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Abstract

A set of 32 winter forecasts has been produced with a frozen version of the French
spectral model. Each forecast consists of 5 lagged integrations. The impact of the ensem-
ble technique, the systematic error correction, and the choice of the reference climatology
are discussed. The 500 hPa anomaly correlation over the northern hemisphere is signifi-
cantly positive, but weak on the average. Possible predictors of this skill variability are
investigated. The skill is also measured when the forecasts are given in probability form.

1. INTRODUCTION

Most recent numerical weather prediction models have been integrated beyond the limit of
useful forecasts and have shown that some skill exists beyond the medium range (Tracton et
al 1989, Murphy 1990, Sirutis and Miyakoda 1990, Palmer et al.). However this average skill
results of a mixing of particularly good and very bad forecasts. In order to produce statistically

significant results, one needs large samples of independent forecasts. In Déqué (1988a,1988b),
a set of § forecasts was used to measure the impact of resolution increase (T21 to T42), and
the skill of probability forecasts. A larger set of 21 forecasts has been used in Déqué (1991)
to measure the impact of the correction of the systematic error : poor estimates of the model
bias have a negative impact on the scores of the corrected forecasts, and a sufficient number
of homogeneous and independent forecasts is required to apply such a correction. In this
presentation, we have extended the previous set to 32 forecasts, in order to better capture the

mean skill (section 3), and to study the skill variability (section 4).

2. DESCRIPTION OF THE EXPERIMENT

The predictability experiment consists of a series of 160 extended range 46-, 45-, or 44-day
integrations with a global T42 climate version of the model of the French weather service
“Emeraude” (Coiffier et al., 1987). This spectral model uses a comprehensive set of physical
parameterizations including radiative and hydrological cycles, interactive cloudiness, boundary
layer physics, convection (Bougeault, 1985), and gravity wave drag. The vertical discretization
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1983/11/16

1983/12/15

1984/01/16

1983/10/16

1984/10/16 | 1984/11/16 | 1984/12/15 | 1985/01/16
1985/10/16 | 1985/11/16 | 1985/12/15 | 1986,/01/19
1986/10/19 | 1986/11/16 | 1986/12/14 | 1987/01/18
1987/10/18 | 1987/11/15 | 1987/12/13 | 1988/01/17
1988/10/16 | 1988/11/20 | 1988/12/18 | 1989/01/22
1989/10/16 | 1989/11/16 | 1989/12/16 | 1990/01/16
1990/10/16 | 1990/11/16 | 1990/12/16 | 1991/01/16

Table 1: Starting dates of the latest integrzitioﬁ of each ensemble for the 32 forecasts.

is based on finite di‘ffeyre-n’ces in hybrid céofdinate (Stmmons and Bu7'7;z'dge, 1981):wilth 20 levels

up to 1 hPa;; and the time discretization on a vsemi-implicit scheme (20 min. time step).

The annual climatology of this model has been described by Planton et al. (1991). The

daily sea surface temperatures (SST) are prescribed by a linear interpolation between two

climatological monthly means (Alezander and Mobley, 1976) to which is added a constant SST

anomaly, calculated by averaging the daily SST ECMWF analyses for the 10 days preceding'
the beginning of the integration. A hindcast experiment (Déqué, 1990) has shown that the

extratroplcal skill of this model is not 51gmﬁcantly increased by the use of daily observed SST

as a boundary condition.

Each forecast is an ensemble of 5 integrations of the model obtained by the lagged average

technique (Hbﬁ”man and Kalnay, 1983). The initial conditions are the ECMWF initialized

analyses of day —2 700 Z,day —2 127, day —1 00 Z, day —1 12 Z, and day 0 00 Z. The dates for

day 0 are giveﬁ in Table 1. They correspond to the middle of October, November, December

or January. An ensemble mean forecast consists of the average of the 5 results of the lagged
integrations. The 5 integrations are run until day 44. The period day 15/day 44 corresponds
approximately to a calendar month, and an ensemble forecast will be referred to by the name
of this month : e.g. the integrations starting between 14 and 16 October 1983 will constitute
the November 1983 ensemble forecast. The fields are expanded on a global 64 x 32 longitude

latitude Gaussian grid after a reduction of the spectral truncation to T21.

