FINITE DIFFERENCE METHODS

M.J.P.Cullen
Meteorological Office
Bracknell, U.K.

Summary: An overview of finite difference methods for atmospheric
models is given. Preservation of important properties of the continuous

equations is discussed.

1. INTRODUCTION ‘ _

Though the spectral method is used for most atmospheric models used for
weather forecasting and climate studies, the finite difference method is
still wused, for instance by the U.K.Meteorological Office unified
forecast/climate model and the GLA climate model. The finite difference
method is also used for most limited area models, and is also used for the
vertical discretization in most global spectral models. The design of
finite difference methods for atmospheric models now follows
well-established principles. This paper gives an overview of the main
considerations followed, other papers in this volume take up particular
aspects in greater detail. The basic theory of finite difference methods
applied to the atmospheric equations is set out in much greater detial in

Mesinger and Arakawa (1976) and Haltiner and Williams (1981).

2. PRINCIPLES OF THE FINITE DIFFERENCE METHOD

In order to apply the finite difference method, the equations must be
averaged over a horizontal and vertical scale rather larger than the
gridlength to be used. Additional terms (the subgrid model) then appear on
the right hand side of the equations. These typically take the form of
smoothing or filtering operators,<but more elaborate subgrid models are
used in mesoscale models. The effect of the averaging is to make the
solution smooth over the grid kscale. This is why the subgrid model
primarily looks like a smoothing operator. Since the solution is smooth,
the derivatives in the equations can now be approximated by finite
differences. It should be noted that, since there is no way of rigorously

deriving the subgrid model, there is a loss of predictability associated
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with having to choose it. This may be particularly important where there
are organised structures such as fronts on scales smaller than the

averaging distance.

In most applications of finite difference methods, the grid point values
represent cell averages. The finite difference equations are then derived
by integrating the equations over the cell. When analysing the accuracy of
the methods, however, it is usual to substitute a particular solution of
the exact equation into the finite difference equation, the residual
remaining is the truncation error. An nth order finite difference scheme
will solve equations containing derivatives up to order m exactly for
polynomials up to order n+m-1. Alternatively, the error will be O(k™) for
a trigonometric function Acoskx + Bsinkx. This can easily be seen by
expanding the trigonometric functions in their polynomial series, and
calculating the first error term in the approximation to the mth
derivative. This can be illustrated by considering the finite difference
approximation to 8C/dx:

1 _(C(x+Ax)-C(x-Ax)).
2Ax%
Substituting C=Acos(kx) gives

8C/0x~A(cos (k(x+Ax))-cos(k(x-Ax)))
=-(A/Ax)sin(kx)sin(kAx)
=-kAsin(kx) (1-k°Ax/6+0 (kAx)*)

showing that the scheme is second order accurate.

3. STRUCTURE OF THE EQUATIONS RELEVANT TO FINITE DIFFERENCE METHODS
3.1 Basic equations

In order to obtain an accurate representation of the evolution of the

atmosphere, certain properties of the continuous equation have to be
reproduced exactly in fheir finite difference analogue. The various
important subsystems within the equations of motion may require differing
numerical treatments, both to ensure pomputational economy, and to obtain
accuracy. Many of the considerations apply equally to spectral methods,

and have been discussed in the previous two papers in this volume.

In order to illustrate these points in the simplest way, we use the

equations in Cartesian coordinates in the horizontal and pressure
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coordinates in the vertical. Mesinger’s paper in this volume treats the
issue of the vertical coordinate and its effect on the finite differencing

error at length.

