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Abstract: Two topics are dealt with in this paper. First, a continuous three-
dimensional model of short-range forecast error covariances is described.
Unlike commonly-used representations, this model does not assume

vertical/horizontal separability. Second, some results of a study of the effect
of assimilating model resolution on data assimilation are presented.

1. A CONTINUQUS THREE-DIMENSIONAL COVARIANCE MODEL

Due to its importance for data assimilation,'considerable effort has been expended over the past
several decades on studying and modelling the structure of short-range forecast-error covariances.
Most commonly used representations assume vertical/horizontal separability of these covariances,
although the studies of Hollingsworth and Lonnberg (1986; hereafter HL), Lonnberg and
Hollingsworth (1986; hereafter LH), and Mitchell et al. (1990) have indicated deficiencies with this
assumption. In particular, the observed significant increase with height of horizontal decorrelation
length scales cannot be represented. ’

A three-dimensional representation of the structure of forecast error covariances has been developed
using archived observed residuals, or differences, between the short-range forecasts used as trial
fields in an operational data assimilation system and the verifying radiosonde data. Assuming
homogeneity and isotropy on pressure surfaces, geopotential-and wind covariances were fitted to a
series expansion employing zero-order Bessel functions of the first kind, J,, as the horizontal basis
functions (Gandin, 1963; Rutherford, 1972) and the normal modes of the primitive equations,
Apn(2), as the vertical basis functions (Phillips, 1986), i.e.” ‘
(br.Z1t) 0c45,20,0)) = B(s,Z1.22) = 2, Bumj AnZ0) An(Z2) Jo(x5s) (1)

) n,m,j .

where ¢ represents the error field, r = xi + yj, s = Isl is the horizontal separation, and Z = -H In(p
Ipg) is the vertical coordinate. Rather than discretize horizontally by imposing a Neumann boundary
condition at large separation (Rutherford, 1972; HL/LH), we have used a Dirichlet condition in
order to avoid large-scale/synoptic-scale partitioning of the results. Therefore the kj were selected
such that Jo(i;L) = 0, where L = 0.6 radians (~ 3800 km).
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The formulation is similar to that proposed by Phillips (1986) except that: (1) rather than
assume equipartition of forecast error energy, the appropriate spectral distribution has been
determined via a direct fitting procedure, (2) horizontal isotropy has been assumed, permitting the
use of a single Fourier-Bessel series expansion in place of double Fourier sums, and (3) the closed
analytical form for Ap(Z), made possible by the vertical log-pressure coordinate and the isothermal
basic state, results in a spatially continuous function. This allows for the calculation of the
covariance between any two points in three-dimensional space. Unlike commonly-used
representations employing vertical/horizontal separability, the present model reproduces the
observed significant increase of horizontal decorrelation length scales with height.

The model has been used to examine covariances of geopotential as well as transverse and
longitudinal wind components. The wind data have been used to obtain divergent and solenoidal
components and subsequent comparison of stream function and geopotential statistics has revealed a
high degree of geostrophic balance away from the upper and lower boundaries. This can be seen
from Fig. 1 and by comparing Fig. 2 (geopotential) and Fig. 3 (stream function).

Assuming the wind components to be diagnostically related to the geopotential field via the quasi-
geostrophic assumption, various cross-correlations can be computed. In Fig. 4 we display the
geostrophically-derived uu , uv and u¢ correlations on the x-y plane at three different levels. Other
velocity/geopotential correlations are simply related to these via appropriate rotations or reflections.
The horizontal spatial structure of the correlation changes with height in a manner consistent with
the archived geopotential statistics. The 500 mb correlations can be directly compared with those in
Fig. 17 of Mitchell et al. (1990), which were obtained from a horizontal correlation representation
based on a sum of autoregressive functions. Such a comparison indicates very good agreement.

The correlations in Fig. 4 are obtained with Z1 = Zp. The model can also be used to examine the
influence of a single datum at other levels. In Fig. 5 we display the geostrophically-derived
correlations generated by a single u -residual at Z; corresponding to 500 mb with Z3 at the 250, 500
and 700 mb levels. The 500-850 mb correlations (not shown) were very small, with uu and uv
not even attaining a value of 0.1. Clearly evident from Fig. 5 are the diminished correlations at Zp #
Z1. The unusual double negative lobes of the 500-250 mb uu correlation reflect the shape of the uu
correlation at 250 mb in Fig. 4.

