather Institute. The method is
based on the assumption of linear error growth. It uses adjoint models and is
applied for the short term only. In the first part of this paper we will describe
the KNMI ensemble prediction system (KEPS).

In the second part we will discuss the predictability of weather regime tran-
sitions. In spite of the atmosphere’s limited predictability the atmospheric
circulation still exhibits some regular behaviour, even for periods longer than
2 weeks. In the extra-tropics, persistent large-scale atmospheric flow patterns
are observed. The low-frequency variability of the extra-tropical atmosphere
can be considered to be mainly due to the alternation between several of such
weather regimes, interrupted by transition periods (Vautard 1990). The main-
tenance of weather regimes is fairly well investigated. On the other hand,
the onsets and breakdowns of weather regimes are still poorly understood. In
this paper, we study the potential for the excitation of a weather regime or
a weather regime transition by adding small perturbations to the initial con-
ditions which are optimal in some prescribed sense. We consider only two
regimes. The first regime is the Euro-Atlantic blocking regime. The second
one is a strong zonal flow regime in the same geographical area. In the latter,
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the weather is-highly variable because of the continuous advection of weather
systems.

In section 2 the KNMI ensemble prediction system KEPS is described. In
section 3 we outline the characterization of regimes. In section 4 we derive a
method to compute initial perturbations that are optimal in triggering regime
transitions. Results for the quasi-linear range are presented in section 5. In
section 6 a modification of the method is presented which enables extension of
the method into the nonlinear range. Results of the modification method are
presented in this section. Finally some concluding remarks are given in section
7.

2 KNMI ensemble prediction system (KEPS)

2.1 Generation of the ensemble

For the generation of the ensemble we use a 3-level quasi-geostrophic model
triangularly truncated at wavenumber 42, the tangent linear model and its
adjoint. For a description of the model we refer to Marshall and Molteni
(1993). We will denote this model by T42QG. The numerical costs of running
these models are low. The contribution of model errors to the forecast error
is not included in KEPS. As a further simplification we assume that the error
dynamics is linear. The integration of an initial error €(0) to time T of the
forecast is done with the tangent linear T42QG model. This gives rise to a
linear operator R(0,T) such that:

(I)=ROT)IO) ()

For convenience we leave from now on the time dependence of R from
the notation. We point out that R has to be determined each day because
it depends on the daily varying reference orbit. The reference orbit used in
the KEPS integration is derived from the operational forecast of the ECMWF
model.

We assume that we have no knowledge of the initial error distribution. For
the initial error covariance matrix we take the identity matrix and assume that
the errors are normally distributed. This means that the errors in the different
spectral modes are initially uncorrelated Their squared amphtudes have the
same expectation value.

Apart from using a time-independent covariance matrix for the initial er-
ror, the computational costs can be reduced still further, by performing skill
forecasts for a restricted area . We are interested in the quality of forecasts in &
restricted area over Europe at 500 hPa (see Fig. 2). We reduce the dimension
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Fig. 1. Illustration of the clustering. The horizontal axis is the amplitude of
the integrated regional singular vector 1 and the vertical axis is the same for
~vector 2. The dots are the ensemble members. The radius R of the circle is the
climatalogical error. in geopotentla.l height at 500 hPa of the ECMWF model
{for the region indicated in Figure 2. The origin is the operational forecast, it
is defined as cluster zero. All ensemble members within the circle are part of
cluster zero. The other clusters are indicated with 1 to 4. Their amplitude and
probabilities are computed from the ensemble members within their domain
of influence. ’
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of the forecast error with a projection operator P defined by:
n(T) = Pe(T) (2)

The projection operator depends on the meteorological quantity one is
interested in. Here ¢(T') is the global error field in streamfunction coordinates
at the various model levels for forecast time T and n(T’) denotes the error
in geopotential height at 500 hPa in the restricted area. The conversion from
streamfunction to geopotential height is done with the linear balance equation.

