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1. INTRODUCTION

Lateral and upper boundary conditions are a major consideration in limited area
modelling. In his pioneering work Charney et al. (1950), Charney (1962) specified V.
everywhere on the boundary and other variables only at inflow points. Specification
here means that data is derived from a source external to the information within
the integration domain. Davies (1973) applied the energy method (see also Oliger
and and Sundstrom, 1978) to obtain sufficient conditions for the uniqueness of the
solutions on a limited area. For the idealized systems considered he shows that to
specify Va everywhere on the boundary and V't, 6, etc only at inflow points leads
to unique solutions. However, we should keep in mind that in this~ type of analysis
the conditions suggested are only a sufficient mathematical condition which limits the
boundedness of the solution. The condition is not unique nor is it necessarily in general

physically correct for the problem at hand.

Simple hyperbolic systems of equations can be analyzed in terms of their
Riemann invarients and characteristic veiocities. The Riemann invarients are the
new field variables resulting from a diagonalization of the linear system of equations.
Sundstrém and Elvius (1979) argue that to insure a well posed solution one should
specify only those invarients whose characteristic velocity is directed into the domain.
All others should be treated using some sort of extrapolation from the interior. Thus,
the number of fields to be specified is equal to the number of inwardly directed
characteristic velocity components. Any larger a set of specification is considered
over specification. Thus, specification of V., at all boundaries is in general over
specification since there will be characteristics associated with the normal velocities

directed outward from the domain somewhere on the boundary.

1 The National Center for Atmospheric Research is sponsored by the National Science
Foundation
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A Riemann invarient analysis is not a tractable under taking for models of any
complexity. As a result modellers have strayed rather far from the formal boundary
condition specifications prescribed by formal matrix analysis. Probably all limited area
meteorological models overspecify their boundary conditions to some extent. Various
boundary zone remedies are employed as a result. Perhaps the pseudo-radiation
condition derives its current popularity from the fact that V. specification can be more
or less limited to inflow boundaries and this has a certain physical attractiveness. The
reviews of Miller and Thorpe (1981) and Hedley and Yau (1988) suggest that this type
of boundary condition has perhaps been the most successful to date in small scale

limited area modeling.

All models, even global, have to consider the upper boundary as z — oo.
Planetary waves on down to gravity waves can transmit energy vertically and without

a proper treatment of this boundary physically erroneous solutions will be obtained.

This paper briefly reviews some of the physical and mathematical concepts
used to derive boundary conditions and then describes some of the recent treatments

of upper and lateral boundary conditions.

2. BASIC CONCEPTS

Linear equations of motion in three spatial dimensions will be used to present
some of the basic concepts used in the formulation of boundary conditions for limited
area models. The anelastic system of equations in the Cartesian framework will be
adopted although this should not affect any of the present conclusions. The equations

of motion are taken as

Du 0

D +wU, = —EB‘(P/P) . (1)

Do 0

D V=g, #/r) (2)
Dw 0

H oy = g, P/P) + gt (3)

and the first law of thermodyna:mics as
D§
Dt
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In (3) p is a mathematical tracer. When g =1 the system is non-hydrostatic and when

p =0 it is hydrostatic. In the anelastic system, mass continuity takes the form

Opu  Bpv  Gpw
6w+8y+az_' (5)

In the above we define

D 0 0 0 '
m—gz-i-Ué;-l-Vay (6)
dénd

and p=p(z), U =U(z) and V=V(z) and § = = §(z).

dz

The Bruint-Vaiséla frequency N is given as N2 = gS In this system the total

value of the various field variables is defined as

S Uger =u + U
Viot =0 4+ V
(7)
Wit =W

Gtot 26(1 + 0)
Equations (1) through (5) can be combined to form the wave equation

D\? 8 /10 D
(BZ) ['U'V +6 ( 62 )]+Dt(a'sz +0'wy V‘mezz wazz)+N2va—0

(8)

For the present purpose it is simplest to assume p is constant (Boussinesq
dlnp

dz

wind shear. Under these assumptions (8) reduces to

approximation) which results in ¢ = = 0 and also to consider cases without

2

(B (s ) g

which is sufficient to solve for w given initial and boundary conditions.
a) Dispersion Relation

The dispersion relation expresses the frequency as a function of the wavenumber

componénts. From this relationship the phase and group velocities can be derived.