A detailed description of the three-dimensional covariance model and the results obtained can be
found in Bartello and Mitchell (1992). The model is currently being implemented in a statistical
interpolation procedure with a view to assessing the benefits of a non-separable forecast-error
representation.
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Fig. 1. Root mean square height prediction error (m) as derived from the geopotential,
(¢/g) (solid line) and from the stream function assuming geostrophy, (fy /g)
(dashed line) as a function of Z
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Fig. 2. Geopotential error correlations at three
selected levels corresponding to 100, 250,
and 500 mb, contoured on the Z-s plane,
where s is measured in radians. Since the
fields contain small-scale, low-amplitude
oscillations at large separations, the zero
contour has been omitted.

O
o

—
o
o

200
300

500
700

PRESSURE (MB)

1000
0

O
o

—
Q
(]

200
300

PRESSURE (MB)

700
1000

50

[N
o
o

W W
o O
o o

PRESSURE (MB)
S

-~
=]
(=]

1000

Fig.

500 £

00 0.1 0.2 0.3 04 05 06

I
0.0 01 02 0.3 04 05 0.6

SN
)

ﬁ\\ \1] | 250 MB

\\\ 500 MB

SEPARATION

3.The velocity stream function correlation

at 100, 250 and 500 mb as in Fig. 2.

98



Fig. 4. The uu, uv and u¢ correlations on the x-y plane at 250, 500 and 850 mb, as obtained
geostrophically from the geopotential statistics. The contour interval is 0.1, the zero contour has
been suppressed and negative contours are represented by dash-dotted lines. Each square is
2500 km by 2500 km.
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Fig. 5.  As in Fig. 4 except that 250, 500 and 700 mb correlations are calculated with respect to a u-datum at

500 mb.
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2. THE EFFECT OF ASSIMILATING MODEL RESOLUTION ON DATA ASSIMILATION

This study was undertaken to investigate the effect of assimilating model resolution on data
assimilation. One aspect of interest is the effect of using a variable-mesh assimilating model. Here
we confine our attention to the case of a uniform-mesh model.

2.1 Theorv

Consider a one-dimensional periodic domain -na <x < mwa. We define the "true" state or signal
h(x,t) as a Fourier series truncated at wavenumber K. The signal is assumed to satisfy the one-
dimensional linear advection equation,

oh oh
30 + U-a—; = 0, (2)

where U is the (constant) advecting velocity. In spectral form,
oy = Mh, | | 3)

where ﬂn is the vector of length 2K + 1 of Fourier coefficients at time t; and K1 is a (2K+1) x
(2K+1) matrix.

Consider data assimilation with an assimilating model whose (uniform) mesh is xj, 1 <j<J.
Define ha, and hfy as the analyzed and forecast values of h on the grid xj at time t;. h#; and hf, are
defined to represent only the scales resolvable by the grid, hence the overbar which represents the
spatial averaging. The assimilating model on this mesh will be a discrete approximation to the linear
advection equation and is a J x J matrix which we denote M. Then, the forecast values at time ty4]
are obtained from the analyzed values at time ty, by, '

hy;1 = Mhj )

We will define the discrete model M below.
Consider now a time independent observation network xj, 1 <1 <1, and a column vector of length 1
of observations hY on this network at time t;. We will assume that these observations are
radiosonde-like point observations, i.e., they include all wavenumbers < K. Expressions for the
analyzed values on the grid x; of the state variable h at time ty for the assimilating model can be
written,

B = BY + Kp[hg-HBY , 5)

where H is an I x J time-independent forward interpolation matrix and Ky is a J x I weight or gain
matrix. The vector ry (of length T) of observation errors is assumed to be stationary, unbiased and
neither spatially nor serially correlated and thus ry is only correlated with itself. The instrument
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error covariance, R = (rnr}) , is time independent and homogeneous since the variance (EE)Z is
assumed to be the same at each observation station. R is also diagonal because ry, is not spatially
correlated thus R = (Eﬂ)2 I, where I is the identity matrix. In the experiments discussed below,
we set EO; = 10 m.

The signal covariance, §n = <EHHE>, is stationary and is a (2K+1)x(2K+1) diagonal matrix whose
elements are spectral variances. This implies that the signal covariance is homogeneous. The
elements of § are given by <h2> g(k), where <h2> is the (constant) height variance of the signal
and @(k) is the Fourier transform (on a continuous, infinite domain) of the correlation function,

p(x) = | cos(bixl) + Smgb"")] exp(Ixl/ [) . ©)

p(x) is the second order autoregression function introduced by Thiébaux (1976). When b = 0, this
eqn. simplifies to eqn. (4.8) of Daley (1992). When b = 0, p(x) is always greater than zero for
finite x, and é(k) is a maximum at k = 0. This choice is appropriate for forecast error covariances,
but is less appropriate for the signal variance (see Daley, 1991, section 4.3). In these experiments,
we setb=4/a, [=a/3 for the signal covariance. <h?> is specified so that the total signal variance
at any point in physical space is 10 000 m2. In Fig. 6, we plot the spectrum of the signal for these
choices.