Using the linear operators R and P, we can write the local forecast error in
the following form:

< PRe(0), PRe(0) >=< R*P*PRe(0),¢(0) > (3)

where <, > is the Buclidean innerproduct and P* and R* are the adjoints of
P and R with respect to this inner product. The eigenvalues A* of R*P*PR
correspond with regional eigenvectors v. Making use of our assumption on the
initial error distribution we can generate an ensemble of initial perturbations:

€(0) = zj: aiv; (4)

where v; are the regional singular vectors and a; are the elements of a
Gaussian distribution with zero mean and variance 0. We determined o by
posing a constraint on the local forecast error size of the ensemble members.
We demand that the mean forecast error of the ensemble, averaged over a long
period of time (many realisations), is equal to the climatological error of the
ECMWF model for the same area and the same forecast period. From this
demand we can derive:

<n(t),(T) >pcmwr

n 32
i=1 >‘1,

g =

()

where < 7(t),n(T) >pcmwr is the local forecast error variance of the
ECMWF model and the bar denotes an average over many forecasts (climato-
logical mean). The ensemble of forecasts is now computed by integrating the
regional singular vectors with the tangent linear model to the forecast time T:

n(T) =" a:PRy; | (6)

i=1

and adding the n(7T") to the reference forecast. In this way we can easily
generate large ensembles. We use an ensemble size of 2000.
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2.2 Clustering

In practice we only use the first two regional singular vectors in the compu-
tation of the ensemble. Their eigenvalues are usually much larger than the
subsequent eigenvalues. The information is clustered into five patterns as fol-
lows (see Fig. 1). The first cluster is the operational forecast (cluster 0). Its
probability is determined by the number of ensemble members that deviate

“less from the operational forecast than the climatological mean regional error
of the ECMWF model for the considered forecast period. The remaining four
clusters are determined by adding and subtracting the forecasted singular vec-
tors 1 and 2 to the reference forecast. Their amplitude is determined by the
mean amplitude of the ensemble members that are located in the influence
area of those four clusters. The probability of occurrence is determined by the
number of ensemble members in each of the clusters. Because of the linearity
of the approach and the definition of the clusters the probability for clusters
1 and 2 should be the same as well as 3 and 4. Small differences are due to
sampling errors.

2.3 Example of an ensemble forecast

As an example of KEPS we show the ensemble forecast from Wednesday 8
February 1995 for Saterday 11 February. Figure 2 displays the forecast error
in geopotential height at 500 hPa of the ECMWF model and the first five
singular vectors which are integrated to the time of the forecast with the tan-
gent linear model. It is clear that the error in this case projects strongly on
the first singular vector.The amount of detail in the T42QG singular vectors
seems adequate to describe the detailed structure of the forecast error of the
ECMWF model. Figure 3 displays the computed clusters of KEPS. Cluster 0
is the operational forecast. Its probability is 42%. This is quite low, usually it
is 80% or higher. So the forecaster should be alerted by this figure. The alter-
native clusters (called scenarios in the figure) have probabilities, that are lower
than the operational forecast but are not insignificant. The verifying analysis,
displayed in the lower left corner, shows that scenario 2 is the best forecast.
Its RMS error is 58.5 m whereas the RMS error of the operational forecast is
99.9 m. In reality the ridge that was predicted over the UK was weaker and
had progressed a little bit farther east. This information on the uncertainty
in strength and position of synoptic scale waves is very important for the pre-
diction of the intensity and timing of weather events. This is illustrated by
the coloured areas. They show the estimated position of the frontal systems
in the various scenarios. We have computed this from a crude estimate of the
vertical motion field (we have assumed that the vertical motion is proportional
to the relative vorticity advection only, so we have neglected the temperature
advection here. This will be improved in the near future). The scenarios in-

253



BARKMEIJER, J. ET AL: RESEARCH ON REGIONAL PREDICTABILITY. . . .

"swidysAs [ejuoly ay3 Jo uonisod Yy JO SRS dIE SEAIE PAINOJOD Y], "SOLILUAIS I} JO YOBa 10§ PIjedIpul aIe SIOLID
SR 3urdjirea ayy pue sanriqeqoid pandwod Y[, "SOLIBUSDS 10 I2ISN[D dIATEUId}[E Y} It SISy Iaylo aYIx “sisA[eue SUIAJuran ay ST 1aUI0D }Ja] 19MO]
ay} uf *(013z 13)SNd) [1Z0S6 103 [PPow JMINDH Y3 Jo adoang 1940 eJy (0S Je 15eda105 Aep aaxy} [euonerado ayy sAefdsip 1ouiod yyay 1addn ayy ¢ Sy

| VA¥ / ®du00S Z | VAY / ®dU00S Z | VAY / ®eduoos 7 ||

wg 111 :J0dI3 SKY WC'QC J0JId SKY W6 66 0113 SKY
21N 21 G661 "HIL TT AVAUNLVS  J0) aLN g1 G661 "ddd 1T AVQMNLYS 19
JLN 21 G661 "HI4 8 AVUSINGIM wWod] JLN 21 G661 "HI4 8 AVOSINGIM wodj