Let

w = wet(kz+£y+mz wt) (10)
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and substitutihg (10) into (9) results in the dispersion relation for the present system

of equations

) 2 2
w=kU + 2V + /BN

K2

, (11)

where «%; = k% 4 £ and «? = prd; +m?. The fact that (11) has two solutions at each
point in wavenumber space can be physically interpreted to mean there are waves with

identical wavenumbers travelling in opposite directions.
b) Phase and Group Velocities

The phase velocity is the velocity at which the phase of the wave moves whereas
the group velocity is the velocity at which the energy or wave packet moves. These

quantities are given as

Con = (w/k,w/l,w/m) (12)

. Ow Ow Ow
Cg = (5?5[,5;)- (13)

In terms of lateral and upper boundary conditions it is the direction of the group
velocity which is of prime importance because this describes the direction in which
energy or information is travelling. Consider the two examples of the lateral boundary

and the upper boundary.

At z = 0, the group and phase velocities in the lateral direction are

Ow Nkm?
cg = EE = U:*: m (14)
w N nfg
=y =VERV e (15)

and since components traveling out of the domain are desired the bottom or ”-” sign
is chosen. In the case of two—dimensional hydrostatic motion we find Cg = Cpp =
U — N/m. thus, when N/m > U these wave components will be travelling upstream

and require treatment at the « = 0 or advection inflow boundary. |

Now in the vertical, the group and phase velocities are

Ov _ _Nm [ry

C :-——-::F
7 Om K2 K2

(16)

46



w _(RU+EV) N[5} |

= — = ————— 1
Cph m m m Y g2 (17)

and again the bottom or ”4” sign is chosen to give energy travelling out of the domain.

In the case of two—dimensional hydrostatic motion we find

kN
¢g="—3 (18)
kU kN
o= T 2 - (19

and this time the group velocity is in the opposite direction to that of the intrinsic phase
velocity. This fundamental difference between the phase and group velocity directions
at the upper and lateral boundaries has led to a somewhat distinct treatment between

the two problems.
c) Pseudo-differential operators

Enquist and Majda (1977, 1979) presented a technique to the fluid dynamics
community which can be used to derive boundary conditions which are local both in
time and space. This is an extremely important practical consideration in the design
of boundary conditions. The present procedure has most recently been applied by
Rasch (1986) to the treatment of gravity and Rossby waves in GCM modelling. His

work will be discussed in more detail later.

Consider (9) in its two—dimensional and hydrostatic form

i, 9\ _

where

w =Y ik,z1)e*. (21)

k
Now (20) can be written as
- N
0 : :
where D = — + U —=—. Equation (22) can be factorized as

ot Oz

————-)wzo ' (23)



giving the two solutions
W, + k—]\iw =0 (24)
z _D - *
Substitution of (24) into the horizontal derivative of (1) results in

- Nw
p=t (25)
where the plus sign is chosen to select outward propagating waves. Equation (25) is
the boundary condition proposed by Bougeault (1983) and Klemp and Durran (1983).

This boundary condition will be discussed again later.

A more general application of pseudo-differential operators is discussed in

Enquist and Majda (1977) with respect to the two—dimensional equation

o* 62 b?

and the object is to find a boundary condition at an x=constant boundary. (26) is
rewritten as ‘ | | ’

0 0? 0° 0 0z 0?
( )(

.5;_ ;975_.0_3/2_ —_ )w:O (27)

5z T\ a2 " e

resulting in the two solutions

0 02 02 '
(5o * /58 - 5;;5) pmo 0
or -
(5 o )ul _, =0 (2

as the boundary condition. However, (28) is still a touch abstract for application to

the average model code.

i 2 g2
The following well-posed approximations of /1 — X (where X = 5%5 —(%?) to

zero and first order Taylor series approximation and second order Pdde approximation

are
Vi—X =1
X
VIi-X=1-+ (29)
_X
VI—-X =— 2
2+ %

2
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2
cM:%:MiE FH (17)

m m Y k2

and again the bottom or ”+” sign is chosen to give energy travelling out of the domain.

In the case of two—dimensional hydrostatic motion we find

EN
g =3 (18)
kU kN

and this time the group velocity is in the opposite direction to that of the intrinsic phase
velocity. This fundamental difference between the phase and group velocity directions
at the upper and lateral boundaries has led to a somewhat distinct treatment between

the two problems.
¢) Pseudo-differential operators

Enquist and Majda (1977, 1979) presented a technique to the fluid dynamics
community which can be used to derive boundary conditions which are local both in
time and space. This is an extremely important practical consideration in the design
of boundary conditions. The present procedure has most recently been applied by
Rasch (1986) to the treatment of gravity and Rossby waves in GCM modelling. His

work will be discussed in more detail later.