3.  MEAN SKILL |
3.1 Verification score

The model forecasts are compared with the corresponding ECMWF initialized analyses ex-

panded on the same grid (in T21 truncation as for the forecasts). The forecast skill is measured
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with. the spatial anomaly correlation coefficient (ACC) over the noythefn hemisphere (in fact
north of 20°N). The anomaly is obtajne(i by subtracting a climatology for the current month
based on 11 years (1980 to 1991, oﬁﬁtting the year of the forecast) of ECMWF analyses from
the observed or predic?:ed value. ‘If F, A, and C are the forecast, the corresponding analysis,

and the corresponding climatology, the mean ACC is calculated by :

< (F-CYA=C)>
J<F-CP><A-C2>

where the overbar indicates the average for the different cases, and the brackets the average

ACC = (1)

over the area. F and A can be instantaneous fields or time averages. Note that with this
definition, the mean ACC is hot the arithmetic mean of the 32 ACCs (but in our results it is
slightly la;rger)‘. In this paper we shall use only this criterion to evaluate the skill and we shall
restrict to the 500 hPa height field. ‘

A positive mean ACC indicates that the forecasts are not independent of the verifying analyses,
and thus exhibit some skill. However this skill may be just a potential skill, and, generally, the
forecasts need a linear correction to give better results than the climatology forecast (F = C)
in mean square sense.

Moreover, as pointed out by Murphy (1990), the use of a climatology based on a small sainple
introduces a positive bias in the estimate of the ACC. The impact of this bias on our forecasts
has been presented in Déqué and Royer (1991). Table 2 recalls the main results. The clima-
tology C has been calculated with n years (1 < n < 11). These n years are chosen at random
among the11 years avalaible for each case (out of the 32), and 100 mean ACCs are calculated
froin such simulations. The average provides an estimate of the expected mean ACC. One can
see on Table 2 that if we use only 5 years to calculate the climatology, the mean ACC is larger
than with 10 years by .06 for monthly means. In section 3.5, we shall try to estimate the limit

when n tends to infinity, and thus the bias due to the 11-sized sa,mple

n 1 ]2 3 4 5 6 7 8 9 {10 | 11
day 1-15 | .75 | .69 | .66 | .65 | .64 | .64 | .63 | .63 | .62 | .62 | .62
day 15-29 | .51 |-.38 | .31 | .27 251 .24 (.22 .21|.21 .20} .20
day 30-44 | .42 | .30 | .23 | .20 | .18 | .17 | .16 | .15 | .14 | .14 | .13
day 15-44 | 53| .39 | 31| .27 | .24 | .22 | 21| .20].19].18 ] .17

Table 2: Estimates of the mean ACC for 15-day and 30-day means for different sizes n of the
sample used to calculate the climatology.

3.2 Ensemble mean technique
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The forecasts we study are ensemble mean forecasts. They consist of the average of 5 indi-
vidual forecasts starting at very close situations. This technique allows to reduce the impact
of small initial errors which grow during the integration. With this technique, we can also
estimate the limit of potential predictability (Lorenz, 1982). When the individual forecasts
become independent, e.g. when their distance is as large as the distance between forecasts
starting at independent situation, one can consider that the model has lost the memory of the
initial conditions. This memory of the starting situation is neither a necessary condition of
predictability (the boundary conditions can be a source of information for the model), nor a
sufficient condition since the model is not perfect and introduces errors in the course of the
integration. However, it is an useful tool to estimate a reasonable length for the integrations.
We use here, as a measure of consistency between the individual forecasts, the forecast agree-
ment, introduced by Murphy (1990). This coefficient is the average of the 5 ACCs between the
ensemble mean forecast and each member of the ensemble. This coefficient is large, because
the individual and the mean forecast are not independent. A 95% confidence interval has been
estimated for this coefficient. We have generated 5-sized ensembles for which each member is
taken at random in different. years (but in the same month and at the same forecast lag be-
cause of the seasonal cycle and the model drift). In the case of day 30-44 means, this interval is
[0.69,0.75]. Figutre 1 shows the time evolution of the agreement for 1-, 5-, 10-, and 15-day means
and the 95% confidence interval at the time the agreement is no more significant. One can see
that instantaneous individual forecasts are significantly dependent up to day 35. Taking time
averages increases this lag, and one can see that day 30-44 means are still in agreement.