JLN 21 <661 "H3d 11 AVQANLYS
%11 :Qold '} :0lJeusdg %L1 :qodd ‘Z [01Ieusng sisA(euy Furdjraap

VAY / ed4y00g Z

_ | VAY / ®Bdu00¢ Z | vA¥ / ®dy00¢ Z

Wz 601 :J0JId SKY Wy grl :J0JID SRY
OLN 21 S66T €34 11 AVQMALYS  J0] LN 21 G661 €34 TT AVQEALYS 0] oLN 21 G661 @34 11 AVQUNLYS 10J
JL0 21 6661 €44 8 AVOSINGEM WOdj LN 21 G661 @34 8 AVASANGAM WOd] OLN 21 G661 ‘@34 8 AVASANGAM Wod]

%01 :Qodd '§ :01.IeuU3dg 4@l :qodd ‘1 :0lIeusds y2b 1qQodd  }sedadoy glgl JMKI3

ST ST - 1 e

254



dicate clearly the uncertainty in strength and position of the frontal system
over the UK. The operational forecasters at KNMI are beginning to use this
information on a regular basis. As we are computing probabilities of small
errors in the short term forecast of the ECMWF model we will concentrate on
variables which clearly display small amplitude and phase errors. We are doing
this by dealing with the vertical motion field and other frontal parameters.

3 Characterization of weather regimes

Many different criteria have been used to characterize an atmospheric blocking
regime. The best known criteria are those by Rex (1950a,b) and Dole (1978).

In this paper we focus on the atmospheric flow over Europe. Using observations
for 10 winter seasons (DJF) from 1982/83 to 1991/92, Liu (1994) found that
a Euro-Atlantic blocking regime can be characterized by a dipole-like pattern,

consisting of a very strong positive geopotential height anomaly with its center
at about 60° N and a weaker negative anomaly south of it. Furthermore, he
found that a strong zonal flow regime is characterized by the opposite dipole
pattern. So, both regimes have approximately the same anomaly pattern with
respect to the climatological mean but with opposite sign. Liu computed this
anomaly pattern, which he called the blocking geopotential height anomaly
pattern z;, for the 10 winter season dataset and for a dataset simulated by a
T21QG model (Liu and Opsteegh 1994). The latter 2z, pattern is the mean
500 hPa geopotential height anomaly pattern for the 10000 days out of 45000
days of integration which had the largest positive anomalies at 60° N. This
pattern is shown in Fig. 4. It is very similar to the pattern computed for the
observed winter season dataset. Based on these results Liu (1994) and Liu
and Opsteegh (1994) defined a single index which measures the resemblance of
a particular circulation pattern with .the blocking regime or the strong zonal
flow regime. This index is called the blocking index B. The blocking index
B for a particular circulation pattern is defined by the projection of the daily
geopotential height anomaly pattern z; on the blocking geopotential height
anomaly pattern z,, weighted with the norm of 2,. The blocking index B of a
certain flow pattern with stream function v is given by

< Zd('lp), Zy >
< Zp, 2p >

B(yp) = (7)

where the brackets denote a squared norm inner product on a sphere, inte-

grated over height
1
<x,y>——E///mde. (8)

The relation between z; and v is given by

zd(¢) = sz - Zc, (9)
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7 500hPa __ 20m

Fig.- 4. Blocking anomaly pattern: mean 500 hPa geopotential height ano-
maly pattern for the 10000 days out of 45000 days with the largest positive
anomalies at 60° N. The contour interval is 20 m. Solid lines correspond to
-positive values, dotted lines to negative values. ' :
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where L, is the linear operator which transforms streamfunction into geopoten-
tial height and z is the climatological mean geopotential height. The geopo-
tential height field is obtained from the streamfunction by solving the linear
balance equation. A circulation pattern with B > 0.5 (B < —0.5) can be con-
sidered as a blocked flow (strong zonal flow). Furthermore, the larger B the
more pronounced the blocked flow is and the more negative the stronger the
zonal flow is. Typical values of B are between -2 and 2.