The equations, in standard notation, are then

%% + gg - fv = Fu : (1)
%% + g% + fu = Fv (2)
6 =6 (p) + o (3)

%z_' e, (4)
el Fy (5)
g% + g% + gg =0 | (6)
m = (p/p )" (7)

9 _ ¢ (el+e ) (8)

on P 0

Note that © is expressed as the deviation from a reference state 60
independent of horizontal position. m is often referred to as the Exner
function, K=R/Cp. The right hand side terms include forcing terms and the

subgrid model. The boundary conditions are

w =0 at p=0. : ‘ (9)
w = Dp at p=p , the Earth’s surface. (10)
DtS S
¢ = ¢ at the Earth’s surface. (11)
S

3.2 Gravity waves and geostrophic adjustment

Linearising the D/Dt terms and neglecting the right hand side terms gives
a set of equations for gravity-inertia waves. These are oscillations about

a state of rest in geostrophic and hydrostatic balance given by

% Cfv=0 ‘ , (12)
o9 + fv =0 ‘ (13)
oy

¢ _ ! (14)
—a—_E = Cp(e +90)

The equations for the oscillations can be condensed into a single elliptic
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equation for w, which can be derived by differentiating (1) by x, p and t,
(2) by y, p and t, and substituting ¢ by @ using (8) and 86/8t using (4).
Equation (6) is then used to replace (8u/8x+8v/8y) by -8w/8p. This gives
2 2
8

8w 2 2, 860 a _
En—ap- _352 + fw ] + V (U)%O) fﬁ‘(BV) = F : (15)

The right hand side term is derived from the forcing terms. The complete
equations can be written this way if the nonlinear terms are included in
F. The reaction of the equations to the forcing terms thus consists of an

oscillation in time (given by the éiz/at2

term) about a slowly varying
solution where w is determined by the second and third terms. The nature
of the solution depends on the relative size of these terms. If the
horizontal scale is greater than the Rossby radius of deformation NH/f,
where N is the Brunt-Vaisala frequency and H the scale height, then the
second term is dominant and the wind fields are largely determined by the
evolution of the pressure and temperature fields. If the horizontal scale

is less than the Rossby radius, then the converse applies.

These oscillations have phase speeds up to 300ms_1. They therefore have to
be treated either by using explicit finite difference methods in time,
with a shorter timestep than that which could be used for the rest of the
model, or by using implicit methods as in spectral models (see paper by
Machenhauer -in this volume). If implicit methods are used, then én

equation of the form (15) has to be solved for w at the new time level.

3.3 Advection and conservation

The D/Dt terms in the equations represent transport of values from their
position at a previous time level along a trajectory to a position at a
new time level. This means that the new values are a rearrangement of the
old, which means in particular that the integral over the whole volume of
any function of the rearranged quantity is preserved. It is not possible
to imitate this condition exactly in finite ‘difference methods, but it is
often possible teo ensure that the integral of the quantity and of the
square of the quantity are exactly conserved. This is not sufficient to
guarantee good behaviour of the solution, but can reduce the risk of
instability. The rearrangement condition also means that the values of the
transported quantity are bounded by the initial values. This property is

enforced in shape-preserving advection schemes, see the paper by
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Smolarkiewicz in this volume. The transport property is used directly in
semi-Lagrangian methods, described in the paper by "McDonald in this

volume.

Fulerian finite differnce methods have to write the advection terms in the
expanded form ' '

d0 , B0, 80, 80 _, | : (16)

Et ox ay ap
The continuity equation (6) can be used to write this in flux form
80 , d(ue) , a(ve) , 8(we)

at ox dy . dp : :
The terms involving spatial derivatives are now the dlvergence of a flux

s (17)

vector. Integrating (17) over the whole domain shows: that the integral of
® with respect to X,y and p is conserved under advectien.‘ This is a
requlrement for c11mate 1ntegrat10ns where the total heat and moisture
budget has to be accurately represented and for other integrations (such
as pollution modelling) where the total amount of an advected substance is
significant. The natural finite difference approximation to (17) is
obtained by integrating it over a grid volume, and then replacing the
integral of the flux divergenee,by the‘integral of the normal flux
(u0,v8,00).n S " (18)
ound the boundary of the grld box, where n 1s the normal vector to the

boundary.