Consider (9) in its two—dimensional and hydrostatic form

a8\
(5; + Ub-;) By — k2N = 0 (20)

where

w =Y d(k,z1)e*". (21)

k
Now (20) can be written as
- W N? _

| Wy, — k 0= 0 | (22)

g 0 . .
where D = — + U—. Equation (22) can be factorized as

ot Oz

0 kN\/0 EN\._ .
(z+%) G- T)e-0 (23)



giving the two solutions

W, + %V—w = 0. (24)

Substitution of (24) into the horizontal derivative of (1) results in ;

- Nw

p=t (25)
where the plus sign is chosen to select outward propagating waves. Equation (25) is
the boundary condition proposed by Bougeault (1983) and Klemp and Durran (1983).

This boundary condition will be discussed again later.

A more general application of pseudo-differential operators is discussed in
Enquist and Majda (1977) with respect to the two~dimensional equation

0? 0? d?

and the object is to find a boundary condition at an x=constant boundary. (26) is
rewritten as | 7

resulting in the two solutions

or .

(28)

as the boundary condition. However, (28) is still a touch abstract for application to

the average model code.

) 2 o2
The following well-posed approximations of v/1 — X (where X = %5 %2’) to

zero and first order Taylor series approximation and second order P4de approximation

are )
V1i—-X =1
X ;
Vi-X=1-% (29)
9 X
vi—-X = }2(
2+ 5
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which lead to the respective boundary conditions,

(2- .

Oz 0t/ iz=0
(oo ey T
Ozt 012 20y? Ylamo = (30)

(33 1 & _Qf'_+§__6f_>
Fz02  40z0y2 03 ' 40toy?/)"

with the following respective wave reflection coefficients

cos(¢) —1
cos(@) +1

cos(@) — 12
cos(¢) +1

_ ‘cos(q‘)) -1
cos(4) T 11

where ¢ is the angle of incidence of a single wave component. The authors also describe

(31)

how one can apply this theory to non-homogeneous linear wave equations using similar

factoring techniques.

3. UPPER BOUNDARY CONDITIONS

Rasch (1986) lists a number of UBCs suggested by modellers. Four of these are
[ B1] Setting w (in either p or z coordinates) to zero at some finite height

[ B2] Setting w to zero at p=0
[ B3] Choosing a boundary layer which absorbs all energy entering it.

[ B4] Choosing a condition which allows energy to radiate outward at some finite

height

Boundary condition [B1] which is effectively a solid wall condition results in
total energy reflection and [B2] behaves similarly (Lindzen et al., 1968). The reason
[B2] behaves like [B1] is due to the exponenfial mapping (Grosch and Orszag; 1977)

from p to z coordinates. Waves of finite vertical wavelength will eventually reach a

height where they are under resolved and reflected. Rasch (1986) points out that
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[B2] is used in virtually all complex large-scale numerical models of the atmosphere
today. A number of idealized studies such as Bates (1977), Shutts (1978) and Chen
and Trenberth (1985) have found the tropospheric solution to be very sensitive to the

formulation of the UBC.

[B3] is the ’sponge layer’ formulation. In order for the sponge layer to be
effective it must resolve the wave reasonably well (8 to 10 grid points per wave length)
and extend over at least one wavelength. As a result, absorbers of this type are
considered to be very expensive. However, this is not necessarily the case for models
using two—way interactive nesting. The absorber region can empioy about half the
spatial resolution in the three spatial directions compared to that used over the main
area of interest. Combine this with twice longer time steps for the coarse mesh then
the overhead for such sponge type absorbers is closer to the 10 % level. This is the .

approach used in the model of Clark and Hall (1991).

Sponge layers can be of either the Rayleigh friction and Newtonian cooling
type or of the diffusive type where either a horizontal and/or vertical eddy mixing
coefficient is employed. There is a certain level of difficulty in tuning the diffusive
absorber because of the broad range of horizontal and vertical wavelengths in the
general three-dimensional problem. The range of group velocities further complicates
the design of the diffusive absorber. Klemp and Lilly (1978) use this type of absorber
in their two-dimensional mountain wave study and present an analysis on the design
of the absorber using horizontal mixing. Peltier and Clark (1979) also used such an

absorber but with both horizontal and vertical mixing active.