4 Perturbations triggering a regime onset

The blocking index B characterizes in a simple manner whether a given at-
mospheric circulation pattern can be associated with a blocking regime or a
strong zonal flow regime. Small perturbations in the initial conditions of a fore-
cast will alter B at a certain forecast time. It may even occur that B changes
sign, corresponding to a regime transition. We want to investigate how the
predicted value of B depends on small changes in the initial conditions. There-
fore, we will determine the initial perturbation which maximizes the difference
in B between the reference forecast and the forecast made from the perturbed
initial state at a prescribed forecast time. In other words, this perturbation
maximizes the difference between the two forecasts in the direction of phase
space corresponding to the dipole-like anomaly pattern. This approach could
be considered as an extension of the study of Barkmeijer (1995), where error
growth is maximized in a single grid point.

For the computations, we use the 3-level quasi-geostrophic model, but now
triangularly truncated at wavenumber 21 (T21QG), its tangent linear and
adjoint versions. The evolution of a stream function perturbatlon is given by
the tangent linear operator R, such that :

e(T) = R(0,T) €(0) . - o '(10)

The period for which error growth is linear will be called the linear-range.
With realistic analysis errors the evolution of errors is linear up to about 72
hours. However, the length of the linear-range is not constant but depends on
the synoptic situation, the model used and the amplitude and structure of the
error itself (Lacarra and Talagrand 1988). In this work, we will assume that
the T21QG model describes the evolution of the atmospheric flow perfectly,
i.e. a perfect model approach. So, all forecast errors are due to errors in the
initial conditions. : _
We are interested in the perturbation e, keeping

l1e(0)1]* =< €(0),(0) > o (11)

fixed, which maximizes

B((T) + €(T)) — B(¥(T)) - (12)
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at prescribed forecast time T'. Using the definition of B (7), this can be written

< L((T) + €(T)) — 2e, 26 > — < Lp(T) — 2,2 >
’ < 2y, %p > . ’

(13)

‘The denominator is just a constant. Therefore, maximizing (13) is equivalent
to maximizing -

< Le(T), 2 >=< L,Re(0), 2 >=< €(0), R Lz > , (14)

where we introduced the operators R* and L} which are the adjoint operators
of R and L_, respectively, with respect to the squared norm inner product.
A good introduction to the application of adjoint methods in meteorology
has been given by Talagrand and Courtier (1987). It follows that the initial
perturbation which maximizes the dlﬁerence in B at optimization time T is
given by S e

< e,(0)=AR'L}z,.. - . (15)

The absolute value of the scaling factor A is fixed through constraint (11).

When choosing ) positive, €, maximizes the change towards a blocking regime.
A negative value of A results in a maximum change towards a strong zonal flow.
regime. The pattern e, is related to the sensitvity fields described in Rabier
‘et al. (1993). The difference in B at optimization time between the reference
- and perturbed forecast for this optxmal perturbatlon is ' '

sp=IBLAl o g
} [zl _

The difference AB is a linear function of the length of the optimal perturbation
vector, provided the maximization period is kept constant. This linear relation
is only valid for small initial perturbations, i.e. in the linear-range.

~ We now define the linear sensitivity by

) IR Lz ||
5y = At Bl
||2s]1?

The linear sensitivity Sy, is a measure for the (maximum) divergence of trajec-
tories when projected onto the direction of phase space that corresponds to the
~-blocking anomaly pattern. We will:see that adding a moderate perturbation
€r.(0), as given in (15), to the reference forecast that has high linear sensitivity
Sy, for a forecast period of 3 days may already lead to a substantial difference
in B. Even a regime transition is sometimes triggered within 3 days.

. We want to emphasize that the numerical costs of the computation of ¢, (0)

are very low. Only one backward integration of the adjoint model is needed.

| V(17)
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5 Results for the quasHmear range

Startmg from an arbitrary initial condition, we integrated T21QG for 1200
days. We computed the blocking index each day for the final 1000 days. A
part of the time series obtained in this way is presented in Figs 5a and 5c.
The single valued function B is a very useful quantity to decide whether the
model state is in a blocking regime (B > 0.5) or in a strong zonal flow regime
(B < —0.5). The T21QG model is capable of entering both regimes in a
realistic way (Marshall and Molteni 1993; Liu and Opsteegh 1994). From Figs
5a and b5c it is clear that regime transitions extend over some days but are
sometimes very abrupt (e.g. around day 60).

