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The Spectral Statistical Interpolation (SSI) analysis system
is the only 3D variational analysis currently used in
operational numerical weather prediction. The basic
structure of this system will be described in this paper.
Recent improvements in the analysis and more details of the
analysis system are described in the companion paper by
Parrish and Derber(1992b). The 3D analysis system can be
extended to 4D by the use of a prediction model and the

adjoint of the prediction model. A few simple experiments
have been performed with the full 4D variational system over
a 6 hour assimilation interval. Results will be presented

from the 3D system and the preliminary 4D system.

1. INTRODUCTION

The Spectral Statistical Interpolation (SSI, note that this
type of system is also referred to as 3D var) analysis system has
been in operational use at the National Meteorolcgical Center
(NMC) for over a year (since 25 June 1991). Over this period,
no major problems have developed with the system. Further
enhancements from the original analysis system have been
implemented and are planned for the future (see Parrish and
Derber, 1992b). In this paper, the basic structure of the
analysis system will be discussed and our first attempts to
extend the system to the time dimension (4D SSI or 4D var) will
be presented. The development of this system parallels the
development of a similar system at ECMWF (Rabier and Courtier,
1992 and Thepaut and Courtier, 1991). ' |

The analysis system used at NMC prior to the SSI system was
an optimal interpolation (0I) based system (Bergman 1979, Dey and
Morone 1985, DiMego 1988 and Kanamitsu 1989). With this systen,
it was necessary to follow the analysis procedure with a
transformation of the analysis variables into the model variables
before applying an initialization procedure (Ballish et al.,
1992). The SSI analysis system is attempting to solve the same
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basic equations as the 0I analysis procedure. However, the SSI
equations are solved in an entirely different manner than in the
OI system. Because of this, it is possible to solve the
equations with fewer approximations, better constraints and in
a form more compatible with the prediction model. Thus, the SSI
system produces analyses directly in the model coordinates, uses
a linear balance equation (with an empirical friction effect) and
uses all of the data at a single time to produce a global
analysis. This results in an analysis which is sufficiently
balanced to eliminate the need for the application of the
initialization procedure.

With the successful creation of the S8SI analysis system and
the creation of a tangent linear model and associated adjoint
model, it is possible to extend the SSI system to 4D. A few
experiments have been performed with such a system over a 6 hour
assimilation period. Data is only available at the end of the
assimilation period, while the guess is at the initial time. All
other aspects (except a few minor differences) are kept the same
as the 3D SSI system. While this experiment does not incorporate
all of the advantages of a full 4D system, the experiment is
useful in evaluating the correctness of the system (since the 3D
and 4D analyses should be similar at the end of the assimilation
period) and determining some of the difficulties of directly
incorporating observations into a 4D system.

2. The SSI analysis svsten

The SSI analysis system is described in papers by Parrish and
Derber (1992a) and Derber et al. (1991). A brief review of the
system will be given in the following section. The SSI analysis
system minimizes the objective function given by,

T =1/2 [ x*BTx+ (Lx-yY)'*(F+0) T(Lx-1yv)] (1)
where ‘

X = N-component vector of analysis increments;

NxN forecast error covariance matrix;

B
0 MxM observational error covariance matrix;
F

MxM representativeness error covariance matrix;
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L = Linear transformation operator that converts the analysis

variables to the same type and location;

Y M component vector of observational residuals i.e., y =
Yobs ~ L Xguess;

N = number of degrees of freedom in the analysis; and

M = number of observations.
The linearity in L is not essential but does impact the choice
of minimization algorithms. The equation for the minimum of J
can be found by differentiating with respect to x and setting the
result to zero. Multiplying this equation by B and rearranging
terms results in

[I+BL(F+0)7L]x=BLE (F+0)'y (2)

If B can be written in the form B = C C' then by defining a new
variable w = C' x, the equation can be rewritten in a form that
ensures symmetry in the matrix to be inverted and nicely
preconditions the problem.

Aw=+¢f (3)
where

A=I+cCctit (F+0)'LC (4)
and

f=ctL' (F+0)'y (5)

This is the primary analysis equation for the SSI analysis
system.