Rayleigh friction and Newtonian cooling is typically treated using a height

dependent 7 where the field variable ¢ is treated as

0¢ 1,

— +..=——¢. 32

ot + 'r¢ (32)
! typically varies from zero at the bottom of the absorber layer and monotonically
-

. 1, .
increases to its maximum at the model top. The maximum amplitude of - is typically
chosen so that the dominant waves are damped to, say, e ™2 of their initial value upon

entering the absorbing layer. In this case, waves of all scales decay at the same rate.
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However, the broad range in group velocities for fully three-dimensional flow affects the
time available for decay and makes the Rayleigh friction absorber also difficult to tune.
Jones and Houghton (1971), Clark (1977), Durran and Klemp (1983), Hoinka (1985),
Clark and Farley (1984), among others, used the Rayleigh friction type absorber in

their gravity wave studies.

Boundary condition [B4] has been used in a number of studies to allow both
gravity and Rossby waves to exit the model top. In describing the use of pseudo—
differential operators, the boundary condition of Bougeault (1983) and Klemp and

Durran (1983)
pNw

(33)
| k]

p=

was derived where p and w are the horizontal Fourier components of p and w. The
major assumptions under lying (33) is that the flow is hydrostatic, Boussinesq with
no Coriolis force. It has been found to be quite useful in the application to smaﬂ
scale gravity wave flow. However, for larger scale problems one needs to consider both
gravity waves as well as waves involving Coriolis effects. One also needs to eventually
consider the spherical geometry of the earth. As a first good step in this direction Rasch
(1986) developed an UBC for a linear §—plane PE model which considers both gravity
and Rossby waves. He also demonstrates the utility of the scheme in an application

to nonlinear quasi~geostrophic model.

The linear equations of Rasch’s model are

(io —ie/2)x —d = —$/f (34)
(1o —ie/2)d +% =0 | (35)
iog/f —ghFx =0 | (36)

where ¥, 1 and ¢ are the Fourier coefficients of the velocity potential, streamfunction
and geopotential, respectively. € = fyk/(k* + ¢*) where k is the zonal and / the
meridional wavenumber. F = m?/f? where m? = k% 4 ¢% and h is a separation

constant given by
o _of (o~ e/2) - 1]
g m? (o0 —€/2)

(37)
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which is used to distinguish between gravity and Rossby waves. Now ¥, 1,5, q~5.as well

as W are functions of 2z and ¢ such that

X = xV(2)ef* (38)
where
Ve = Vo + —S;V =90 (39)
zZz z gh -
which has a solution of the form
V= V+e(%+i")‘ L V_eliTiMz for n2s 0 (40)
and
V=Upel3tmz L g_eG-m= for n2 <0 (41)

where n is the index of refraction and is given by
n = sgn(c)(S/gh — 1/4) (42)

and
p=(1/4—5/gh)*. (43)

The V, term in (40) corresponds to upward propagating energy and the analytical

boundary condition is given as
£z = (1/2 +1in)¢ (44)

where £ is any of (x, %, ¢, w). The Rossby regime corresponds to ¢ ~ ¢ << 1 in (37)

in which case
o

v T2 o)

and the gravity wave regime corresponds to the solutions of (37) where ¢ >> € and

(45)

gh = (¢ —ec —1)/F. (46)

(45) and (48) result in the following approximations for n

sgn(0)VSF((¢/2 ~0)/a]7 |0 < O(e) < O(1)

0 o] >> O(e) (47)

TLRA%{
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e A {sgn(a)\/ SF(0? —ec —1)"Y2  |o| > 0(1) (48)
R o] << 0(1)
npa and ngy are approximated as |
npa = VSF(1 = 8)/(Fo + 716 + 7,6?) (49)
where & = 20/¢ and
V.SF
nga = /(905 + g2) (50)

Vi
where & = (0 — €¢/2)/n where n = m The coefficients 7y,71, 72,90 and g,
are calculated by minimizing the respective reflection coefficients over the intervals of
01 <& < .9and .3 < 57! <.99. The total value of n = npy = npy + nga is
used in (44). Thus, ny4 is an approximation to (42) valid for gravity and Rossby
waves in a form which allows conversion from wavenumber/frequency domain to
wavenumber/time domain. The final equations in the wavenumber and time domain

are of the form )
_ 5 i o o
‘5%“5/2= VSF(71 + T2 + §1 + §2)

b5} -

591 = b+ fn)g; — fp;€ j=1,2 (51)
0 . W E ea - . '
57 = bBi€ —igiT)  j=1,2

where ¢ represents any of the Fourier coefficients of (X, %, ¢, ), 7; and §; are new
vé.ria,bles and p;, pj, £; and Z; new constants. Tests using (51) indicate accurate
solutions for both gravity and Rossby waves. A considerably more complex system
would be required to accurately treat the full range of gravity, Rossby and Kelvin
waves on a spherical earth. This paper of Rasch represents an excellent guide to

future endeavors in this area.