Define a Fourier transform, F, from spectral space to the grid. F filters all Fourier components
with wavelengths smaller than (j-1)/2. Define &, =hY, - Fh, and €3 =h? - Fh,, the forecast and
analysis errors on the grid. Define P = <ef, (€f)"> and P2 = <2 (€)™, the forecast and analysis
error covariances on the grid. One obtains a forecast error covariance eqn. of the form:

PL,, = MP2MT + [MF - FM]| S [MF - FM]" + " cross terms” (7)

The second right-hand-side term is the error covariance due to the discretization error of model M.
In a similar way, one obtains an analysis error covariance eqn. of the form:
P2 = [I-KHPLI-KHT + K,[R+(G-HF)S(G-HF)] KI
(8)

+ "cross terms"

Here G is the Fourier transform between the Fourier coefficients and the observation locations.
Note the term [G - HF] S [G - HFJ*, which is an extra component of the observation error
covariance. This term is the forward interpolation error covariance due to the forward interpolation

error between analysis grid and observation network discussed by Lorenc (1986).

Let R* denote the sum of instrument error covariance and forward interpolation error covariance.
Then the Kalman gain matrix has the form

K, =P HT[HPIHT + R*| T . ©)
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We are interested in the stationary statistics which can be obtained by integrating the second moment
equations until stationarity is achieved. There is a difficulty, however. P} and P are the error
covariances corresponding to the scales resolved by the (possibly very coarse) grid of the
assimilating model. If the grid is very coarse, then it will only be able to resolve the largest spatial
scales of the signal or any error in the signal. Scales too small to be resolved by the mesh will not
make any contribution to the errors PL and P2, Thus, it is also necessary to consider the errors in
the unresolved scales. To do this we introduce €2 and ’eﬁ, the spectral analysis and forecast errors.
Defining ﬁi = (aﬁ (/e\g)j) the spectral analysis arror covariance matrix, we obtain the following
expression for fﬁ :

a

P: = FPF. + USUT + "cross terms” . (10)

Here F is the (2K + 1) x J Fourier transform matrix from the grid X to spectral space and U is a
diagonal matrix with (in the cases considered here) 1's in the resolved part of the spectrum and 0's
in the unresolved part of the spectrum. A similar expression can be derived for ﬁf, ﬁf, and ﬁfl can
be transformed to spatial form on any grid by left multiplication by the appropriate Fourier
transform matrix and right multiplication by its transpose.

Two assimilating models M and M are considered for the grid xj, 1 <j <J. The first model is the
exact Fourier model (truncated at wavenumber (J-1) / 2) described in Daley (1992). 1Itis defined
by,
M =FMF . (11)

For this model, the matrix [MF - Fl\7l] = FM(FF - 1) is identically zero and thus there is no model
error in the resolved scales which the model handles perfectly. We also define a second model M.
The linear advection equation has the solution at time ty43 = ty +At: h(X,tp41) = h(x - UAt,ty). This
suggests a semi-Lagrangian time marching algorithm. The point of departure (x-UAt) is always
known exactly for this equation, so all that is necessary is to interpolate the values of h(x-UAt) from
the values of h at the gridpoints of the mesh. This interpolation is performed using periodic cubic

splines which pass through the gridpoints of the mesh. We note that in the case of a uniform mesh
where the Courant number has been chosen to be an integer, Mij = Mp.

2.2 Results with the model M

a) Uniform observation network coincides with analysis mesh.

In this case, I = I, H = I. With this model, which is perfect in the resolved scales since the matrix
[MF - FIO[] is zero, the second moment equations reduce to:

Pl = MPiMT (12)
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P2 = [I-KJP[I-KJ'+ K,[R+ (G-F)§S(G-F] KT )
+ "cross terms”
The stationary solution of this set of equations is: Pf = Pa = K = 0. It then follows that P2 = U §
UT, which is a diagonal matrix, identical to S in the unresolved part of the spectrum and zero
elsewhere. Thus P2 consists of error in the unresolved scales only, and the fact that it is diagonal

implies that it corresponds to a homogeneous error on the grid.

Set K = 32 so that 2K+1 = 65. Then the analysis error variance on the grid of the assimilating
model (i.e., the value of the diagonal elements of P2) for J =45 and J = 15 is represented by the dots
in Figs. 7a and 7c, respectively. For J =45, the variance in the unresolved scales at any point in
physical space is 19 m? as can be roughly confirmed from Fig. 6. For J = 15, when a much larger
fraction of the 10 000 m? total signal variance is unresolved, the corresponding value is 792 m2.
Since in the present case the total analysis error consists only of error in the unresolved scales, these
values also represent the total analysis error variance. The solid curves in Figs. 7a and 7c¢ represent
the latter variance on a high-resolution output grid for J = 15 and J = 45, respectively.