In a similar way as in section 3.1 we can estimate the impact of the ensemble average on the
mean ACC. Here n individual forecasts are drawn out of the 5. Table 3 shows the different
estimates. On can see that this impact is very weak, particularly for day 15-44 means. We shall

see in section 3.3 that the sensitivity to n is increased when the systematic error is removed.

n 1 2 3 4 5
day 1-15 | .57 | .60 | .61 | .62 | .62
day 15-29 | .17 | .18 | .19 | .19 | .20
day 30-44 | .12 | .13 | .13 | .13 13
day 15-44 | .16 | .17 | .17 | 17 | .17

Table 3: As Table 2, but for different sizes n of the forecast ensemble.

3.3 Systematic error

The climatology of the model being somwhat different from the observed climatology, the model
250 |
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Figure 1: Forecast agreement as a function of the forecast lag for 15-day running means (top),
10-, 5-, and 1-day running means ; 95% confidence interval

forecasts exhibit a systematic drift during the integration. Figure 2 shows the mean error for
day 15-44 means. This error consists of 2 negative minima over the Atlantic and the Pacific
oceans. It is systematic, since Student t-tests reject the hypothesis of sampling residual to
explain this pattern. The model is too cold and this cooling occurs during the first two months
of model integration. One can also remark that these two minima correspond to centers of the
blocking activity (Lejenas and Okland, 1983). In fact this model does not generate blocks over
the Atlantic, and generates blocks with half the observed fréquency over the Pacific.

There are two ways to reduce this error. One is a priori and the other a posteriori. We
have tried the first way, by using a method similar to Sausen and Ponater (1990). The initial
temperature drift is estimated at each model level and for the spectral coefficients corresponding
to a T10 truncation. This estimate is the time derivative of a 2nd degree polynomial adjusted
by least squares from the errors of the first 9 days of a series of reference forecasts. Then the‘
drift is subtracted, at each time step, in the temperature evolution equation (i.e. we introduce
an artificial heat source in the model). This method has been tested for 8 January forecasts.
Table 4 shows the ACC of the corrected and the uncorrected model. The resulté aTe not very
encouraging. The mean ACC has been increased, but the skill of the uncorrected model was

particularly poor, and the improvement is not systematic (only 3 forecasts are improved). A
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Figure 2: Mean error of the 500 hPa height for day 15-44 means ; contour interval 20 m.

possible improvement of the method could be obtained by calculating the drift in a different
way : in the lower troposphere the uncorrected model is warming up during the first 5 days,
then cools down ; thus the correction we have used provides an additional cooling at these

levels.

J.84 | J.85|J.86|J.87 |J.88 |J.89 | J.90 [ J.91 [ Mean
uncorrected | -.14 | -.10 | -.08 .18 35 37 231 -.13 .09
corrected Jd6 | .46 -.09 1 .12 .19 | .48 06 | -.21 17

Table 4: ACC for day 15-44 for the a priori corrected and uncorrected forecasts.

The second way to reduce the error consists of subtracting the mean error of the corresponding
period (e.g. day 15-44). This estimate must be obtained independently of the current forecast,
otherwise the skill is artificially ibncreased. In our case, a mean model error has been calculated
for each winter (by averaging the 4 months). For each forecast, the bias which is subtracted
to the model results is the average of the 7 biases corresponding to the 7 other winters. Thus

this bias does not include any information related to the forecast. With this method the mean
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ACC of the day 15-44 means increases from 0.17 to 0.26 and 19 forecasts are improved. The
sensitivity to ensemble averaging is better since corrected individual forecasts yield a mean
ACC of 0.20.