Note that in (1), it is not necessary that the analysis
variables be the same as the observation variables. This is one
of the advantages of this form of the problem over conventional
implementations of the OI analysis system. The observations can
be used in a more primitive form and are not contaminated by ill-
posed inversion techniques. This is the subject of several other
papers in this workshop. Another advantage of differing analysis
and observational variables is that the analysis variables can
be chosen based on other criteria. We have chosen to define the
variables such that the balanced part of the mass field is
included in the wind variables. Thus the L operator implies the
balanced part of the mass field from the vorticity and divergence

through a linear balance equation with empirical friction (see
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Parrish and Derber, 1992a and 1992b for details). This
eliminates some of the large off diagonal components in the B
matrix and concentrates most of the analysis signal in a reduced
set of variables.

In the vertical, the variables are decomposed in terms of
Empirical Orthogonal Functions (EOFs) calculated from estimates
of the vertical forecast error covariance matrices. All vertical
modes are used for all variables. This differs from what is
stated in Parrish and Derber (1992a) and results from the
reformulation of the balance equation (Parrish and Derber,
1992b) .

The L operator transforms the analysis variables to the same
form as the observations. This involves reconstructing the
variables in the vertical; calculating a balanced part of the
mass field; converting to temperature, surface pressure, u and
v components of the wind, and specific humidity; transforming
from spectral to grid point values and finally interpolating to
the observation locations. In the current operational system,
the last step is not performed because "superobservations" are
created after the initial calculation of residuals (except for
satellite temperature profiles). For satellite temperature
profiles, the initial residuals are only interpolated in the
vertical to the sigma levels to allow the application of the
vertical error covariance matrix. Experiments in increasing the
order of interpolation and the elimination of the
"superobservations" are given in Parrish and Derber (1992b).

The solution to (3) is found using a linear conjugate gradient
algorithm. Currently, 100 iterations are performed. This is
probably more iterations than necessary.

The y vector in (3) contains the initial differences between
the guess and observations. It is important to represent this
difference as accurately as possible so that there will not be
an incorrect indication that the guess is wrong. In order to
improve the representation of this difference without increasing
the computational cost too much, several improvements have been
added to the system which are only in the initial residual
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calculation, not the iterative part of the code.

First, the ten meter winds predicted by the model are used in
the calculation of the residuals. The lowest sigma level of the
model is above 10m and thus in order to calculate near surface
winds it was necessary to extrapolate. 1In the initial version
of the analysis, the winds were held constant below the bottom
sigma level. By using the predicted 10m winds, the initial near
surface residuals were reduced, producing somewhat improved near
surface analyses.

The second major change in the initial calculation of the
residuals was to include a time interpolation to the observation
time. At this time, only the analysis from six hours before the
analysis time and the guess at the analysis time are available. .
Thus, the time interpolation is only performed when the
observation time is between -6 and 0 hours. In the future, it is
hoped that the forecast will be saved more frequently in time and
the forecast extended to 9 hours to allow accurate interpolation
to the observation time. After the initial computation of the
residuals all observations are assumed at the analysis time. The
difference in observation times can be properly accounted for in
the iterative part of the procedure only in a 4D system.

Results from the SSI analysis system are presented in Derber
et al. (1991) and Parrish and Derber (1992a,1992b). In the next
section of the paper, the strategy for extending this system to
4D will be discussed and in the following section a few

preliminary results will be presented.

3. Extension of SSI to 4D
The extension of the SSI analysis to 4D will allow the use of

data over a longer time interval and will account for the time
distribution of the observations more correctly. The 4D version
of SSI is being developed under the assumption that it will not
be possible to perform the assimilation with the operational
prediction model with full physics. The reasons for this
assumption will be given later.

To extend the SSI system to 4D, it is only necessary to
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incorporate the forecast model (and a simple time interpolation)
into the definition of the L operator in (1). Thus the model
will be integrated through the period in which the observation
occurred and then a time interpolation will be performed to the
actual observation time from the nearest saved solutions from the
model forecast. In the ideal case, the solution would be saved
every time step of the model and the time interpolation would
only involve a very short interpolation between time steps.
However, because of the very large storage requirements of saving
the solution every time step, we are anticipating that the
solution will not be saved every time step. Since the L operator
will contain the forward model and the time interpolation
operator, the L' operator will contain the adjoint of the time
interpolation operator and the adjoint of the forward model. The
development of the adjoint of the forecast model and some simple
tests of the models on analyses are discussed in Navon et al.
(1992).