3.4 Angular momentum and energy integrals ,

In extended range and climate integrations, it is important that the total
angular mementum is iny changed by a surface torque, and that the
conversions between kinetic and potential energy ‘snm to =zero when
integrated over the whole domain. It should be noted that the dynamieal
equations set out above do not,ponserve energy because of the energy sink
in the sub-grid model. In climate integrations it is necessary tokdiagnose

this sink and return the energy to the model as heat.

Enforcement of the angular momentum principle requires that the integral
of the pressure gradient term (8¢/8x,8¢4/8y) can be written as a boundary
contribution from the Earth’s surface only. This is trivial in the form of

equations used to illustrate this paper, but requires careful treatment of
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the vertical differencing in the hydrostatic equation (8) if
terrain-following coordinates are used, see the paper by Mesinger in this

volume.

The conversion from kinetic to potential energy can be found by

multiplying (1) and (2) by u and v respectively. Then V
E_(%(u2+v2)) + uff + vff = uFu + vFv (19)
Dt ax ay

The left hand side terms are the rate of change of kinetic energy

following a parcel and the pressure work term. Integrating the pressure

work term over the whole volume and integrating by parts gives .

-6|%% + 2| axdydp
ax a8y

Using the continuity equation (6) and integrating by parts again gives

I—wffdxdydp, which can be written using the hydrostatic equation (8) and
8p RTw |
converting from 6 to T as I— dxdydp.

p

Correct treatment of these conversions in a finite difference model means
that all these manipulations have to be carried through in finite
differences, which implies consistency between the finite difference

treatments of all the basic equations, see Arakawa and Suarez (1983).

4, FINITE DIFFERENCE SCHEMES FOR THE ADJUSTMENT TERMS
4.1 Arrangement of the variables on the grid

The accuracy of the adjustment scheme depends to a large extent on how
well the w equation (15) is represented. This can be determined by
combining the finite difference representations of (1) to (8) into a
finite difference approximation to (15). This topic is treated in detail
by Mesinger and Arakawa (1976), so that the results will only be

summarised in this paper.

The main consideration in the choice of schemes is the arrangement of
variables on the grid. It is almost universal to divide the atmosphere
into layers, with the Earth’s surface as a layer boundary, and the ‘top’
of the atmosphere as a layer boundary. The horizontal velocity components

are held at midpoints of layers and the vertical velocity is held on layer
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boundaries. In order to solve equations (1) and (2), the geopotential ¢
must be calculated at the midpoints of the layers. This requires vertical
integration of (8). There are two methods. If the potential temperature 0
is held at layer midpoints (the Lorenz grid), then the lower boundary
condition (11) is applied at the Earth’s surface, and (8) is integrated

over complete layers

Preer P T €010 (20)
k+1 'k p k+1/2
The final integration to the layer midpoint k+3/2 takes the form
¢k+3/2_¢k+1 = OCCp9k+3/26" (21)

The factor o is chosen to ensure that the energy and angular momentum
properties set out in section 3.4 are preserved, and depends on the

vertical coordinate system being used.

In the second method (the Charney-Phillips grid) the potential temperature
is held at layer boundaries. After an initial integration from the Earth’s
surface to the midpoint of the first layer, the integration then proceeds
directly from the midpoint of one layer to the next. It is harder to make

the manipulations in section 3.4 work when this grid is used.

The various arrangements of variables in the horizontal were classified by
Arakawa as follows. In each case the vertical velocity w is held at the
same position as the potential temperature 6 and geopotential ¢.

