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Abstract: It has been demonstrated previously by both analysis and numerical integration
that there is a serious problem incorporating orographic forcing into semi-implicit semi-
Lagrangian models, since spurious resonance can develop in mountainous regions for
Courant numbers larger than unity. Rivest et al. (1994) recommended using a second-
order instead of a first-order semi-implicit off-centering to eliminate the spurious
resonances, the former being more accurate. The present study shows by a linear one-
dimensional analysis that a first-order semi-implicit off-centering can be used more
effectively to eliminate the spurious resonances when combined with a spatially-averaged
Eulerian instead of a semi-Lagrangian treatment of mountains. The analysis reveals that
the resonance is much less severe with the spatially-averaged Eulerian treatment of
mountains, and hence can be suppressed with a weaker first-order off-centering. This
combination could represent a valid alternative to second-order off-centering which needs
extra time levels. These various points are illustrated with both barotropic and baroclinic
semi-implicit semi-Lagrangian models. An important feature of the baroclinic model
formulation is the inclusion of topography in the basic state solution that is used for the
semi-implicit treatment of the gravity-wave producing terms. In tests run from real data it
appears that, in current three-time-level models, simply changing from the semi-
Lagrangian to the spatially-averaged Eulerian treatment of mountains is sufficient to
significantly reduce the topographic resonance problem, permitting the use of larger
timesteps that produce acceptable time truncation errors without provoking the fictitious
numerical amplification of short scale waves. '

1. INTRODUCTION

In semi-implicit models, a semi-Lagrangian treatment of advection improves model efficiency by
permitting larger timesteps than those allowed by Eulerian advection schemes. For this reason,
since the initial demonstration by Robert et al. (1985) in a hydrostatic primitive equations model,
this method is being used in an increasing number of weather forecasting and climate centers (e. g,
Tanguay et al. 1989; McDonald and Haugen 1992; Bates et al. 1993; Purser and Leslie 1994,
Ritchie and Beaudoin 1994; Williamson and Olson 1994; Ritchie et al. 1995). However, it has
been demonstrated by both analysis and numerical integration that there is a serious problem
incorporating orographic forcing into semi-implicit semi-Lagrangian models, since spurious
resonance can develop in mountainous regions for Courant numbers larger than unity (Kaas 1987;
Coiffier et al. 1987; Tanguay et al. 1992; Rivest et al. 1994). In practice this inhibits the overall
efficiency advantage of the semi-Lagrangian treatment of advection, since at high spatial resolution
the fictitious numerical amplification of the resonant stationary short scale waves locally
contaminates the flow patterns before the timesteps become large enough for the time truncation

errors of the transient waves to become unacceptable.
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Some possible solutions for this problem have been proposed. In the context of a two-time-level
scheme Rivest et al. (1994) clarified the source of the problem and recommended using a second-
order off-centering of the semi-implicit averaging along the trajectory. Recently C6té et al. (1995)
have examined the possibility of evaluating the semi-Lagrangian derivative using an additional time
level of information. The advantage of these approaches is that the time truncation errors remain
second-order accurate, but the disadvantage is that they imply the expense of evaluating terms at an
extra time level in the time integration scheme. A similar comment applies to a four-time-level
retrofit that Rivest and Staniforth (1995) examined for conventional three-time-level schemes.
Héreil and Laprise (1995) have also tested the Rivest et al. (1994) solution in the context of a

three-time-level mesoscale model.