For the 4D problem, the x vector in (1) is the control vector.
In conventional 4D assimilation this is the initial state.
However, the x vector could also be model parameters or a bias
correction to the model equations (Derber, 1989; Wergen, 1992;
Zupanski, 1992), or any combination of these variables as long
as the problem stays well-posed. For the rest of this paper, we
will only consider the case of the control vector being the
initial conditions. However, we anticipate that the final system
will probably include both the initial state and a bias
correction vector.

If the minimum to (1) were to be found for the complete
nonlinear forecast model, then the L operator would no longer be
linear. This does not present any theoretical problem (except,
perhaps, the discontinuities in the parameterizations), but does
present some practical problems. First, it would be necessary
to have the exact adjoint of the complete nonlinear model,
including all parameterizations. While this is possible,
considerable effort must be expended. Secondly, for very

nonlinear parameterization there is an additional problem of the
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adjoint needing intermediate solutions from the nonlinear
solution in reverse order. Thus, it is either necessary to store
these intermediate solutions or recalculate themn. This can
greatly increase the memory or computational expense. Third, the
minimization algorithm is more complicated for a nonlinear
forecast model. For a linear forecast model, each iteration only
requires a single forward integration of the forecast model'and
a backwards integration of the adjoint model. For a nonlinear
forecast model it is necessary to estimate a stepsize. This
stepsize estimation can require additional integrations of the
forecast model and introduces an uncertainty in the minimization
procedure because it is not possible to exactly calculate the
stepsize. Finally, the operational forecast models tend to
require the limits of the available computational resources and
- have discontinuous parameterizations. Under these conditions,
the operational use of the complete operational prediction model
in a 4D variational assimilation is not practical. O0f course,
better results should be expected when one uses a system which
is closer to the operational model and all effort should be made
to make themas close to the operational model as feasible.

Thus, the tentative configuration for the assimilation system
was based on the assumption that the complete forecast model with
physics would not be used. The proposed algorithm has two levels
bf iteration. In the internal iteration, a linear version of the
model is used with it's exact adjoint to solve (3) using linear
conjugate gradients. Only minor approximations have been made
in the solution of (3) in the linear model. In fact, fewer
assumptions have been made than for the 3D SSI with the
elimination of the "superobing". The minor approximations which
are still made in the internal iteration include interpolation
of the satellite profiles to the sigma surfaces and the winds
below the lowest sigma level are assumed to be at the bottom
sigma level. 1In the future, these minor approximations can be
removed. ‘ |

The external iteration defines the right hand side of (3).

This is done periodically and the internal iteration restarted

21



in order to partially account for the nonlinearities and the
missing physics. The external iteration consists of adjusting
the initial state for the nonlinear model based on the adjustment
found in the internal iteration, an integration of the model over
the assimilation period, recalculating the model - observation
differences and recalculating the right hand side. Note that no
assumptions are made and the right hand side of (1) is calculated
exactly as in the 3D SSI.

4. Preliminary results from the 4D SSI

A simple experiment was designed to determine the feasibility
of the system described in the previous section and to determine
the correctness of the system. For 0000UTC 28 QOctober 1992, all
of the data and fields used in the 3D SSI analysis were saved
from a T62, 18 level version of the NMC operational model being
run in parallel. Included in the fields was the 6 hour forecast
from 1800UTC 29 October, the analysis from 1800UTC 28 October and
the analysis at 0000UTC 28 October. From these data, a series
of experiments were run. In all of these experiments, the same
statistics, data, balance equation, analysis variables, etc. were
used as in the 3D SSI analysis. Two of these experiments will
be described below. All experiments are performed at the full
resolution of T62 with 18 vertical levels.

The first experiment, which will be referred to as LINEAR 4D,
performed the 4D assimilation using only the internal iteration
procedure after the initial residuals were calculated from the
6 hour nonlinear forecast. 30 iterations were performed. The
corrections to the initial conditions were then inserted into the
initial conditions for the full nonlinear model with physics and
run over the 6 hour forecast period. Note that in this
experiment, the linear model and adjoint model used a mean state
which was constant in time and equal to the average of the
analysis at 1800UTC and the six hour nonlinear forecast from this
field. After the initial time interpolation to the observation
times from the initial full nonlinear forecast, the observations
were assumed to all be at 0000UTC. Thus in this case, the right
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hand side was exactly equal to the right hand side of the 3D SSI
analysis and the same assumption that the observation times were
at 0000UTC was used for both the 3D SSI analysis and the LINEAR
4D in the iterative procedure. Thus, the major difference
between the 3D SSI analysis and the LINEAR 4D experiment was that
the correction to the guess was made at 1800UTC for the LINEAR
4D and six hours later for the 3D SSI. The only other difference
between the LINEAR 4D and 3D SSI experiments is in the
"superobservation " assumption in the 3D SSI. If the 4D
assimilation is working properly, the resultant fields should be
similar between the 3D SSI and the LINEAR 4D solution at 0000UTC.