4. LATERAL BOUNDARY CONDITIONS

In his review paper, Davies (1983) discusses four types of lateral boundary
conditions commonly used by modellers. Following Davies,” the schemes will be
introduced in terms of the simple one-dimensional equation for the Riemann

invariant,u, and characteristic speed,c.
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i) Diffusive damping

Ut + ety = (Vg (52)

which is applied over a boundary zone. This scheme must be uniformly applied
to all variables to work effectively (e.g. Israeli and Orszag, 1981; Davies, 1983).
Diffusive damping is a convenient approach to alleviate noise generated in the vicinity
of the lateral boundary due to over specification or inappropriate boundary data (e.g.
Burridge, 1975; Mesinger, 1977). The width of the boundary zone should be small
compared to the wavelength of the basic system. Otherwise, signiﬁcant damping and
minor phase modification of incoming fields can occur. In models which use interactive
nesting techniques (e.g. Clark and Farley, 1984) a zone of diffusive damping of two
grid point width is used to absorb the smallest scale waves which are unresolved in

the outer domain and as a result reflected at outflow boundaries.

i) Tendency modification

ug + cuy = —y(u — @), (53)

which is applied over a boundary zone. The tendencies are assigned a weighted average
of externally specified fields and internally determined fields such that the weighting
associated with the external field varies from one at the boundary to zero at the
inner extremity of the boundary zone (Kessel and Winninghoff, 1972; Perkey and
Kreitzberg, 1976; Fritsch and Chappel, 1980; Maddox et al. 1981). In addition to the
tendency modification the fields are also subjected to a spatial filtering procedure in
the boundary zone. In this system @ = #@(z,t) is prescribed and is itself a solution to

the governing equations. It follows that the equation for «' = u — @ takes the form
uy +c*ul =0 (54)

where ¢* = ¢/(1++) and v varies from zero in the interior to infinity at the boundary.
The u' field is advected along at the modified speed c* Which‘reduces to zero at the
boundary. Energy ,(u'z), accumulates near the boundary and is extracted using spatial
filters. However, as Davies(1983) points out the spatial filters are applied to v not u'
which again means that the spatial filters must be applied over a narrow zone to not

significantly damp the solution.
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Davies (1983) presents an analysis of the reflection characteristics of the
tendency modification scheme. The results of his analysis will be presented here.

The approximation to (54) is taken as

1'1.+1 n—1

uiT =T —a(uf, —uiy) (55)

~ where a = ¢*At/Az and @ = a3 in L; and a = @3 in L. The solutions .to (55) are

assumed to take the form

in Ly: uy= e ikix—wt) 4 r(_l)jei(kx+wt)

in Lp: uy= e ~ilkax—wt)

where r and T are the reflection and transmission coefficients, respectively. From (55)

we find

koAz =0, = sin"'[a; sin(wAt)] for s=1,2 (57)

and in terms of 6,

_ |sinf; — sinb, ]|

T 14 cos(8; +62)

7]

(58)

Figure 1 shows a reproduction of Fig. 3 from Davies (1983). In Fig. 1 (a) we see a
graphical depiction of the solution to (57) and in 1(b) we see |7| plotted against incident
A and AX/). It is interesting to note from this analysis that when oy lsin(wAt) > 1

there is total reflection. The general reflection characteristics are shown in Fig. 1b.
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Fig. 1 Reflection characteristics (Davies, 1983) of the tendency modification scheme.
(a) shows the relationship between Courant number, frequency and wavelength
according to (57). (b) shows the reflection coefficient versus incident wavelength

and fractional change in wavelength.

