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Abstract

A simple experiment with a 1-dimensional spectral shallow-water model has been carried out to
 test the possible use of a digital filter for control of gravity wave noise in variational data
assimilation based on the adjoint model technique. The digital filter is applied as a weak
constraint by adding of an extra quadratic term to the cost function that is minimized through
the assimilation procedure. The applied technique with the digital filter as a weak constraint is
compared with other techniques for gravity noise control e.g. the non-linear normal mode
initialization applied at the start of the data assimilation period, minimization of the gravity mode
' tendencies in a quadratic norm and a time-stepping scheme based on non-linear normal mode
" initialization. The comparisons are carried by the aid of simple identical twin observing system
simulation experiments. The digital filter approach proves to have similar characteristics as
gravity noise control based on minimization of the gravity mode tendencies in a quadratic norm.

1. Intro_duction

For any full scale meteorological data assimilation problem, the degrees of freedom of the model
is at least one order of magnitude larger than the degrees of freedom of the available
observations. To circumvent this problem, it is necessary to add various constraints in order to
reduce the degrees of freedom of the model system. In the traditional forward intermittent data
assimilation, constraints are applied through some analysis procedure, e.g. statistical interpolation
(Gandin: 1963), that filters out small scale noise and forces the assimilation increments to fulfill
some simple diagnostic relation like the geostrophic wind and also through some initialization
procedure like the non-linear normal mode initialization (Machenhauer 1977). In 4-dimensional
data assimilation, when addition of the time dimension increases the degrees of freedom of the
observational data, the assimilation problem is still under-determined. Within the framework of
4-dimensional data assimilation based on variational principles (Le Demit and Talagrand 1986),
it is possible add constraints on the assimilation increments similar to that of statistical
interpolation (Lorenc 1986) and non-linear normal ‘mode initialization. ‘Constraints based on
normal mode initialization can either be added as strong constraints, by inclusion of the
initialization procedure into the data assimilation cycle, or as a weak constraint by minimization
of a cost function that includes gravity wave tendencies in a quadratic term.

One problem with the constraints based on non-linear mode initialization is that the normal
modes of the model linearized around a simplified basic state need to be determined. This could
be cumbersome and costly, in particular if we move towards more complete, €.g. non-hydrostatic,
forecast model equations. Recently Lynch and Huang (1992) successfully applied the idea of
using digital filters to initialize a full scale high resolution forecast model. Initialization by this
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technique consists of an integration of the forecast model from un-initialized data over a certain
time-period, e.g. 6 hours, followed by a filtering of the series of forecast model states by a time-
filter (grid-point by grid-point or spectral component by spectral component). The aim of the
present paper is to study the use of a digital filter in a weak constraint to control gravity wave
noise in variational data assimilation based on the adjoint model technique.

2. A digital filter

.“Consider a time-series-of "noisy" forecast values ...... f, f, f, f; f, ...... with the subscripts
-referring: to the time-step number of the model centered around some reference time 0. The basic
“idea of using digital filters for initialization is to (1) Calculate the Fourier transform in the time
- dimension, .(2) Set coefficients of high frequencies. to zero, (3) Calculate the inverse Fourier
‘transform to obtain filtered forecast values and, finally, (4) Use the filtered values as initial
~values for a new forecast starting at time 0. The filter could be applied grid-point by grid-point
‘or spectral component by spectral component. For any practical application, the three first steps
‘are combined into a filter that is applied in analogy with a simple weighted averaging for each
model component in the time-domain. The same non-recurswe ﬁlter as apphed by Lynch and
: Huang (1992) will be unhzed . : :
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For derivation of the filter coefficients a, we will consider the time h1story of the model vanables
as Founer coefficients in the followmg cxpansmn : : v v :
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~where 9 isa dlgltal frequency To filter in: the t1me-domam we mtroduce a cut-off functlon
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‘with Hy®) = 0 for ABS(ij > 0, and H®) = 1 for ABS((-)) < e where 6, is thc cut-off
~frequency The coefficients hm are glven by :
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Combining the two expansmns and. substltutmg m+n with 1, we will have
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The expression in square brackets obviously consists of our filtered forecast values. For any real
application we need to introduce a truncated series:

M
fl- Z hpfim
=M

For the cut-off function defined above, we will have the following filtering weights:

b= sin(mB )
mx

By using a truncated Fourier series, Gibbs-waves are introduced, and the effect of the filter will
be less sharp. To partly avoid the effect of the Gibbs-waves, the filtering weights will be
multiplied by the same window function as was used by Lynch and Huang (the Lanczos
window). The final expression for the filtering weights, excluding normalization factors, is

L sin(mmn/ (N+1) sin (9 )
B mm/ (N+1) 1 nx ]

In the application described below, we will use a cut-off frequency 6, = 6 hours.