In the present study we examine a very convenient alternative for conventional three-time-level
models. If the previous studies are recast in terms of geopotential height perturbations rather than
the geopotential thickness perturbations which were used, we see that they have used a semi-
Lagrangian treatment of the mountains. However, since the mountains are stationary, the influence
of topography can be readily represented as an Eulerian or kinematic forcing. By including this
forcing among the terms that are treated with the spatial averaging that is used in many current
three-time-level models, the severity of the resonance problem can be greatly reduced. To formally
eliminate the resonance it is still necessary to introduce some damping mechanism, such as the
first-order off-centering introduced by Tanguay et al. 1992, but the required amount is
correspondingly reduced with the spatially-averaged Eulerian treatment of mountains. In practice
with the timesteps currently used in three-time-level models, simply changing from the semi-
Lagrangian to the spatially-averaged Eulerian treatment of mountains appears to be sufficient to
suppress the contamination of the forecasts by unrealistic short scale details generated by the
presence of topography, without reducing the accuracy of the time integration scheme. This

approach is an attractive alternative to other treatments requiring extra time levels.

2. LINEAR ANALYSIS OF SHALLOW-WATER EQUATIONS

2.1 Linearized equations

In order to examine the spurious resonance of semi-Lagrangian schemes in spectral models in a
simpler context, the spectral shallow water model presented by Ritchie (1988) (hereinafter referred
to as R88) has been modified to include mountains and first-order off-centering. As a
consequence, in the continuity equation (29) of R88 the perturbation geopotential @ is replaced by

D - D

where @ is the geopotential height associated with the surface topography. In order to incorporate
the first-order off-centering, the semi-implicit time average applied to the gravity-wave producing

terms will be discretized as
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t=1+8 v+ . 18 ¢ -
()—-2()+2() (1)

where 0 is the off-centering parameter.

For simplicity we assume a constant Coriolis parameter f and do a semi-implicit treatment of the
Coriolis term. Expressed in terms of the wind images (U,V) as defined in R88, the linearized

momentum equation takes the form

t
dy.m+l9 =0 @
5 t
dy 7ot +cos8 9 g —0 3)
dt a? 90
and the continuity equation becomes
%(@-@S) +@ D=0 @)
where the linear Lagrangian derivative operator is
dLy2 9 9

and the semi-implicit time average is given by (1). Here o is a constant advecting angular velocity
used for the linearization. The other symbols have the same meanings as in R88. Form (4) gives
what we will call the semi-Lagrangian treatment of the mountains and is equivalent to the
formulation examined by Rivest et al. (1994) which can be shown by rewriting (2)-(4) in terms of
the thickness perturbation ¢=®-®; . By applying (5) to the topographic term in (4) and using the
fact that topography is steady in time, (4) can be rewritten as

g . D= 0L o, ©)
d
t )

which gives what we will refer to as the Eulerian treatment of the mountains.

We look for solutions of the form

g = g eimli-1t) pmy) (7
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where gl is the spectral coefficient of a wave-like solution with east-west wave number m, having
numerical phase speed ¥, and P represents a normalized Legendre function whose argument is
1 = sinf. We will examine analytic and numerical solutions for these linearized equations.

2.2  Analytic forced response
For stationary solutions (Y = 0) we find that the analytic perturbation geopotential height is given

by
mgp._ (£
(@A = Br- 1) (@, ®)
I-(RFaf
where
G2 =70 + 12
and F;, is the Froude number defined as |
F,= HEOJH‘ ©

For synoptic scale motions with @ approximated as U/a where U represents the advecting wind
speed, we find that

which is the Froude number as used in Rivest et al. (1994). Furthermore, (8) can be

approximated as
(@aff =-(@EP (@) . (10)

For the actual case that will be examined in section 4, the scales give values of approximately

3*102 for (1 F,f and 10 for (Gin)z . (11)

2.3  Numerical forced response
For stationary solutions we find that the numerical perturbation geopotential height is given by

[y =- o (o) (12)
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for the semi-Lagrangian treatment of mountains, and by

m_ &

[ )m
(@ =— () (13)
tang
for the spatially-averaged Eulerian treatment of mountains where
P sin mA{@-y) | d,eimAt(@-)
At At
C = cos mAt{®-y) + i d sin mA{w-y) + (1+5) d, At eimAt{@-y) |
s=sin&,c=cos&,and § =mwAt and
d,=v n(n+1)|P (14)
a2

in which v is the diffusion coefficient and p controls the degree of a split-implicit diffusion.