In fig. 1, the results from the 3D SSI analysis are shown
while the results from the LINEAR 4D are shown in fig. 2. 1In
both figures, the differences from the sa;ne initial 6 hour
forecast wvalid .at 0000UTC are shown. While significant
differences between these fields exist the large scale
differences are similar. Note, that with the 4D LINEAR solution
the maximum differences are larger in magnitude and smaller in
scale than the 3D SSI solution. Some of this difference is due
to the "superobing" in the 3D SSI. Fig. 3 shows the 3D SSI
solution with the removal of the "superobing" and the use of 7t
order polynomial interpolation discussed in Parrish and Derber
(1992b). Note that the magnitude of these differences are larger
than those in fig. 1, as was seen in the LINEAR 4D solution.

In fig. 4, the same fields are shown for another experiment.
In this experiment, referred to in NONLINEAR 4D, after every 10
internal iterations, an external iteration is performed, i.e.,
the full nonlinear model with physics is rerun, the right hand
side recalculated and the internal iteration restarted. In this
case, 3 external iterations are performed to give about the same
total number of iterations as for the LINEAR 4D. Note that two
other differences from the LINEAR 4D were included. First, the
nonlinear solution around which the linear and adjoint model are
linearized varies with each time step. However, the time varying
solution is not determined from the full nonlinear model but

rather is a simple linear interpolation between the initial and

23



80N

/
0

70N

L

60N

L)
|7

AT
/ .< /} f( \:&
S
T

oA (1]

50N

LA

[
L

/r

S
e
s
(

ISk

30N

NN

=D

20N

]
]
via

10N

EQ
160E170E180E170W160W150W140W130W120W110W100

LAY
BONT T T... R N O O =St
[ A I IS SR SR SRR L SENENE RN ~%}J~§V
- - N NN NN oo L ] t 1 |i.l é

Sl Sete LT §
A AR Y

7 ON | B P N I
R by [N IR ////w__\\ m{‘\r
PR -/\,S 13 T EIS N U N ’,{ . ;5,%‘,, <A
A bNSNS<—=F7 s - AR AP A N -7t
6ON4¢ - ..ffbl . R
e L A = S =
{- 3 v . ¢ S A [ d N —'Q- S~ 11 . ﬂ;,.
’(:' -t s/ {’//-\\\\\\ - l‘%"‘ {¢ AN
LR S I /—\\\\\ 1 { o

DTN E \ x. Vo -
50N hha SN ;
RS NN NP2 NI I & RS AN SRS SRR
P TN T A I DI ERSR SV SRR SRV B BENE EE R SRR |
[} s} [ BN - —— S T o f ol - N e I
(b) 40N —t — ;
. P I and VN m k-, LI /-—f.-\/ —»-s-\\-tz A
E I PRV PRI .. ) PR //-L\-.-\-. «
~ s PR PR RN [ 4 . AR p [ S
. S A D A4 N
30N R !
. N . e N L S VAN CEE S el BT ...-.\g\\\\‘_\‘
~

v
—-—1 7 4 e NN~ s s sl e . e « 4 -~ ) LI
o Vi v e SRtk SR B - P o m N -
20N 7

F T TR T TR T -un‘-.... PN PEEEEIE SEUEN .\
\ -7 A NS be e - PR “« - = a . L 1t . . e oa
R L LV O . - P

10N

FQl=="1 ETE P N EEEE RREE R R P
160E170E180E170W160W150W140W130W120W110W100

— 7.4 M/S MEAN=  —-0.043
Fig. 1: Difference between the 3D SSI analysis at 0000UTC 28
October 1992 and 6 hour forecast from analysis at 1800UTC 27
October 1992. Results are shown for temperatures (a) and for
winds (b) from sigma level 12 (about 325mb).

24



- 80N

o

7 =5 S
@@%Eé

70N

\i
)\
A
\m)
W/

60N

Sl
NG

= il
)

/
!