3. A one-dimensional spectral shallow water model and its adjoint.

To test the idea of using digital filters as weak constraints in variational data assimilation
including the time dimension, a simple spectral 1-dimensional shallow water model on a beta-
plane will be utilized. The basic model equations, before elimination of the y-dependency, are:

du_,.. 9 _
di fv+ F 0

d
dv od _
?E+fu+‘a7 0

db g Bu, By,
dtﬂb‘( ax+ ay) 0

¢-gh
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f=f,+By

For elimination of the y-dependency, we introduce a mean zonal wind i , a mean zonal

geopotential gradient and a variation of deviations from this mean state in the x-direction

gl

only:

- u=u+u’ (x, t)

v=v/(x, t)

: ¢'¢o"’é_a?:y+¢/ (x, t)

Introducing a spectral representation with cyclic boundary conditions in the x-direction, the non-
linear model equations for the spectral coefficients, with non-linear terms computed by the
transform method, are given by:

Cgi uuk-Fk[F‘l(L’z‘) F‘l(ll’u)]+ft?k+1—p— —.1k &ﬁk
%——1k’uvk F, [F‘l(u) F'l(.ll"'r‘)] fuk+1-E-x?
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where F denotes Fourier transform , F! inverse Fourier transform and k’ scaled wave-number:

—Fk(a)--—za(x ) @1k
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a(x;)=F2(8) =Y, g™

k=-M
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with k’ - zLLk , L the length of area in the x-direction and with N=3*M+1 to permit aliasing-
free computation of the quadratic telms.’

Starting from these spectral equations it is a straight-forward algebraic task to introduce time-
stepping schemes, normal-mode initialization, tangent linear equations, the adjoint equations and
the adjoints of the time-stepping and initialization schemes. Space does not permit us to present
all these equations in detail. We will present some of these equations, that we need for the
derivation of the digital filter constraint, in symbolic form. Thus the tangent linear equations are
derived by linearization of the full non-linear spectral equations around a particular solution. Let

us denote this particular solution by the vector ¢, containing all spectral coefficients of the
wind components and geopotential at time t. The tangent linear equation for small perturbations 8 ,

around the solution ¢, can then symbolically be written:

where A, is a matrix, the elements of which are depending of the non-linear solution at time t.

For derivation of the adjoint of the tangent linear model, it is needed to define an appropriate
scalar product. Since the model is formulated in complex Fourier coefficients, the following
scalar product is utilized: ‘

<a,b>-%— (a*Th+a Tb*)

Here superscript T denotes vector transpbse and * denotes complex conjugate. Utilizing this
definition of the scalar product, the adjoint of the tangent linear model can be shown to be:

dde .

dt --A:"09

For comparison with gravity wave control by means of a digital filter as a weak constraint in
variational data assimilation, a non-linear normal mode initialization scheme is also available.
Time stepping is carried out by a leap-frog scheme and in addition also a time-stepping scheme
based on normal mode initialization each time-step is available (Daley 1980). The latter time-
stepping scheme allows for a longer time-step and also for an efficient gravity wave control.
These features of the model will not be described in further details here.

4. Digital filters and vaﬁational data assimilation
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There are several possible ways in which digital filters could be applied as weak constraints, as
well as. hard constraints, in variational data assimilation including the time dimension. For this
preliminary study, we will simple require the deviations between filtered and unfiltered forecast
states to be as small as possible. This is achieved by adding a quadratic term Jzto the cost
function that is being minimized. In addition to this "Digital Filter" term, the cost function
includes another quadratic J,ps term describing the dev1at10ns between the forecast state and the
observatrons : : :

J=J, OBS+JDF
where .

Ipr= aDFE <. E bW ¥, E bl

L= tl

Here oy is a scaling factor for the digital filter constraint, t, to t, the time-period over which the
digital filter constraint is applied and 2*N+1 the number of time-steps over which the digital
filter is computed (the time-span of the ﬁlter) Introduce gk—hk for k#0 and g,=h,-1 for k=0 and
we will have

L N

N
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Taking the first order variation of J with respect to small perturbations &y, we will have

L2 w

N
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toty k=N I=-N

This expression can be re-arranged to the following form

bJ"aJabs"'E <2aDF E gt_,_./[z gllpt/.pl] Ib‘p t>

t’-tmin(t) L5 I=-N

Here T denotes the final time-step of the data-assimilation period, tmin(t) = max(t,,t-N) and
tmax(t) = rrun(t2 t+N). From this we can denve the forcing b, at time t for the adjomt model

that is used to calculate the gradrent of the norm with respect to the initial condrtrons Yy, - This
consist of one part for the forcmg from observatlons, bt , and one part for the forcing from

the digital filter, b2
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tmax(t)

‘ N
bt"b +b -b "'zazm' 2 G-t/ E gi¥erg
: t'=tmin(t) 1=-N

For comparison with the 'Weak constraint based on a digital filter, data assimilation experiments
will also be carried out based on the following (wcak) quadratw constraint on the gravity mode
tendencies:

Y LT SRy S -JOBS+E <G(¥, wt_l) G, qrt_l)>
. t=1

where G denotes the matrix for transformation from the spectral model coefficients to the gravity
mode coefficients.