As in Rivest et al. (1994) we consider response R defined as the ratio of the numerical and analytic

solut_ions. From (12) / (8) we get

- @R 5 (mrp o

sin &

R = 2 [ f V2 S\ 2 S (15)
m 2 m
(B - () } {C - (‘g) (7 Fa) }
for the semi-Lagrangian treatment of mountains, and (13) / (8) gives
R= ——é— R’ (16)

tang
for the spatially-averaged Eulerian treatment of mountains.
2.4 Resonances

Next we compare the responses near resonance. In the absence of off-centering and damping for

stationary waves, (15) can be rewritten as
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)

and we use (16) for R.

Resonance occurs when the denominator vanishes. Thus R' and R both have resonances when

tanSr _ 4 1 (18)
Er Fy

=B

which is large in absolute value, since the Froude number is small. Hence there are twin resonant
values &g close to & = (2 1 + 1) n/2 for integer values of 1.

Let &g = & + Ag where Ag is small. Taylor series expansions lead to

tantg = - -1+ O{ag)

Ar
and (18) gives
Ag (& + Ag)=+DF, + olax’)
whence
mE
Er~ &+ L : (19)

1

To find the leading order behavior near &g , let § = £ + € and consider the dominant behavior as €

tends to zero. Using (18), (19) and Taylor series expansions leads to dominant behavior

tang _ 1 . 20)
& i%Fn -8{51

Combining the scaling (11) with (20) in (17) yields
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R~+_1 _1 1)
%Fn 28&1

as € tends to zero, which together with (16) produces

R=-—1_ 22)
2e§

These resonances are both first order singularities in €. Since the Froude number is small, R as
given by (22) is much smaller than R’ as given by (21); that is, the resonance is much weaker with
the spatially-averaged Eulerian treatment of mountains.

Now we examine the impact of the first-order off-centering near resonance. With 8 #0 and d, =0
we get§ =s, C =c + i0s, and together with the scaling (11), at resonance (18) the responses (15)
and (16) become

R~-— 1 (23)
(8¢r) +125 (M F,) &g
and
mg
Ret—_ 1 . (24)
(8r)° 125 (M F,) &g

Thus the first-order off-centering can effectively suppress the resonance and produce a finite
response, but since the Froude number is small, (24) shows that the weaker resonance at Eg with
the spatially-averaged Eulerian treatment of mountains can be controlled with a weaker first order

off-centering than with the semi-Lagrangian treatment of mountains (23).
3. ILLUSTRATIONS WITH SHALLOW WATER MODELS

To graphically demonstrate the advantages of the spatially-averaged Eulerian treatment of the
mountains, the numerical and analytic linear solutions for the shallow water equations have been
reconstituted for the case of constant angular flow across an isolated "Gaussian hill". This
topography (in meters) is shown in figure 1 and the analytic stationary geopotential height
produced by combining linear waves whose amplitudes are given by (8) is shown in figure 2,
where the central values are in decameters and the contour interval is 2 meters. The numerical
solution with a semi-Lagrangian treatment of the mountains (12) with 8=0 and d,=0 is shown in

figure 3, and the corresponding numerical solution with the spatially-averaged Eulerian treatment
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Fig.1 "Gaussian Hill" topography (in meters) for which linear shallow water model
stationary responses are reconstituted for constant angular flow.

R
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Fig.2 Analytic stationary geopotential height (in decameters) for the case of constant angular
flow across the topography depicted in Fig.1. Contour interval 2 meters.
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Fig.3 As in Fig.2 except for a numerical solution with a semi-Lagrangian treatment of the
mountains. The off-centering parameter is zero.