4
=
QD
Rl
’hn

;>v N B \ Y /
/\\ ‘v ) \/'
\\7 -\‘\_/\/\

EQ
7 160E17OE1BOEi?OWlBOWi50W14OW130W120W110W1OO
BON[TTTT 1., =

D

—
|

(a) 40v

V. RiZ4

N
NSNS
[ <"@V‘\/

S

W

DA

N
VN
rc:

N
/

{
N

K PRRPRPR RPN \\\\\\\\\\\\ o] = B
2 ; g
N SESE U T RV RV R --/——-———\\N~\\\~-.®'b@%_

: 7ON P --“a\\'\ “‘,.;;.;"I,'{/,///"LE@ =
. <P I S S TS
o N S b RN RIS W,/\%b\ (S~

I DO % IR 1T =e -l
~ /7 1l

1
/S \l‘ T
S NP S s-~f\\\ ot Ve \"}:_,/r-v-/]]
BONEL ‘ ek Loty
- Jéi R SRR .« /,r//,—%~.~ . \-:.\ S BE 8T
s e ) R ER” = 555 ST SN X4 - [SEN
WY Fomdoe fPla=tn v : 7/ - -5

. ) '

50N .
e . -, - . - s etk ow v\ 1 - 1\\ L P
. o ~ Y ~ . l\\ S DU T
e ' ~ NG ’ [AEURTE IR B W BRI

(b) 40N o ;

NN - - e s NN -\\,’f,' —--—\ ~— -
/ -\ — -

PRPEEIR SFS
PR S O T SN P S 4
R A IR BRI ~\\ ..... e/ v

SN Y AR \[\--/// e -
-/“.‘ - 1

PR . s
. - ’ - - P o LI Y [ . -\ 3~
A . 1~ ¢ v -~..-;.--- - a s PR ENY . oA - 8L aNe o
20NA—— t <
WER! \ oo PR - - « s « 2 v e « .n NN P
<\f \\--..‘-;;- « ¢ e o™ e ~ o 7 11« « ..
i
\ .

I R N I S A 2 SRR §

10N

- — S P - ~ -

. - f ~ o -.~.‘...- - -

' 160E17OE180E17OW160W150W140W130W120W11OW1OO
— 11.2 M/S MEAN= 0.097

Fig. 2: Same as Fig. 1 except LINEAR 4D analysis.

25



80N

]

70N

60N

50N

ST
SN
)/ ]

C

(a) 40N

30N

T
T

EQ N
160E170E180E470W160W150W140W130W120W110W100

BON[

20N

A5 R
RIAT) &I

10N

e AN AT

~

B DY

A2 Ay A I S Y AN} AN IR ) L) v A
R D PR \\\*}\\é;ﬁé‘:~§-

R RN SN SRS b~%«

~~_~-‘.\\\~.\\\!‘Al- PP « v Ty ‘%_N{E’
7ON 413 = \!\\‘ SE— \f’_; ot \_\__/l'_i;
; )

. .,,-‘—~®\\\~_\\\ I ////———\J\\a %.~T\\\-
;//)S T RS ARV SANR I IR O B I (VR TENN
L A ANNNT = T s ~N\\NF 27y IR SN r -7 1

] 7]

60NK-- A e\ =1

PR

LI ll/«r//ﬁ“‘ o =
R AR PR = s B NSNS 04
r——--r_//f’l e e AN
]

> ¥

\

~-N
i
/

~ —
———
-——
s o~ N

~

A}

~

() o

. o
. . )
" 1 i 1
4 ¥ - t
[N S L\s-:--aa L] f—-——-\/ i SO [ N
P S PEETEE S S I 4..-//..s..---. P
PR TR « . PRI AN \~/4//. f-.\..--...
N s
v +
L

[
30N NS - e
-~ vl eendvy s by e I ~~~\§\.-~\\
ey A B} I RN A d ! NANGY e
/'/\\\\l \ -~ ~ ~ e ~ ..:\:%...
ZON // 3 ‘\ ‘\{ T S
/‘\ IV s~ e m [ERY [ IR .x
‘\\/ 1\\ \—-4;/‘ - -~ - ~ ’ 1 . .
. I R Il - ~ - v
10N ; .
‘s “'i;"‘ N -

EQI™""] TS EEEE EERE EERE RPN PR R SRR R
160E170E180E170W160W150W140W130W120W110W100
— 7.6 M/S MEAN=  -0.009

Fig. 3: Same as Fig. 1 except 3D SSI without "superobing" and 7th
order polynomial interpolation. ‘

26



80N I = ?.
T ™
| g

TONG<Ss
<

5
N7

()
YA\
!