As in section 3.1 and 3.2, one can estimate the impact of the number of years used to estimate
the bias. In Déqué (1991), it is shown that when the bias is estimated with a too short sample,
the correction decreases the skill. Table 5 shows that the impact of the correction is larger for

day 30-44 and 15-44. For shorter ranges the correction is detrimental with n = 1.

n 0 1 2 3 4 5 6
day 1-15 | .62 | .59 | .62 | .63 | .64 | .64 | .65 | .65
day 15-29 | .20 | .19 | .22 ] .23 | .23 | .24 | .24 | .24
day 30-44 | .13 | .15 | .18 | .19 | .20 | .20 | .20 } .21
day 15-44 | .17 | .20 | .22 | .24 | .25 | .25 | .26 | .26

Table 5: As Table 2, but for different sizes n of the sample used to calculate the systematic
erTor.

3.4 Signification of the scores

Even after correction of the bias, the skill is low. A value of 0.26 for the ACC corresponds
to a skill score (as defined by Murphy and Epstein, 1989) less than .06. Figure 3 shows the
32 values for the model and persistence ACC. The persistence here is the day —29-0 mean.
Different periods have been tried to define the persistence and this one gives the largest ACC
(.06 for the mean ACC). The model is clearly superior to the persistence forecast. We count 6
values below 0 and 4 values above 0.50. This large variability explains why the scores reported
in the literature may be different. We have performed Monte Carlo simulations of the ACC
and the 95% confidence interval for a mean ACC based on 32 independent forecast is [.12,.38].
This interval confirms also the fact that our mean ACC is significantly different from zero, i.e.
the model forecasts are not just noise. The same is true for the 15-day means : the intervals
for days 1-15, 15-29, and 30-44 are [.60,.69], [.12,.36], and [.11,.29]. One can also perform
Monte Carlo simulations with scrambled data : in this case the forecast and the corresponding
analysis are related to different years. For day 15-44 means, the 95% confidence interval for
the mean ACC when the forecast have no skill at all is [-.02,.20]. This interval is not centered,
which confirms the statement of section 3.1. The value of 0.26 lies outside this interval, which
confirms that this score is statistically significant.

3.5 Extrapolations

In sections 3.1, 3.2, and 3.3 we have estimated by subsampling the mean ACC as a function of
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Figure 3: ACC of the model (solid) and the persistence (dashed) for the 32 15-44 forecasts

the sizes of the climatological dataset, of the forecast ensemble, and of the reference dataset.‘
In Déqué (1991) and Déqué and Royer (1991) we have developed methods to extrapolate the
estimates. We present here a simplified method which generalizes the results.

At a given grid point and for a given forecast we have 5 values (Fy, ..., F5) the average of
which, F, is the ensemble mean forecast, the corresponding analysis A, 11 values (C1, ..., Cy1)
the average of which, C, is the climatology, and 7 values (B, ..., B7) the average of which,
B, is the bias. Let us consider n; independent random variables (i, ..., F,, ) which have the
same statistical distribution as the F;. We introduce similarly the random variables (T

Cn,) and (Bi, ..., By,). We set the forecast and observed anomaly :

15 111 17
X=2) F - 1;0 ?Z =F-C-B (2)

i=1

= Hzc (3)

i=1
Similarly we introduce two random variables :
ny n2 1 n3
Zf——ZC ~Zm (4)

'll] k=1
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g '
=A - —) C; (5
L3 ®
A random mean ACC obtained with an en»semble size ny, a climatology based on n years, and

a bias estimated with ng years is :

< XY >
<X2T>< Y2 >

To estimate the statistical expectation of ACC, we set :

ACC = (6)

X2=EX)+e V=EQ)+e XY=EWXY)+e (7)

E() is the expectation and €, €, and €3 are centered random variable. One can neglect < & >,
<€ >, and < & >. This approximation is better when ny, 1y, and ng are large. However the
approximation is not exact, even when they tend to infinity because we use for the expectations

unbiased but rough estimates :

E(X?) =~ (—- —){ EF2 —FZ
ny _){10 Z c; - OCZ}

7?,2

o~ P2 ZB;~ - 2B%) (®)

E(y‘l) ~Y2 4 (i _ i){}_icﬂ — HCZ} (9)
- ny 117110477 10

E(ry)~xy+(i——1—){iic?— Uy (10)
T ny 117710477 10

In the case of day 15-44 means, we get the formula :

18 +2.04/n, a1)
V(210 4 2.04/n3)( 48 + .76 /nq + 2.04/ny + .62/n3)