The cost function weighing factors Oy and Oy need to be determined. For this preliminary
study, coefficients were determined empirically to give a reasonable balance between the aim to
fit the observations and the aim to reduce the level of "gravity wave noise". Thus the following
values were used: (0pp)° = 10.0. and (0igw)* = 0.1. In addition, it was necessary to scale the
variables entering the digital filter constraint to give an equal contribution from mass and wmd
field mformanon, the gcopotcnﬂals were scaled by a factor 10“‘ :

5. Experimental comparison of different gravity wave control methods.

Identical twin observing system simulation experiments (OSSE) were carried out to test the idea
of using digital filters as a weak constraint for gravity wave control in variational data
assimilation. A low resolution version of the spectral shallow water model, with the following
characteristics, was used for the experiments: L, = length of the model area in the x-direction =

5000 km, M = maximum wave-number = 3, N= number of transform grid-points = 10, o =

mean zonal wind = 20 ms”, £, = Coriolis parameter = 10%, B = 10", At = time-step for
model integrations = 720 s, T = number of time-step for data-assimilation = 100.

The observing system simulation experiments were carried out through the following three steps:
1) Generation of a reference solution by a non-linear normal-mode initialization and a model
integration with the leap-frog time-stepping scheme starting from an exponentiaily shaped initial
height-field, with amplitude = 200 m, and winds in geostrophic balance.

2) Generation of simulated observations from the reference solution at random positions and with
random observational errors added. 3 wind vector observations and 3 height observations were
generated at each of the time-steps 0, 25, 50, 75 and 100. Two different observation sets were
produced; a "good" data set with standard-deviations of observational errors = 1.5 ms™ for the
wind components and = 15 m for the helght a poor“ data set with the error standa.rd-deviations
=5ms? and =30 m respectlvely

3) These simulated observations were assnmlated in data assimilation expenments ‘using different
methods for gravity wave control. Each data assimilation experiment was started from a
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simplified first guess model state (amplitude of exponential initial wave = 50 m).

A quasi-Newton optimization package (M1GC2) was used (as a black box by the author) to
minimize the cost-function during the data assimilation. We will start by presenting results from
the "good data" simulations. The decrease of the cost function as a function of the number of the
cost function evaluation is plotted in Fig. 1 for data assimilation without gravity wave control
(full curve), with non-linear normal mode initialization at the start of the data assimilation period
(dashed curve) and with a quadratic constraint on gravity mode tendencies (dotted curve).The
observation part of the cost function was normalized by the standard deviations of the
observational errors and by the total number of observations. This means that when the fit to the
observations is within the standard-deviations of the observational errors, the observation part of
the cost function should have a value below 1.0.

In the case of the leap-frog scheme, without any specific gravity mode control applied, the
convergence is quite slow. After about 40 iteration the cost function goes below 1.0 and levels
off at a value of about 0.65. This means an overfit by the data assimilation, adjusting the solution
also to observational errors. Since there is no gravity wave control applied, also gravity waves
are free to adjust the solution to the observations. This can be seen in Fig. 2 (a) which shows the
reference solution (full line) together with the assimilation solution without gravity wave control
(dotted line) at time-step 10. Due to the basic model assumptions, the deviations of the u-
component from the mean zonal wind is purely divergent. For the reference solution, this
divergent u-component perturbation is very small, as should be expected since the reference run
was initialized by a non-linear normal-mode initialization.

COST
100 H

=== ~—ITER
50 100

Figure 1: Cost function values as a function of the number of the cost function evaluation.
Without gravity wave control (full line), with NLNMI at the start of the data
assimilation period (dashed line) and with a weak gravity wave tendency
constraint (dotted line).
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TIME= 10/ 10 TiME= 10/ 10 : TIME= 10/ 10 TIME= 10/ 10

a) b) c) d)

Figure 2: Reference solution (full line in all figures) and data assimilation solutions (dotted
lines) using the "good" data set. All solutions given for time-step 10 as deviations
of the u-component and the geopotential from the mean state and the full v-
component. (a) Without gravity wave control, (b) NLNMI at the start of the data
assimilation period, (c) Weak gravity wave tendency constraint and (d) Weak
digital filter constraint.