A grid

u,v, ¢

- u,V,¢ - u»v3¢

u)v7¢ I

u,v,¢
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B grid
|
— ¢ —
u,v | u,v
—¢— ¢ — ¢ —
u,v | u,v
— ¢ —
|
C grid
|
u-— ¢ —u
|
v
|
— ¢ — u — T —u — ¢ —
v
|
u— ¢ —u
|
D grid
|
V— ¢ — v

—p—V—p— v — ¢ —
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E grid

u,v— ¢ —u,v
¢ —u,v— ¢
— ¢ —u,v— ¢ —u,v— ¢ —
¢ —Uu, V— ¢
|

u,v— ¢ —u,v

The terms in the adjustment equations are approximated by central
differences, with averaging if necessary to produce the result in the
correct position on the grid. Thus the approximation to the term 8¢/8x in

equation (1) is

A grid: 82x¢
—y
B grid: 6x¢
C grid: 3x¢
B—
D grid: 3 ¢
2%
E grid: 6x¢

The standard finite difference notation 6X¢ = (¢(x+%6x)-¢(x—§6x))/6x and

5x=3(¢(x+gax)+¢(x—£6x)) is used.

Making similar approximations to the other terms in the adjustment
equations and combining them into an equation of the form (15) gives and

approximation to the 8%w/8t% term of the form

kt+1/2 k-1/2

(azw/at2 - 8%w/at? ]/Ap -[azw/atz- 82w/ at? ]/Ap
k+1 k k k-1

The approximation to the fzw term takes a similar form in the vertical.

However,.it contains additional horizontal averaging on the C and D grids,

where the velocity components are held in different places. The

approximation to the V2 term involves the following horizontal
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approximations to Vzw:

A grid: 62x(62xw) + Bay(62¢u)
-y —y —x —x

B grid: 8 (8 w) + 8 (8 w)
X x y vy

Cgrid: §Sw+ 88w
X X Yy
—_—y —y —X —Xx

D grid: 62x(62xw) + 62y(62yw)

Egrid: sdw+ 388w
X x yy

In comparing these expressions, it should be noted that the effective
gridlength on the E grid is v2 times larger than on the other grids. The
most compact and therefore most accurate stencil is that on the C grid.
Stencils including averaging may help to reduce noise with explicit time
integration schemes. However, with implicit time integration schemes, the
stencil appears on the left hand side of the elliptic equation to be
solved, and averaging then is a disadvantage as it makes the problem ill
conditioned. The overall performance of the schemes depends on the
relative sizes of the second and third terms in (15). The B,C and E grids
all have advantages under the right conditions, while the A and D grids
are less accurate. The D grid gives trhe most accurate representation of
the geostrophic balance itself, but this is of no advantage in solving (1)
to (8) as the approximations to (1) and (2) have to be generated at u and
v points. However, if a balanced model was being integrated and equation
(15) solved without the time derivative term, then the D grid would be

advantageous.
The vertical stencil is most compact on the Charney-Phillips grid, where
the third term in (15) contains no vertical averaging. On the Lorenz grid

the third term is averaged over three levels of w.

4.2 Time integration schemes for adjustment

The standard schemes are summarised below. The prognostic equation for
surface pressure present in the most common vertical coordinate
formulations is treated in the same way as the potential temperature

equation (4).
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Leapfrog. The time derivatives in equations (1), (2) and (4) are
approximated by

EE ~ 62tu.
‘8t

This method requires three time levels of data, and special measures have
to be taken to prevent separation of the values at odd and even time
levels. The maximum timestep At is Ax/c on-the A grid, but Ax/2c on the C
grid, because the shortest resolvable wavelengths are treated more

accurately.

Forward backward. The time derivative in equation (1) is approximated by a
forward difference '

u . 8 u(t+:At).

at
The right hand side of the equation is held at time t. The time derivative
in equation (2) is similarly approximated, using the value of the pressure
gradient at time t, but the value of u at time t+At. Equation (4) is
solved using values of the right hand side at time t+At, noting that the
basic state 90 is time independent. This method only requires two time

levels of data. The maximum timestep is 2Ax/c on the A grid and Ax/c on
the C grid.

Implicit. The right hand sides of all equations are time averaged:

F o~ (Fe % (1-a)Fh),

The value «=1/2 gives a scheme with no amplification or damping, similar
to the leapfrog and forward-backward schemes, and no timestep restriction.
Values a>1/2 give damping, which can be useful under some circumstances.
The right hand sides of the equations include unknown values, and

therefore an elliptic equation of the form (15) has to be solved.