. The linear sensitivity Sy, for a forecast period of 3 days is computed for the
same time series and is given in Figs 5b and 5d. A high linear sensitivity for a
certain day d means that B will differ substantially at day d+ 3 if the optimal
- perturbation is added to the reference flow at day d. The real difference AB
depends on the amplitude of the initial perturbation and on the degree of
linearity of the error growth. Low values of Sy, indicate that moderate initial
perturbations are not capable of changing the flow substantially towards a
blocking or strong zonal flow regime. This indicates a high predictability of
the regime type, because no initial perturbation can change the evolution of the
flow strongly towards one of the regimes. So, if there is not a regime transition
in the forecast, it is likely that the flow remains in the same regime. However,
when there is a regime transition forecasted, it is likely that it will occur. In
cases of high values of Sy, moderate initial perturbations which change the flow
towards one of the regimes can be found, so that the predictability is less in
this situation. However, the difference AB due to €, is an upper bound. So, a
low sensitivity to the optimal error €, (0) implies a relatively high predictability
of the regime type. On the other hand, a high sensitivity to e(0) does not
necessarily imply a high sensitivity to a (random) analysis error.

Figures 5b and 5d show that there are days where the sensitivity is small
and days where the sensitivity is high. Differences may be as large as a factor
of 5. Notice that the periods with a high linear sensitivity are very short. The
majority of the days are insensitive to regime transitions.

Considering together Figs 5a and 5b and also Figs 5c and 5d, we see that
low sensitivity can go along with quasi-stationary flows (e.g. around day 80)
or with situations where a transition takes place (e.g. around day 60), which
means that this particular transition is highly predictable. During perlods
with a high sensitivity, transitions may (e.g. around days 130,730) or may not
occur (e.g. around day 690). The same characteristic features can be found
in the simple three-variable Lorenz convective model (Lorenz 1963; Palmer
1993). ; ,

To illustrate what the impact of € is during a period with a high sensitivity
we select day 687. The initial optimal perturbation €. (0) for the period 687 to
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690 is added to the reference field at day 687. The scaling factor A, see Eq. (15),

- is chosen in such a way that the error in the geopotential height of the 500 hPa
level is everywhere smaller than 15 m. The reference field and the perturbed
field are integrated with the nonlinear T21QG model for a forecast period of
four days. The evolution of these fields and of the error growth are given in Fig.
6 for the 500 hPa-level. The reference field (Fig. 6b) and perturbed field (Fig.
6c) at day 687 are both zonal above the Atlantic Ocean and Western Europe:
for both fields B = -0.49. The initial optimal perturbation, as is shown in
Fig. 6a, is mainly located above North America with its energy distribution
concentrated in the smaller scales and has a baroclinic structure (200 hPa and
800 hPa levels are not shown in the Figures). Within one day the perturbation

- energy is transferred to lower wave numbers (i.e. the larger scales are more
pronounced) and the error pattern reveals an equivalent barotropic dipole-like
structure. The flow in the western part of the Atlantic Ocean becomes more
meridional in the perturbed run. In the consecutive days the error grows very
fast and is advected to the east (Fig. 6d). The difference AB between the
perturbed and reference field after three days (optimization time) is 2.02 and
the transition to a blocked flow in the perturbed run is clearly visible (B =

- 1.78), see (Fig. 6f). After four days AB is even 2.52, the reference field is
in the strong zonal flow regime (B = -0.63) and the perturbed ﬁeld in the
blocking regime (B = 1.89).

6 Extension to the nonlinear range

The operational predictability of blocking was studied by Tibaldi and Molteni
(1990). They have investigated the ability of the ECMWF Model to represent
Euro-Atlantic and Pacific blocking onset and maintenance. It was found that
blocking frequency and duration were underestimated in medium-range fore-
casts. New versions of the model have now been improved. Furthermore, it
appeared that when the initial conditions were already blocked, the duration
was reasonably well predicted. Very short-range forecasts of blocking onset are
fairly successful but the onset is frequently missed beyond day 3 to 4. The in-
ability of predicting blocking onset in the medium-range still has a substantial
impact on the systematic model error. As a result of this inability, it is relevant
to study the sensitivity of regime transitions to initial conditions beyond day 3.
However, by then the evolution of analysis errors can not be considered linear
anymore (Lacarra and Talagrand 1988; Vukidevi¢ 1991; Errico et al. 1993). As
a consequence, the problem arises that the error growth can not be described
with a tangent linear model. Therefore, it is proposed to modify the technique
as outlined in section 4 for the nonlinear-range.