Fig.4 Asin Fig.2 except for a spatially-averaged Eulerian treatment of the mountains.
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of the mountains (13) is presented in figure 4. The presence of fictitiously amplified short waves
is evident in both of figures 3 and 4, but it is clear that these waves are much weaker in figure 4
which bears a much closer resemblance to the analytic solution in figure 2 than figure 3 does.
Figures 5 and 6 present the numerical solutions corresponding to figures 3 and 4 respectively
except that a weak first-order off-centering of 8 =.1 has been added. It is seen that some
fictitiously amplified short waves are still evident with the semi-Lagrangian treatment of the
mountains (figure 5), whereas the spatially-averaged Eulerian treatment (figure 6) gives a
numerical solution that is very close to the analytic one shown in figure 2.

Topography was added to the nonlinear shallow water equations model (R88) and a test was
performed with real data for the same case as examined by Rivest et al. (1994) starting from an
analysis valid at 1200 UTC 12 February 1979. The model was run using a triangular truncation
with 120 waves and a timestep of 1800 s. The 48 hour forecast of the 500 mb geopotential height
(in decameters), valid at 1200 UTC 14 February 1979, produced by a model with a semi-
Lagrangian treatment of the mountains is shown in figure 7, where short waves are evident over
Montana and the neighboring states. The corresponding forecast using a model with the spatially-
averaged Eulerian treatment of the mountains (without off-centering) is shown in figure 8. Itis
clear that simply changing the mountain formulation without even introducing off-centering can

significantly reduce the manifestation of numerical amplification.

4. FORMULATION AND TESTS WITH A BAROCLINIC SPECTRAL MODEL

In this section we examine a spatially-averaged Eulerian treatment of mountains for a baroclinic
model. This is achieved by adapting the model presented in Ritchie (1991) and extended by
Tanguay et al. (1992) and Ritchie and Beaudoin (1994). As a preliminary step, topography is
included in the basic state solution that is introduced for the semi-implicit treatment of the gravity-

wave producing terms. If we look for a basic state solution at rest, the horizontal momentum

equation becomes
V& +RTVq =0 (25)
and the hydrostatic equation is
% _.RI", @6)
dc G

where a * superscript denotes the basic state variables, @ is the geopotential height, T is the
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Fig.6 Asin Fig.5 except for a spatially-averaged Eulerian treatment of the mountains.
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Fig. 7 48 h forecast of the 500 mb geopotential height (dam), valid at 1200 UTC 14
February 1979, produced using a shallow water model with a semi-Lagrangian
treatment of the mountains. Contour interval 5 dam.

Fig.8 As in Fig.7 except for a spatially-averaged Eulerian treatment of the mountains.
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temperature, q = log(surface pressure), R is the gas constant, ¢ is the conventional
(pressure)/(surface pressure) vertical coordinate (Phillips, 1957) and V is the horizontal gradient

operator with ¢ held constant. Integrating (26) in the vertical gives
1
o =0,+R| Lds .
, O
If T" = T*(c) then (25) gives
V(®, + RT*q*) =0

from which it follows that

«__Ao) &
RT*(6) RT(o)

where A(c) is an arbitrary function of 6. Since q* is independent of 6, we conclude that T must

be a constant unless @, = 0. Consequently for our semi-implicit linearization we use

T=T" + T where T" = constant, (27)
®=@ +¢ where ® = d; - RTIno, (28)
and q = q* + q where q* = - @,/ (RT") . (29)

We define the generalized perturbation geopotential as
P'=¢ +RT*q
=® + RT"Inc + RT"q . (30)

The momentum equation and hydrostatic equation retain exactly the same form that they had in
Ritchie (1991). The thermodynamic equation becomes

dr' %;Lg's_}:m_’
dt d o Cp

99_+5g)_

atS EI—VH.VCDS 31)

P

where y=RT"/ ¢, and c, is the specific heat at constant pressure. The continuity equation

becomes
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d_q+D+a_6= _l*_vH.V(I)S . (32)
dt dc RT