Semi-implicit methods. These are implemented in a similar way to spectral
models, see the paper by Machenhauer in this volume. Only the linearised
parts of equations (1), (2) and (4) are treated implicitly. The remaining
terms are treated explicitly with a longer timestep. The splitting
procedure is only stable if the internal gravity wave speeds of the

linearised equations in finite difference form are greater than those of
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the nonlinear equation, Simmons, Hoskins and Burridge (19783).

Split-explicit methods. The most common version is to use the

forward-backward method on the B or E grid for the linearised version of
equations (1) and (2), and for the vertical advection in equation (4).
Several timesteps are performed before the remainder of the equations are
included with a longer timestep. If storage is available, the time
truncation errors can be substantially reduced by saving the increments
from the long timesteps and adding fractions of them in at each short
timestep, Purser and Leslie (1991). Since there is no spatial averaging in
the Coriolis terms on these grids, the Coriolis terms can easily be
treated implicitly. A conservative version suitable for climate modelling
can be obtained by using the linearised version of equation (4). the same
restrictions on the choice of 90 apply as for semi-implicit methods. The
average velocity from the adjustment steps is saved and used in the

subsequent calculation of the advection terms.

5. ADVECTION SCHEMES

5.1 Time integration

Advection schemes are treated comprehensively in the papers by
Smolarkiewicz and McDonald in this volume. This section gives a brief

introduction to finite difference advection schemes on a fixed grid.

If the advecting velocity is uniform, exact finite difference schemes
exist. which simply transport data by one gridlengfh in one timestep.
However, in atmospheric models the advecting velocity is very variable. If
explicit time integration is used, as is normal, then the timestep will be
limited by the highest speed, and over most of the domain the advecting
velocity will be small and spatial differencing errors will dominate time
differencing errors. This provides the motivation for semi~Lagrangian
methods. Though implicit time differencing has been used to represent part
of the advection process in spectral models,; it is difficult to do this in
finite difference methods where a nonlinear equation would have to be
solved at each timestep. Furthermore, implicit advection schemes slow down
transport processes in regions where speeds are high enough for explicit

methods to be unstable.
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If three time levels of data are available, the leapfrog method is
natural. If only two time levels are available, then single step advection
schemes cannot be used with centred spatial differencing as they are
unstable. Two-step schemes must be used, the most common being the Heun
{or second order Runge-Kutta) scheme. This takes the form

0 = 8(t) - At(U.V8(t))

8 (t+At)=0(t) - gAt(U.V(G(tHe*)).
Though this scheme is still weakly unstable, the growth rate is
proportional to (UAt/Ax)4. This is found to be negligible in practice. The
use of shape preserving spatial differencing schemes avoids the need for a

two-step time differencing scheme.

5.2 Spatial approximation
Conservative spatial differencing schemes for advection on a regular grid

are built up as illustrated below for equations (16) and (17) on the C

grid.
LT:) X Yy P
—=u88 +Vv3O + wlo (22)
at x y p
D=8u+d8VvVv +38uw (23)
x y p
Adding gives
80 - it Y
— = &8 (uB) + 8 (ve) + & (wo). (24)
ot x y p

Equation (24) is in conservation form, so that the total amount of 0 is

conserved under advection. Multiplying (22) by 6 and adding (23) gives
~rx ~y ~~p