The modification is based on the following idea. If we add a perturbation
with a realistic amplitude to the initial conditions, the error growth is, on av-
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daoy:687

doy:687 ___Z 500hPa 8m | doy:687+3 __Z 500hPa 80m

Fig. 6. Geopotential height field at 500 hPa of (a) initial optimal perturbation
er,(0) for day 687 with optimization time of 3 days, (b) the reference orbit
at day 687 and (c) the perturbed orbit at day 687. Nonlinear integration for
3 days of (a), (b) and (c) results in (d), (¢) and (f) respectively. Contour
intervals are given in each panel. ogo



BARKMEIJER, J. ET AL: RESEARCH ON REGIONAL PREDICTABILITY. . . .

erage, linear up to day 2 or 3. However, if we add a much smaller perturbation
this period will be longer. The amplitude of the initial perturbation and the
growth rate determine the length of the linear range. In a finite dimensional
model this range can always be extended by decreasing the amplitude of the
initial perturbation. On the other hand, in the real atmosphere, an infinite
dimensional system, infinitesimal perturbations may evolve into large pertur-
bations in a finite time. It follows that although in the model context the
optimization time can be made very large, the modification only makes sense
for a maximum optimization time between one and two weeks.

The modification of €, is achieved by applying an iterative procedure. We
start the modification by adding a perturbation €(0), which lies in the direc-
tion of €, to the reference orbit 1. The amplitude of €;(0) must be taken
such that its error growth is linear during a period of time T (T < 10 days).
A new reference orbit v, is obtained by performing a nonlinear integration
with T21QG starting from ,(0) + €(0). Iteratively we now determine ¢;(0),
keeping < ¢;(0), ;(0) > fixed, so that ‘

B(#(T) + &(T)) — B(3so(T)) ()

is maximal or minimal, corresponding to a maximum change towards the block-
ing regime or strong zonal flow regime, respectively. In this, we assume that
the evolution of ¢;(0) is linear with respect to 1; for time T. After each itera-
tion, a new reference orbit ;, is determined by starting a model integration
from ¥:(0) + €;(0). Because we only need to maximize the difference between
two scalar quantities; it is easy to derive that ¢;(0) can also be obtained by
maximizing or minimizing the expression :

B(i(T) + «(T)) — B(wi(T)) - - (19)

Thus, the computation of ¢;(0) is reduced to the determination of ¢; with
respect to 1;, which is described in section 4. The iterative procedure ends
when the sum of the perturbations

Cenp(0) = Z(EL(O)) (20)

i=0

has the same norm as the original linearly optimal perturbation. In the linear
case, the perturbation which is optimal for inducing a blocking regime differs
only in sign from the one which optimally induces a strong zonal flow regime.
However, in the nonlinear case the perturbations, obtained by either maxi-
mizing or minimizing each step (19), have different structures after at least
two steps. Namely, after adding or subtracting €,(0) to the reference flow two
different new reference orbits will be obtained, so that the maximization and
minimization procedures are not symmetric anymore. The procedure does not
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guarantee that of all perturbations with this norm, ey results in the maxi-
mum difference in B because the iterative algorithm can also lead to a local
maximum. However, as we will see, the procedure works well in the sense that
when ey is added to the initial stream function 1(0), AB is substantially
larger than obtained with €;, when the nonlinear-range is entered.

In this way, we can still use the linear adjoint operator R* in each itera-
tion but are able to extend the method into the nonlinear range. The same
procedure is described in Barkmeijer (1995). Maximizing the cost function
AB iteratively is related to the iterative minimization procedures used in the
context of four-dimensional data assimilation, see Thépaut et al. (1991) and
Zupanski (1993). :

In Fig. 7 results are given for an optimization time T of 6 days (144h)
for all days between days 701 and 800. This period is chosen because of the
high variability in the linear sensitivity Sr, (see Fig. 5d). The difference in B
of the perturbed flow towards a blocking regime is computed in three ways.
The dashed line gives AB when the perturbation ¢, is added to the reference
flow and error growth would be purely linear. The perturbation ¢; has every
‘day the same initial amplitude such that the maximum value is about 15 m at
500 hPa. One way to compute AB is to 1ntegrate €, with the tangent linear
operator R, but it can also be calculated directly using equation (16). The
dotted line gives for the same perturbation ¢, the results for the nonlmear
integrations. Comparing these two lines, one can see ‘that in general the linear
theory overestimates the error growth for er. The solid line gives AB when €y,
with the same length as €, is added to the initial conditions and integrated in
time with the nonlinear model. The number of 1terat10ns used varies between
5 and 7. It appeared that the iterative procedure is not very sensitive to the
size of the amplitude of the optimal perturbation that is computed in each
iteration. Comparing the results of the nonlinear integrations with the orbits
perturbed with €, and ey, one can conclude that modification of the initial
error pattern €;, can compensate for the saturation of the error growth due to
nonlinear interactions.