)
A
J
Ja

60N

50N

(a) 4on

N1 %
Vi
=
NILA
ICUS
NYEATA
-
=
MR

=
~
Y
S/,
S
:j;<:.<:iwa7
AL

A\

A

30N

e

20N

/ N
NG
S
P
iR
NN M
AL A

]
7]

N

AN

IS v

- 10N

=
~
¢

(b) 40N|-

P s - - v o- NN\ e - e e NN\ -\

N

N4 s s
- N

- - - . .
- N e - 2
.

A ~ N

‘e = [SEPTREE N PRP IR DR AR N

YN

N e~ a e LI Y LR A

EQ N e
160E170E180E170W160W150W140W130W120W110W100
BN T T T _~~\g;\\;;g;¢;§222§§§\‘\“v
PR .« .. v 17 . B e s S
« s - LY AR LSRN - - - PRV RPN P AV L] ~ é
TON B i ST
RN AN R RES e
--.}S ,;"' ,_\\{{, ]]/ 2. ~TT\
P ’ ’, = NSNS R~ 7 7 =~ \ -7 I e ~N N - !
A{\ v P e \}-" R A el IR I £ i
. v ’I’%-\\w-\\- \-?‘\!//— AP CRLNRY
1 FPomdorer s [PV SN—rt AN AN | AR N EEE RN
50N e L' +
i ' - \ l[-\l , IR SRV IV AN BEUR
. =~ v o TR G SR N SENUPR D S Y S 4 l N R ) »ove
(NN N N S I3 V2N IRY l PRI GERE (S S,
/

!

-
/’

_f//.,|¢/ P RN W
L 1 1 "

s t: 1 - - .
-1 A g . - - - . ] PP « . n RN SN W LN
\'f\\‘ [P S PR B SRSRY PR .~ et \\. ~ .
AN=f Vvt~ ] FEERESE IR PR P B . PN

~
301\2 — IR \\\\\\ T i ; -
\N
SFENGES IR AV I SN R Pl B kS ‘\u"'
P e S . | ¢ mFrm———ap s e s e Ny e - - -?\. ..
‘ [ . = = . 'l\l - A vy -
N

F2RY TN .02 LA ] AT

- s e e e . e v v hn v
E P Y A . - - : h - .
o

Q R R R ST P c
160E170E180k170W160W150W140W130W120W110W100
— 108 M/S MEAN= 0.096

Fig. 4: Same as Fig. 1 except NONLINEAR 4D'ana1ysié.

27



final time of the latest 6 hour forecast. Other experiments
appear to indicate that the average nonlinear solution used in
the LINEAR 4D experiment may give better results. This result
may arise because some small scale noise in the solution may be
overemphasized in the interpolated solution while being smoothed
in the averaging case. It is hoped that when the solution is
saved more frequently in time, this problem will be reduced.

The second difference between the LINEAR 4D and NONLINEAR 4D
experiments is in the handling of the time interpolation to the
observation time. = In +the NONLINEAR 4D case, the time
interpolation is accounted for correctly with observations before
0000UTC contributing to the gradient at 1800UTC. This did not
appear to have a strong effect on the solution because all of the
data was within 3 hours of 0000UTC and most of the data was close
to 0000UTC. Thus, the contribution at the initial time was
small. The proper inclusion of this term will become more
important when the nonlinear solution is saved more frequently
in time or longer time intervals are used.

In comparing figs. 2 and 4, several important differences can
be seen. The magnitude of some of the differences can be seen
to be reduced for the nonlinear case and the patterns are
different in some locations. However, the basic large scale
patterns remain similar.

One measure of the quality of the analysis is the final fit
to the data. In table 1, the reduction of the weighted squared
error (the contribution to the objective function by each
variable) by each of the three analyses is given. Note that the
best fit is still given by the 3D SSI. In general, the next best
fit to the data is given by the NONLINEAR 4D. Some of this can
be explained by the fewer iterations performed in the 4D
experiments. With one more external iteration, the NONLINEAR
4D's fit to the wind improves upon that for the 3D SSI. However
for the conventional temperatures, it does not appear that the
4D assimilation results will improve on the 3D SSI with further
iterations. This may be a result of problems we are having in

the height to temperature and surface Pressure transformations.