9 _(%6%) = 5 (ugB) + 5 (vE8) + 5 (wes).
at "2 X y p

| ~eX
where 806 = B(x—%&x)e(x+§6x). This shows that Iez is conserved under

advection. Equation (24) can also be interpreted as an approximation to
the integral of equation (17) reound the grid box, with the rate of change
of 6 being made up of a sum of fluxes. Equation (22) can also be
interpreted as changing 6 by a sum of ‘advective fluxes’, though the
use of the word ‘flux’ in this context is no longer strictly correct. A
wider class of conservative advection schemes can now be constructed by
redistributing these ‘advective fluxes’. These schemes will still conserve
J6é but not IBZ. Thus a fourth order accurate approximation to the first

term on the right hand side of (22) is
7 X 1 3x
-(Us 9) - -(Us 8) .
6 X 6 x

It is possible to construct arbitrarily high order schemes this way.
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The spectral method can be considered as the limit of higher and higher
order centred finite difference methods. It is also possible to construct
shape preserving schemes. Both these topics are treated in the papers by

Smolarkiewicz in this volume.

6. SMOOTHING AND FILTERING

6.1 Grids on the sphere

Almost all finite difference atmospheric models use the latitude longitude
grid on the sphere. The east-west grid-length reduces as the poles are
approached, and the curvature of the spherical polar coofdinate system
becomes severe. Attempts to alleviate this be reducing the east-west
resolution as the poles were approached gave poor quality results. The
standard solution is therefore to retain the full grid, but to remove the
small scales by filtering so that the effective resolution does not
increase towards the poles and the timestep can be maintained at a value
appropriate for the resolution elsewhere. A minimum resolution to be
retained is chosen. The filtering can then be done by Fourier filtering,
where the data are transformed into Fourier components, either truncated
at a wavenumber determined by the chosen resolution or the amplitudes
scaled down above this wavenumber, and transformed back to gridpoints.
Methods of implementing this were compared by Takacs et al. (1981).
Alternatively, linear filters, Shapiro (1975), can be used to achieve the

same effect as scaling the amplitudes of Fourier components.

Another recent approach discussed by Purser (1988) is to retain all the
grid points but to use a ‘skipped grid’ to compute east-west differences,
thus avoiding the timestep restriction. When shape-preserving advection
schemes are used, filtering cannot be used as the properties of the
advection scheme are nullified. These schemes are normally implemented as
a sequence of one-dimensional schemes, and the east-west step has to be
repeated several times with a shorter timestep at the lines of latitude

close to the poles.

6.2 Subgrid models
The subgrid model included in equations (1) to (8) is partly a smoothing

operator and is an essential part of the equations. In gridpoint models,

it also has to do the job of eliminating scales where the finite
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differencing errors are large. For instance, centred advection schemes
give large errors for wavelengths less than four gridlengths. The
inability to enforce boundedness constraints on the advected data can lead
to solutions which become unstable, even if the timestep is within the
limit predicted by linear theory. The use of schemes which conserve the
square of advected quantities, or conserve energy or enstrophy (vorticity
squared) reduces this risk. However, though it may be possible to run a
model which uses these schemes stably without a subgrid model, the results
will not be realistic because the subgrid model is an essential part of
the equations. The use of shape preserving advection schemes implies that
the bounds on the data are preserved. Such schemes alﬁays contain some
smoothing as well, in particular they will reduce the integrated variance
of the data when some of this variance occurs below the scales that can be
resolved by the grid. This allows them to do the job of the subgrid model,

and a separate model is no longer needed.

The smoothing schemes used are wusually either linear filters or
approximations'to analytic diffusion terms. The filters aredesigned to
eliminate the smallest scales completely and low or high order filters can
be used according to how rapidly the effect is desired to diminish as the
scale increases, Shapiro (1975). Lower order filters are usually required
as the resolution of models increases. Diffusion terms can also be of
various orders. The simplest form is V" applied to each variable. Note
that for n>1, such a term is not guaranteed to reduce the total variance.
However, n=2 is the most popular for large scale models. as resolution is
increased it is necessary to choose n=1 to prevent spurious increases of
variance. Nonlinear forms can also be wused. In order to retain
conservation, they should be written in the form V.KV(Vzn) where K is a
data dependent coefficient. Many attempts have been made to derive K from
turbulence theory, but in practice simple schemes seem to work as well as

more elaborate ones in large scale models.
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