We point out that the dashed line and sohd hne are correlated (p=0. 76)
It seems that linear theory still enables one to determine if a circulation pat-
tern is sensitive to small changes in the initial conditions or not, although
nonlinear error growth is non-negligible. So, Sy, still might provide an efficient
predictor for possible transitions. If one is interested in the fastest growmg
error patterns, the computation of ¢y is needed.

An example which clearly illustrates the impact of the modification pro-
cedure is shown in Figs 8 and 9. In Fig. 8, the evolutions of ¢, and ey are
compared. The reference forecast orbit starts from day 722 and the optimiza-
tion time T is 6 days. Both perturbations € and ey have initially the same
length and their geopotential height fields at 500 hPa are given in Figs 8a and
8b respectively. In computing ey; we used 7 iterations. The main part of
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700 720 740 760 780 800
: Days ‘

Fig. 7. The difference AB when the optimal perturbation is added to the
reference field with an optimization time T of 6 days for all days in the period
701 to 800. The dashed line corresponds with a linear integration of €7, and a
nonlinear integration of €, is given by a dotted line. The solid line shows AB
when €y, is nonlinearly integrated. '
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Fig. 8. Geopotential heighf: field of the initial optimal perturbations (a) €,
and (b) eyz at 500 hPa for day 722 with optimization time of 6 days. Final
errors (c) er, and (d) enz after 6 days. Contour intervals are given in each
panel.
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€y, is located in the North American area, whereas €y; has a more global na-
ture. The nonlinear modification of €;; mainly affects the strength of the local
structures, not the position. After two days the initially small-scale, baroclinic
structures have evolved into larger scale and equivalent barotropic structures.
The error growth of €, is faster than ey during the first four days, which can
be expected, but decreases after day five. At optimization time, €; has only
a small amplitude over the Atlantic and Western European areas (Fig. 8c).
The modified perturbation €y, continues to grow in the nonlinear-range and
shows a large projection onto the blocking anomaly pattern at optimization
time (Fig. 8d). Figure 9 gives the geopotential height patterns at optimization
time of the reference orbit (Fig. 9a), the orbit perturbed with ¢, (Fig. 9b)
and eyz (Fig. 9c). The perturbation €, was not able to initiate a transition.
Both Figs 9a and 9b are in the strong zonal flow regime with B values of -2.1
and -1.4 respectively. Figure 9c indicates that a transition to a blocked flow is
possible at day 6 (B= 0.86) by using ey, as initial perturbation.

In Fig. 10, AB at forecast day 6 computed with T21QG for all days
between days 701 and 800, shown in Fig. 7, is added to B of the reference
flow. It turns out that 74 days perturbed with ¢, and 94 days perturbed with
eni are blocked (B > 0.5). This means that almost always a block can develop
within six days. In the same way, we have tried to decrease B every day to get
a strong zonal flow. We have found the same high rates of transitions to this
regime (not presented). Of course, the probability of such a development is
important. Results show that by adding ey to the reference flow, the model
is forced into regions on the attractor which it rarely visits. In almost 50% of
all cases B becomes larger than 2, a value which is exceeded only a few times
in the 1000-day dataset (Figs 5a and 5¢c). From this, it can be concluded that
the optimal error is very special. Probably, an analysis error usually has a low
projection on it.

7 Concluding remarks

In the first part of this paper the KNMI ensemble prediction system (KEPS)
is presented. The method is based on the assumption of linear error growth.
It uses adjoint models and is applied for the short term only. This scheme is
now entering its operational phase.