This formula is exact by construction for nq = 5, ny = 11, and n3 = 7. A good test of accuracy

E(ACC) ~

consists of letting ny = 1, ny = 1, or ng = 1 and to compare with the first columns of Table
2, Table 3, and Table 5. The differences are less than .01, so we can be rather confident in the
approximation, and try to use the formula for extrapolation. When the size of the ensemble
tends to infinity, the mean ACC tends to 0.28 (instead of 0.26 when n; = 5). The impact

of a larger ensemble on the mean skill is thus negligible. When the size of the climatological
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dataset tends to infinity, the mean ACC falls down to 0.15. The bias is thus as large as 0.11;
this result agrees with that of section 3.4 : after scrambling the forecasts and the analyses,
the mean ACC is, on the average, 0.09. The impact of the size of the correction dataset is of
the same order as that of the ensemble size (but each year of this dataset corresponds to 20

individual integrations of the model) : when it tends to infinity the mean ACC tends to 0.27.

4, SKILL VERIFICATION
4.1 Standard predictors

As shown in Fig.3, the score exhibits large case-to-case fluctuations. If we should be able to
discriminate a priori the good and the bad forecasts, the mean model skill would be improved
by using the model output only in the cases when the model is expected to be successful.
Another possible use could be to better document the forecast by providing a quality index
together with the forecast. The ultimate use of skill forecast is the probability forecast in
which our confidence in the model results is expressed in term of probability distribution. In
this section 4 we shall restrict to day 15-44 means.

A classical candidate for predicting the skill is the model spread, i.e. the standard deviation of
the forecast ensemble (Kalnay and Dalcher, 1987). The basic idea is that when the trajectories
diverge, there is less predictability. In fact, it is better to take a normalized index: if the
5 individual forecasts predict a strong positive anomaly over a large area, but with different
intensities, the spread may be large, but we are relatively confident in this forecast. We have
taken the ensemble agreement as in section 3.2. Table 6 shows that this index is better corre-
lated than the spread with the ACC. However the correlations are not statistically significant
: we have estimated the 2.5 and the 97.5 percentile of the dist:ibution of correlation when
there is no forecast skill (and consequently no predictability of skill), in a similar way as in
section 3.4. Among the 14833 permutations of the 8 years which have no coincidence (i.e.
(i) # 1,1 = 1,...,8), 1000 permutations are taken at random, and the forecast dataset is
scrambled according to each permutation. We have thus 1000 series of 32 ACCs and 32 spreads
(or any other predictor of the ACC). The percentiles are computed from the 1000 correlation
coeflicients. The stability of the method is verified by repeating the process with 1000 other
permutations.

Two indices however seem significantly correlated with the ACC. The first one is the amplitude
of the forecast anomaly (measured by its spatial root mean square). The fact that the mean

ACC calculated by Eq. (1) is larger than the arithmetic average of the ACCs suggests that
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index | SPR | AGR | AMP | PER
cC 09| 21| 31| 25
| CCys | -25| -45| -45| -39
| CCors | 25| 28| 28] 21

Table 6: Correlation coefficient.(CC) between the ACC and various indices : root mean square
error (RMS), ensemble spread (SPR), ensemble agreement (AGR), forecast anomaly amplitude
(AMP), anomaly correlation between model and persistence (PER). The values C'Cy5 and
CCgr5 indicate that 95% of the C'C belong to the interval [C'Cy.5,C'Co7.5] when the forecast
are scrambled.