Equations (31) and (32) have the same form as in Ritchie (1991) except that the inclusion of
topography in the basic state solutions (28) and (29) has led to the explicit appearance of the
Eulerian treatment (or kinematic) terms in the right-hand-sides of (31) and (32). The spatially-
averaged and first-order off-centering treatments of these terms follow naturally from their
presence in these right-hand-sides which are discretized as in Tanguay et al. (1992). The
derivation and solution of the 3-dimensional Helmholtz equation proceeds as in Ritchie (1991)
except that the unknown variables are P' and q' instead of P and q. Since

@, no longer appears directly in the vertical boundary conditions for this Helmholtz problem. In
order to test the impact of the spatially-averaged Eulerian treatment of the mountains, tests were
performed with a slightly modified version of this Canadian Global Spectral Forecast Model that is
used for global data assimilation and medium-range forecasts at the Canadian Meteorological
Centre (CMC). The version used in these tests had a triangular truncation with 119 waves and a
timestep of 30 minutes. The modifications were to increase the timestep to 45 minutes (in order to
provoke the resonance which is not present in the operational model), and to remove the physical
parameterizations (so as not to obscure the response to this numerical problem). Figure 9 presents
a 48 hour forecast of the 250 hPa geopotential height produced by this model with its semi-
Lagrangian treatment of the mountains for the same case of strong flow across the Rockies as
examined with the shallow water equations model in section 3 (figures 7 and 8). The unrealistic
detail over Montana exhibits symptoms of the resonant behaviour and can be eliminated by
reducing the timestep to the operational value of 30 minutes, or by removing the mountains. It can
also be eliminated by changing to the spatially-averaged Eulerian treatment of the mountains,
resulting in the forecast shown in figure 10. Note that the problem over Montana is removed
without changing the forecast significantly elsewhere. No off-centering was used in this test. As
in the nonlinear shallow water equations model, simply changing the mountain formulation without
even using off-centering significantly reduces the fictitious numerical amplification of short scales

in this baroclinic model.

For a more quantitative measure of the sensitivity to these two treatments of the mountains, the
evolution of the northern hemisphere root-mean-square (rms) differences between forecasts
produced with this simplified baroclinic model was examined in a series of integrations. First of

all, the sensitivity to changing the mountain formulation was measured for integrations with a
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Fig.9 48 h forecast of the 250 mb geopotential height (dam), valid at 1200 UTC 14 February
1979, produced using a simplified baroclinic model with a semi-Lagrangian treatment
of the mountains and a time step of 45 minutes. Contour interval 5 dam.
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Fig. 10 As in Fig.9 except for a spatially-averaged Eulerian treatment of the mountains.
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timestep that was short enough so that there would be no resonance problem and for which the
time truncation errors would be small enough to permit these runs to be used as controls for the
other tests. Figure 11 presents the evolution of the rms differences (in meters) between forecasts
produced by the simplified baroclinic model with the semi-Lagrangian treatment of the mountains
and the version with the spatially-averaged Eulerian treatment of the mountains, both using a 15
minute timestep. It is seen that the sensitivity to this change in mountain treatment is very small
when the timestep is small. Figure 12 presents the sensitivity to changing the timestep in the
version of the model using the spatially-averaged Eulerian treatment of the mountains. Here the
timestep is trippled from 15 minutes as used in figure 11 to 45 minutes as used in figure 10. The
sensitivity is at an acceptable level of less than 3 meters per day in the troposphere, establishing
that the timestep used in figures 9 and 10 is not unreasonably large for this simplified model at this
resolution. In particular, the 250 hPa geopotential height fields produced in the integrations with
the 15 minute timestep (figure not shown) are visually very similar to figure 10 where the timestep
is 45 minutes. Changing from the semi-Lagrangian treatment of mountains to the spatially-
averaged Eulerian treatment appears in practice to significantly reduce the topographic resonance
problem, permitting the use of larger timesteps that produce acceptable time truncation errors

without provoking the fictitious numerical amplification of short scale waves.