In the second part we have studied the sen51t1v1ty to initial conditions of
the onset of blocking and strong zonal flow regimes in the Atlantic-European
area. For short optimization times and perturbations with realistic amplitudes,
error growth is almost linear. The sensitivity varies from day to day with only
short periods of a high sensitivity. Results show that during these short pe-
riods, perturbations may initiate a regime transition. It might be useful to
investigate the periods with high sensitivity in order to obtain some insight in
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doy:722+6 Z 500hPo 80m

Fig. 9. Geopotential height patterns at optimization time (6 days) of (a)
reference orbit and the reference orbit perturbed with (b) €f, and (c) enr, after
nonlinear integration. Contour interval is 80 m.
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Fig. 10. B in the périod 701 to 800 for the reference flow (dashed line) and

the flows perturbed with ez, (dotted line) and eny, (solid line’) all nonlinearly
integrated. , '
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the mechanisms which play a role in triggering a blocking onset or breakdown.
For an optimization time of two or three days, the perturbations mainly orig-
inate from North America and are subsequently advected to the east. Thus,
features of the jet stream like its strength, geographical position and diffluent
character are likely to be important. The sensitive periods may show some
general properties which could possibly be revealed in this way. These issues
will be made part of future studies.

For longer optimization times error growth is affected by nonlinear in-
teractions. For the medium-range, perturbations have been computed which
maximize the difference in B using an iterative procedure. Experiments have
been performed for an optimization time of 6 days with a time series of 100
days. For each day, the optimal perturbation was computed. It was found
that almost all these perturbations (with realistic initial length) were able to
trigger a blocking regime or a strong zonal flow regime. Furthermore, very
large values of B could be obtained, which did not occur in the 1000 days ref-
erence orbit. So, it seems that these perturbations can induce extreme events.
The special character of the perturbations can be caused because they do not
lie, initially, in the hyper plane given by the local directions of the trajectories
on the attractor. Another possibility is that the optimal perturbation lies on
the attractor but in a region in phase space, given by all points that trigger
extreme events, that is only a small part of the error region around the refer-
ence point. In the latter case a transition could be possible, but is still very
unlikely because the probability that the initial condition lies in this particular
region is very small. Because the iteratively computed perturbations maximize
the same cost function as the linearly optimal perturbations, one may assume
that there is no substantial difference between them. In turn, the linearly opti-
mal perturbations are strongly related to the fastest-growing singular vectors,
sothat the special character could hold for the latter ones too. This is consis-
tent with the results of Anderson (1995), who found that in the three-variable
Lorenz convective model the fastest-growing singular vectors do not lie in the
local tangent plane to the attractor.

Our approach of constructing perturbations, conceivably with additional
constraints concerning above remarks, could be useful for ensemble forecast-
ing. In the ensemble forecasting technique, a set of slightly different initial
states is integrated in time (Lorenz 1965; Leith 1974). The divergence of the
trajectories is taken as a measure of the predictability. In this way, the skill
of the operational numerical weather prediction (NWP) models could be es-
timated in advance. It is, however, difficult to define a set of initial states
which is not too large and at the same time gives statistically representative
- information about the divergence of the flow. Current methods to compute a
set of initial states are making use of singular vectors (Mureau et al. 1993;
*-Buizza et al. 1993) or bred perturbations (Toth and Kalnay 1993). Results
of these methods show that the spread in the medium-range is usually too
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small (ECMWF 1993). The iterative algorithm presented in this paper can be
useful to compose an ensemble which produces a significantly larger spread in
the nonlinear-range.

Moreover, one of the main objectives of ensemble forecasting is to detect
possible regime transitions which are not forecasted by a general circulation
model (GCM). The GCM’s are in many cases not able to predict regime tran-
sitions beyond a few days correctly (Tibaldi and Molteni 1990). An important
reason for this inability is that the onset of a regime is usually very sensitive
to the initial conditions (as is shown in this paper for a blocking and strong
zonal flow regime). An ensemble prediction system (EPS) should warn for a
possible regime transition. However, none of the present ensemble prediction
systems specifically selects initial perturbations which trigger the onset of a
particular weather regime. An alternative set of initial perturbations for an
EPS can be computed by a generalization of our method. In the same way
as for the blocking anomaly pattern, perturbations can be computed which
maximize the projection onto the anomaly patterns of other regimes or flow-
patterns. A possible choice of patterns are the first N empirical orthogonal
functions (EOF’s) which explain most of the variance of the flow. Then, the
ensemble of initial perturbations consists of perturbations which maximize the
projection on these EOF’s at a prescribed forecast time.

Our results for the medium-range indicated that a large spread could be
produced for almost every initial condition. When such large spreads can
be produced in more realistic models, one must doubt the usefulness of a
predictability estimate obtained with a small ensemble. By this we mean that
almost all weather scenarios (i.e. GrofSiwetterlage patterns) may occur in the
medium-range for initial perturbations comparable to current analysis errors.
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