In the previous case we obtained K = 0 so that, according to (5), the analyzed value was set equal to
the forecast and the observations were completely disregarded. Suppose now that rather than
calculating Ky, we set Ky = 1. This is the opposite extreme since now, according to (5), the
analyzed value is set equal to the observed value at each analysis point, completely ignoring the
mode] forecast. Then we obtain the following stationary solation:

P' = P = R+ [G-F]S[G-F[ (14)
Then

P: = FR+(G-F)S(G-FIJF + uSuT 5)
+ "cross terms" .

We now consider the various terms on the right-hand side of (15).

When transformed to spatial form the instrument error term yields the homogeneous instrument
error variance (E)2. The F (G - F) § (G - F)T FT term represents the forward interpolation
covariance in spectral form. The effect of left multiplying the diagonal matrix S by F (G - F) and
right-multiplying by its transpose is to "fold back" the elements of S around the Nyquist scale from
the unresolved to the resolved part of the spectrum. This yields a diagonal matrix only the first J
diagonal elements of which can be non-zero. Fig. 8 shows the spectrum of F (G - F) SG-/T
FT for J = 45 and 35, which clearly illusirate this "fold back" of covariance error. Also shown in
Fig. 8 are the corresponding spectra for J = 25 and 15. In these cases, as 2K+1-J > J, we see the
error from more than one unresolved wave being aliased onto the same resolved wave. The error in
the resolved scales due to the misrepresentation of scales which the observation network is unable to
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resolve is a type of observation error commonly referred to as the "error of representativeness”
(e.g., Daley 1991). Returning to (14), we see that P2 (= Pf) consists of instrument error and error
of representativeness only.

By contrast, the right-hand side of (15) contains additional terms. The U S UT is the error in the
unresolved scales, as before. It, like the previous terms, is a diagonal matrix. Thus, when
transformed to spatial form, these terms give rise to homogeneous error covariances. Furthermore,
because the forward interpolation error is a "folded back” image of the error in the unresolved
scales, it and the unresolved error contribute equally to the total analysis error variance in spatial
form.

The dots in Fig.7b are the analysis error variance on the grid of the assimilating model (i.e., the
diagonal elements of P2) for the case J = 45. These have a value of 119 (= 100 + 19) m2. The
dashed line in the figure is the homogeneous portion of the total analysis error variance on a high-
resolution output grid. This has a value of 138 (= 100 + 19 + 19) m2. The solid curve represents
the total analysis error variance on the high-resolution output grid. We see that the effect of the
cross terms is to introduce a sinusoidal oscillation with amplitude 38 m2. This oscillation reduces
the error variance to 100 m2 (the instrument error) at each point of the analysis grid, consistent with
our specification of the gain matrix K. However the analysis error now reaches a maximum value of
176 m2 mid-way between points of the analysis grid. All of these values are much larger than those
obtained in the case of an optimal gain matrix, where the total analysis error variance was only 19
m?2,

The corresponding curves for the case J = 15 are shown in Fig. 7d where the situation is seen to be
entirely analogous: the diagonal elements of P2 are now 892 (= 100 + 792) m2, the homogeneous
portion of the total analysis error variance on the high-resolution output grid has a value of 1684 (=
100 + 792 + 792) m2, and in order to reduce the error variance to 100 m2 (the instrument error) at
each point of the analysis grid, the sinusoidal oscillation due to the inhomogeneous terms now has
an amplitude of 1584 (= 2x792) mZ2.

We note that whether the gain matrix Ky was calculated using (5) ("the perfect model case") or set
equal to I (the "no-model" case), the expressions we obtained for P2 and P2 did not involve M. It
follows that these results are valid independently of our choice of Courant number. The perfect
model and no-model cases are important as they constitute extremes at opposite ends of the range of
behaviours exhibited by more common (imperfect) models.

109



b) Non-uniform observation network.

In this case the second moment equations reduce to the same equations as before, except that in (13)
the terms [I - K;] and [G - F] must be replaced by the more general [I - Ky H] and [G - H F]
respectively. As before, the stationary solution is: Pf = Pa= K = 0. Again it follows that P2 = Pf =
U § UT. Thus for this perfect model, the second moment equations yield an analysis error which
is complétely independent of the observations, of their location, of their observational error and
even of their number. As before, these results are not dependent on our choice of Courant number. |

2.3 Conclusions

The results presented above have focused on the error in the unresolved scales and its effect on the
forward interpolation error. More complete results, which include the effect of non-zero model
discretization error (i.e., [MF - FI(/\I] # 0), will be found in Mitchell and Daley (1992).
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