the cases with large forecast or observed amplitude have a larger ACC than the others. The
positive correlation between amplitude and ACC does not result of algebraic relations since,
after scrambling, the correlation tends to be negative. We can also remark that the amplitude
takes into account the agreement between the individual trajectories : when the 5 integrations
are very different, their contributions to the ensemble mean compensate each other and the
amplitude is weak. This is verified by the fact that the correlation between amplitude and
ACC for the individual forecasts is only 0.21.
A second predictive index is the anomaly correlation between forecast and persistence (i-e. day
—29-0 mean). This index is calculated in the same way as the ACC, just replacing the observed
by the persistent anomaly. The choice of this index comes from a feature of Fig.3 : the good
model forecasts are also good persistence forecasts. High values of this index correspond to
situations for which the large-scale patterns have not been modified during the integration. The
anomaly correlation is preferable to RMS differences, since the impact of amplitude counteracts
the impact of persistence. Using 1-day, 5-day or 10-day means instead of 30-day means for the
persistence leads to positive, but smaller correlation coeflicients.
One can also remark on Table 6 that the confidence intervals are not centered. This feature
is stable if we fake other sets of permutations. The following two tests illustrate the fact that
this is a consequence of the way of calculating the anomaly. The same method is applied for
independent gaussian variables (assuming the area is a single point, the forecast and observa-
tion are independent, and the variance of the observation is 4 times that of the forecast). If
we simulate the subtraction of the estimated climatology and of the estimated bias, the 95%
interval for the correlation between AMP and ACC is [-.36,.25]. If we directly generate inde-
pendent forecast and observed anomalies, the interval is [-.36,.36], and the expectation of the
correlation can be analytically calculated (it is simply 0).
4.2 Composites according with the skill
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Figure 4: Difference between the composite maps of the 16 best and the 16 worst forecasts ;
day 15-44 (a) and day —4-0 (b) mean analyzed anomalies ; contour interval 20 m.

Figure 3 shows that, among the 32 forecasts, 16 have an ACC above .20 and 16 below .20.
We have calculated composite maps of several fields by averaging the 16 best cases or the 16
worst cases. Figure 4a shows the difference between the best and the worst cases for the day
15-44 analyzed anomalies. A similar map (not shown) of the t-values shows that the positive
area over the Pacific is significant at the 95% level. The good forecasts correspond to positive
anomalies over this area. However this method is an a posteriori one since the analysis is
unknown at the time of the forecast. If we perform the same computation for the forecast
anomalies, the best and worst forecasts do not exhibit differences at the 95% level.

One can try to investigate the impact of initial conditions on the skill. In the medium range
Palmer (1988) found that a negative PNA was associated with a bad skill. He explained it by
the fact that the atmospheric situation was more unstable in this regime. We have produced
composite maps as Fig. 4a, but for situations before the starting date. We have tried day 0,
day —4-0, day —9-0, and day —29-0 mean anomalies. The patterns are similar, and the highest
significance in t-tests is obtained for 5-day means. Figure 4b displays this pattern : only the
dipole eastern coast-western coast of America is significant. This pattern is different from the
PNA. However, if the same analysis is performed, using the mean square error of day 1-15
mean forecasts for the discrimination, the map corresponding to Fig. 4b (not shown) exhibits
a positive PNA. |

4.3 Probability forecasts

Since a large uncertainty is attached to the model forecasts, it is natural to try to express
them as probabilities. In the case of the 500 hPa height field, the best way is to éttempt

to give probabilities to different typical clusters as in Brankovic et al. (1990). However, for
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the sake of simplicity, we adopt here a local formulation, which should be rather adapted
to fields like temperature (see Dégué, 1988b). At each grid point the forecast is a gaussian
variable ; the mean (M) is the ensemble mean forecast and the standard deviation (o) is a
value which expresses our uncertainty. A natural candidate for the standard deviation is the
ensemble spread. Then, a set of n probabilities p; is given for n categories. These categories
are equiprobable with respect to climatology, i.e. the thresholds are calculated from a gaussian
distribution estimated with the 11 years available (which depends on the calendar month). The
forecast will be excellent when the p; will be close to 0, except p; ~ 1, where the jth category
is observed. Let o; = 1 when the jth category is observed and o; = 0 otherwise. A criterion
which measures the skill of such a forecast is the ranked probability score (RPS) introduced

by Epstein (1969) :

RPS = i (i(l’k - ok)) (12)

i=1 \k=1

This RPS can be averaged for the northern hemisphere and for the 32 forecasts. Similarly one
can introduce the RPS of the climatological forecast RPS.. This forecast consists of taking
p; = 1/n. It minimizes the mean RPS in the absence of any skill (i.e. when o; and p; are
independent). A skill score can be introduced as :

RPS

§5=1-zrg (13)