28



Table 1: Percentage of original contribution to objective
function for each variable type after production of analysis.
Results are shown for 3D SSI, LINEAR 4D and NONLINEAR 4D
analysis.

3D SSsI LINEAR 4D NONLINEAR 4D
Surface 48.7 55.9 52.0
Pressure
Conventional 47.8 59.0 57.4
Temperature
Satellite 99.1 101.7 102.3
Temperature
U - Component 47.9 53.1 48.8
-Wind
V - Component 48.0 52.7 48.4
Wind
Specific 63.4 82.7 69.0
Humidity
Total Objective 49.0 54.6 51.1
Function
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Note the substantial improvement in the specific humidity fit to
the data from the LINEAR 4D to the NONLINEAR 4D experiments.
This is probably do to the inclusion of the precipitation
mechanisms in the assimilation by including the external
iterations. '

Finally, 5 day forecasts were made from the 3D SSI solution,
the NONLINEAR 4D and the LINEAR 4D solutions. The forecast error
(when compared to a T62 18 level parallel assimilation) for the
3D SSI solution and the NONLINEAR 4D solution are shown in figs.
5 and 6, respectively. Note that the patterns are quite similar.
This is to be expected because of in the design of the experiment
no additional data was added to the analysis and the handling of
the time distribution of the data was only slightly improved.
However, the magnitude of the maximum wind error is substahtially
reduced over this region and the magnitude of the temperature
errors is slightly reduced. This good result is supported for
the northern hemisphere in the comparison of the RMS height
errors and the anomaly correlations for the experiments in table
2. However, in the southern hemisphere, the errors are slightly
worse in the NONLINEAR 4D experiment. We suspect that this may
result from difficulties in the specification of the satellite
error covariances. Note that in table 2, the fit to the
satellite data actually was slightly worse in the 4D assimilation
than in the guess and only marginally better in the 3D SSI. This
problem will be examined further.

5. Conclusions and future research

The 3D SSI analysis has proven to be a very useful and
reliable analysis system at NMC. Additional improvements to the
3D SSI analysis system have been made over the last year and are
continuing to be made. One of the most fruitful set of
improvements to the system will be in the incorporation of new
data types. Substantial effort is expected to be directed
towards this problem in the future at NMC.

With the creation of the 3D SSI and the linear and it's

adjoint, a prototype 4D assimilation system has been developed.
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Fig. 5: Same as Fig. 1 except difference between 120 hour
forecast from 3D SSI analysis and verifying analysis. Analysis
is from conventional 4D assimilation using 3D SSI analysis
system. ;
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Table 2: 5 day anomaly correlations and RMS errors for 3D SSI,
LINEAR 5D, and NONLINEAR 4D. Results are for 500mb height
fields. Anomaly correlations are in percent and RMS errors are
in meters.

Anomaly Correlation

DAY 0 1 2 3 4 5
3D SsI 100 97.8 | 93.3| 88.9| 85.1| 72.2
LINEAR 4D 99.8 | 97.8 | 93.6| 88.9| 85.0| 72.3
NONLINEAR 4D 99.8 | 97.7 | 93.9| 90.0| 86.0| 72.8

RMS error

DAY o 1 2 3 4 5
3D 5sT 0.0 17.1 30.5 40.6 51.2 69.7
LINEAR 4D 5.7 17.3 29.8 40.1 49.6 69.5
NONLINEAR 4D 6.0 17.5 29.1 38.0 47.3 67.7
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The preliminary experiments shown in this paper, show that the
system appears to be performing properly. In the near future,
further assimilation experiments will be performed. The system
will be applied to longer assimilation periods, compared to the
nonlinear solution more frequently in time and the optimal number
of iterations examined. Also, the use of different control
variables will be explored and the system will be applied to many
different cases. The computational expense, the presence of
model errors and the unavailability of future data may make this
system less than optimal for the operational prediétion problemn.
However, for the climate analysis problem, the 4D variational
assimilation may be ideal since the analysis time will be the
middle of the assimilation period, thus allowing the use of
future data and the reduction of the effects of the model error
(Derber, 1987). During the next few years the feasibility and
practicality of the variational assimilation system should be
determined. However, the initial results from this system are
very encouraging.
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