When non-linear normal mode initialization (NLNMI) is applied (as a hard constraint) in the data
assimilation, the convergence of the optimization process is fast (dashed line in Fig. 1). After 15
cost function evaluations (11 iterations), the optimization routine stopped at a cost function
minimum of approximately 0.85. The level of divergence in the solution is as low as in the
reference solution (Figure 2 (b)) and, in general, the assimilation solution is much closer to the
reference solution as compared to the case when NLNMI is not applied (figure 2 (a)). The data
assimilation solution for the experiment when the normal mode time-stepping is applied (not
shown) is very similar to the solution when NLNMI is applied only at the start of the data
assimilation period. ' - o -

When the quadratic constraint on gravity mode tendencies is applied, again the convergence of
the optimization process is very slow. After about 85 function evaluations, the cost function
levels off at a value of approximately 1.35. It should be noted, however, that a larger final value
of the cost function is expected in this experiment, since the cost function also contains a term
for control of the gravity wave noise. The final value, at which the cost function levels off, of

335



course depends on the weight a2, given to the new term. As can be seen in Fig. 2 (c), the

final solution for the case the gravity wave (GW) constraint is applied, lies in between the no
constraint solution and the NLNMI solution.

It is more complicated to obtain convergence of the data assimilation process in the case when
the digital filter (DF) constraint is applied. In fact, when the digital filter constraint is applied
directly with "full" weight, the cost function levels off at an un-realistically large value with a
solution (not shown) that is quite far from the reference solution. However, by a stepwise
introduction of the digital filter constraint, a reasonable solution and convergence is obtained. In
a fist optimization cycle, the weight of the DF constraint is multiplied by a factor 0.001 and in
a second optimization cycle the DF constraint is given full weight. Of course, this is equivalent
to the use of an almost un-constrained solution as first guess for the digital filter solution. The
convergence curves for the 2 DF optimization cycles are shown in Fig. 3 ("almost unconstrained"
solution full line; final DF solution dashed line). The DF solution (Fig. 1 (d)) certainly has
managed to reduce the divergence to a level that is about the same as in the GW constraint

solution and the solution is much closer to the reference solution than the un-constrained solution
(Fig. 2(a)).

COST
100 4

ITER

Figure 3: Cost function values as a function of the number of the cost function evaluation.
First optimization cycle of the assimilation using the weak digital filter constraint

(full line), second optimization cycle of the assimilation using the weak digital
filter constraint (dashed line).

As a measure of the relative level of gravity wave noise in the reference run and in the 4
different data assimilation experiments, we present a table below containing the gravity mode u-

component tendencies (averaged over the first 10 time-steps of forecasts based on the final results
of the data assimilation).
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Experiment du,,, /dt (ms? per 3h)

Reference run : o310t
No GW constraint - 5
Hard NLNMI constraint 6%10°3
Weak GW tendency constraint 0.2

Weak DF constraint : 1.0

The results from experiments with assimilation of the "poor" data set are qualitatively very
similar to the results from the "good" data assimilation experiments. The main difference is a less
good fit to the reference solution, due to the larger simulated observational errors. We ‘will
therefore restrict ourselves to the presentation in Fig. 4 of ‘the final solutions at time-step 10 of
the different experiments.

TJIME= 10/ 10 TIME= 10/ 10 TIME= 10/ 10 . TIME= 10/ 1D

a) b) B R

Figure 4: Reference solution (full line in-all figures)and data assimilation solutions (dotted
lines) using the "poor" data set. All solutions given for time-step 10 as deviations
of the u-component and the geopotential from ‘the mean state and the full v-
component. (a) Without gravity wave control, (b) NLNMI at the start of the data
assimilation period, (c) Weak grav1ty wave tendency constramt and (d) Weak
digital filter constramt R '
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6. Summary and concluding remarks

A preliminary test of using a digital filter as a weak constraint in variational data assimilation
including the time dimension has been carried out. A simple low order one-dimensional spectral
shallow water model and its adjoint were used for the experiments. It is certainly too early to
conclude from these preliminary experiments, but at least it could be stated that the addition of -
the digital filter constraint reduces the level of gravity wave noise significantly as compared to
data assimilation without any gravity wave control. The convergence of the optimization process
turns out to be rather slow, similar to the case when a weak constraint on gravity mode
tendencies is used (for comparison reasons). Several aspects of the proposed technique for control
of gravity wave noise certainly have to be re-considered, e.g. tuning of the optimization
procedure, choice of digital filter, time-span of the filter, cut-off frequency and the time-period
for the application of the filter constraint. Also application of digital filters as hard constraints,
built into the data-assimilation cycle, need to be considered.

After this preliminary study, it seems appropriate to turn to test the idea in a more complicated
model system, e.g. in a 2-dimensional shallow water model using real atmospheric data. The
practical application of the weak digital filter constraint in a full scale atmospheric model should
be quite straight-forward - the main problem being the need of fast access to model states from
a large number of time-steps during the evaluation of the gradients of the cost function at each
time-step during the backward integration of the adjoint model.
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