Table 7 displays the values of S5 for 2, 3, 5, and 101 categories. The case of 101 categories is
a close approximation of the continuous case (see Déqué, 1988b). The first row correspond to
the deterministic forecast ; here RPS, is calculated diﬂ”erently . the deterministic climatology
forecast consists of taking 1 for the medium category (n must be odd) and 0 for the others. The
“natural” choice of taking the ensemble spread for the standard deviation of the probability
distribution leads to a very bad score (2nd row). Two reasons explain this : as seen in section
4.1, the spread is not correlated with the skill ; moreover the spread measures the uncertainty
due to the initial error increase, and thus underestimates the total uncertainty since the model
is not perfect. Simply averaging the 32 spreads (3rd row), assuming no relation between
the fluctuations of the skill and the fluctuations of the spread, reduces the RPS. Different
combinations of spread or amplitude have been tried to choose a standard deviation which
maximizes the §5. Finally the different attempts have lead to the same values as those of the
4th row : taking the climatological standard deviation (according to each calendar month) is
the best we can do. This imply that we are not able at this stage to predict the standard
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~ deviation (though we can predict the mean). This negative value for the skill score, which do
not depend on 7, is of the same order as the skill score of deterministic forecasts. It can be

compared with a skill score of —.07 obtained as by Eq. (13) but with the mean square error

(MSE) instead of the RPS.

n o 2 3 51| 101
c=20 und. | -.05 | -.01 | -.05
o = spread -20|-201(-18|-.18
o = mean spread -18 1-.17 | -.16 | -.16
o = climatology -.05 | -.06 | -.06 | -.06
conditional probability 0561 051 .05 .05

Table 7: Skill scores of n-categorp probability forecast for different choices of the probability
distribution.

We can try to improve the forecast if we do not impose to take the ensemble mean forecast for
M. When there is no skill at all, the probability distribution which minimizes the expectation
of the RPS is the climatological one. When forecast and observation are not independent, it
can be demonstrated that the expectation of the RPS is minimized by taking the conditional
distribution of the observed anomaly a, for a given forecast anomaly ay. Let us assume that,
at a given grid point, the pair (a,,ay) is a gaussian vector of means (0,0), standard deviations
(00,0¢), and correlation r. When ay is set to F' — C' — B, the variable «, is a gaussian of
mean ro¢/0,(F — C — B) and standard deviation v/1 — r20,. When 7 is 0 (no skill) , this
distribution is the climatological one. When r is 1 (excellent forecast), we get the deterministic
forecast. Here 7 is of the order of .3 and the ratio of the standard deviations of 2. Thus the
forecast anomaly is reduced by a factor of about .6, and the climatological standard deviation is
practically unchanged. Table 7 shows that with this correction the skill score becomes positive.
Note that, with such a correction, the skill score of deterministic forecasts based on the MSE

is .06 (see section 3.4).

5. CONCLUSION
We have studied the skill of time averaged forecasts through the northern hemisphere 500 hPa

height anomaly correlation. This skill is significantly different from 0 and is better than the
skill of persistence forecasts. However this skill is very low and the model forecasts need to be
damped to outperform the climatology forecasts. The scores are improved by ensemble average

and bias correction : a minimum size for the ensemble is 3 individual integrations, and for the
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reference dataset used to estimate the bias is 3 winters ; with larger sizes the score increase
is negligible. The scores are overestimated by the use of a climatology based on 11 years ;
however the use of larger sample (e.g. 30 years) could introduce inhomogeneities and finally
overestimate the scores ; when the Oort (1983) climatology based on 1963-1973 observations is
used as reference, the scores are larger by about .15.

The skill exhibits a strong case to case variability, and even 8-winter mean scores can fluctuate
by plus or minus .10. Two possible predictors of this variability are found, though their
statistical significance is marginal. The first one is linked to the size of the anomaly, the
second one to the difference between the initial and the final state of the forecasts : when the
model predicts a strong and persistent anomaly, the skill is larger. There are also significant
connexions between the skill and the initial situation, but they do not correspond to those
obtained in the short and medium range. The model forecast can be improved by a local
probability formulation, but the best trivial forecast (i.e. the climatology) is improved too and

the relative skill remains unchanged.
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