5. DISCUSSION

In this paper we have compared two treatments of mountains in the context of three-time-level
semi-implicit semi-Lagrangian models. Such models are susceptible to the spurious resonance that
can develop in mountainous regions for Courant numbers larger than unity. Rivest et al. (1994)
and Rivest and Staniforth (1995) recommended using a second-order instead of a first-order semi-
implicit off-centering to suppress the spurious resonances, the former being more accurate.
However, this requires the expense of additional time levels in the time integration scheme. The
present study has showed that a first-order off-centering can be better suited when combined with a

spatially-averaged Eulerian rather than a semi-Lagrangian treatment of mountains.

The simple linear one-dimensional analysis in section 2 showed that the resonance is much weaker
with the spatially-averaged Eulerian treatment of mountains, and can be controlled with a much
weaker first-order off-centering than with the semi-Lagrangian treatment of mountains that has
been widely used in semi-Lagrangian models. In section 3 this was illustrated for the shallow
water equations. The analytic and numerical linear solutions for the shallow water equations were
reconstituted for the case of constant angular flow across an isolated "Gaussian hill". The presence
of fictitiously amplified short waves was evident with both numerical treatments of the mountains,
but these waves were much weaker with the spatially-averaged Eulerian treatment, and could be

controlled with a much weaker off-centering than in the case with the semi-Lagrangian treatment of
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Fig.11 Evolution of the northern hemisphere rms differences (in meters) between forecasts
produced by the simplified baroclinic model with the semi-Lagrangian treatment of the
mountains and the version with a spatially-averaged Eulerian treatment of the
mountains, both using a 15 minute time step. Contour interval 0.5 meter.
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Fig.12 Asin Fig.11 except comparing 15 minute and 45 minute time steps in the version of
the model with a spatially-averaged Eulerian treatment of the mountains. Contour
interval 3 meters.
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the mountains. Tests with a nonlinear spectral shallow water equations model were also presented.
For a real case of strong flow across the Rockies, short waves were evident over Montana and
neighboring states in the version of the model using a semi-Lagrangian treatment of the mountains.
The corresponding forecast using a version of the model with the spatially-averaged Eulerian
treatment of the mountains showed that simply changing the mountain formulation without even

introducing off-centering could significantly reduce the manifestation of numerical amplification.

A similar result was found in tests with a baroclinic model that were presented in section 4. By
introducing topography in the basic state solution that is used for the semi-implicit treatment, the
Fulerian treatment (or kinematic) terms emerge in the right-hand-sides of the perturbation
thermodynamic and continuity equations. The spatially-averaged and first-order off-centering
discretizations of these terms follow naturally in models that include these features for the other
terms that are already present. Tests were performed with a simplified version of the Canadian
Global Spectral Forecast Model for the same case of strong flow across the Rockies. Once again,
unrealistic detail over Montana was eliminated simply by changing from the usual semi-Lagrangian
to the spatially-averaged Eulerian treatment of the mountains, without using any off-centering. The
local fictitious numerical amplification was controlled without changing the forecast significantly

elsewhere.

The spatially-averaged Eulerian treatment of mountains appears to be a very effective, convenient,
and inexpensive way of reducing the fictitious amplification of short scale waves due to
topography in three-time-level semi-implicit semi-Lagrangian models. In particular, the code
changes and extra computations are minimal for models that already have the spatial averaging
feature. Although some off-centering or other damping mechanism is needed to formally eliminate
the resonance, in practice with nonlinear models running from real data we have found that simply
changing from the semi-Lagrangian to the spatially-averaged Eulerian treatment is sufficient to
suppress the contamination of forecasts by unrealistic short scale details generated by the presence
of topography. Consequently the time integration scheme retains its second-order accuracy. If
some weak first-order off-centering eventually proves to be necessary, then there will be a
correspondingly weak first-order time truncation error, but this combination would still represent

an attractive alternative to a second-order off-centering needing extra time levels.
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