Reflection is certainly a short coming of this scheme. As a wave approaches the
boundary - increases and the wavelength decreases. This scheme then corresponds
to changing the 'refractive index’ of the computational system and can act to trigger
a reflected wave. However, the 2Az oscillatory nature of the reflected wave makes
it particularly amenable to spatial filtering. Iﬁ the case of application to cases with
gravity waves one would have to take care to ensure that the refractive index changes

due to the scheme do not adversely compete with those of the medium.

iti) Flow relazation
ugtcuy, = —K(z)(uw — @) (59)
which is applied over a boundary zone (Davies,1976; Kallberg and Gibson, 1977a,b;

Lepas et al., 1977; Gauntlett et al., 1978; Ninomiya and Tatsumi, 1980; Leslie et al.,
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1981; Richard et al., 1989). Davies (1983) presents analysis which indicates that to
effectively damp an outgoing wave using a boundary zone with a small constant value |
of K, the zone must be excessively wide. An alternative to this design problem is to

allow K to vary across the

0.3 f
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L 1 [ W O B T ¥
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RELAXATION PARAMETER K¢

Fig. 2 Reflection coefficient (Davies, 1983) for the tuned flow relazation scheme.
K! = K;Az/c where K; is the coefficient, Az the grid size and c the phase
speed.

boundary zone. The added degrees of freedom gained by permitting a spatial variation
_in K allows up to (s — 1) points of zero reflection for a boundary zone terminating
at j = s (K =0 for 7 < 0). He describes a procedure for funing K} (=KjAz/c) for
the case of wAt << 1. Values of K} for 0 < j < s are determined in terms of K.
Fig. 2 (Fig. 6 from Davies, 1983) shows the reflection coefficient versus K. Note the
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significant improvement going from s = 4 to s = 5. This particular analysis was for
the scheme

wP =} - a(ulyy - uly) - Kult o (60)

Tatsumi (1980) has shown that adding a diffusion relaxation term can improve the

scheme’s performance.
iv) Radiation condition

Presently, this is probably the most popular method of treating the open
boundary condition in limited area modelling. There is a wide range in level of
approximation when describing the various radiation conditions. Béland and Warn
(1975) rigorously apply the radiation condition to horizontally propagating gravity
waves. Bennett (1976) gives examples of the rigorous treatments of inertia—gravity
waves, barotropic Rossby waves and non-hydrostatic internal gravity waves. kThe‘
rigorous approach using Fourier and Laplace tran;forms demands a tremendous
amount of computer memory because of the non-local nature of the problem. As
already discussed, the pseudo-differential operator technique of Enqulst and Ma_)da.
(1977) prov1des an attractive approximate method of avoiding the storage intensive
history term. To demonstrate the non-local nature of the problem consider Béland

and Warn’s time-dependent linear Rossby wave equation

8 _ 9 8
(ngﬁ’éz)vir¢+ﬂ5;¢=0,‘ - - (61)

and let ¢ = Y ¢4 e**® which reduces (61) to the form

+ zkc '
- Bt___". —_
¢k < 2 ik >¢k 0 (62)

where ‘c,. =4 — B/k? and if we apply Laplace transforms I‘% — p results in

0 p+tke.\/ 0 p+ike.\
‘,(5;+k~/‘vp+ikﬁ><3y—kv p+ikﬁ)¢k_0' : (63)

The ’r’adiation condition is then

a 7 P+’ch-,-
5§¢k+k” Tk gy = | : (64)
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for y — oo. Using inverse Laplace transforms it is possible to show that (64) has the

solution ,
(%qbk + ko = O/q,’)k(‘r)Wk(t —71)dr (65) |
where ‘
Wi(t) = & caplik(a - 2 La )t]{Jl( Bty i, g;)} (66)

The right hand side of (65) is the history term which requires the storage of boundary
data of ¢ for all time. Contrast the complexity of (65) against a first order Taylor

series approximation of (64) using pseudo-differential operators which results in

§t+zku)(——¢k+k¢k) = Dy, )

Equation (67) assumes f < 2k+/p? + k%42 and is, to my knowledge, an untested

radiation condition.

The next level of approximation is perhaps that of Pearson (1974) where he
applies a Sommerfeld condition to the vertical Fourier modes of the stream function,
i.e.

¥(z,2,t) = Re Z 'Z'm(‘v,t)eimz « (68)

and it is found that each vertical wavenumber m satisfies an equation of the form
0 - 0 -
a Pm a ¥Pm = 9

where ¢, = N/m for a non-rotating hydrostatic two-dimensional system. Adding
a mean flow speed @ to Pearson’s system simply modifies ¢, —+ ¢ + #. However,
adding rotational, non-hydrostatic or three—dimensional effects severly complicates

the problem.

Klemp and Wilhelmson (1978) suggested a ’fixed phase speed’ approach to

treating the Sommerfeld condition
— 4+ Cp—=0 (70)

Here they fix the phase velocity, Cy, for the field ¢ to an over—estimate based upon the
argument that the skewness of the reflection coefficient results in lower values for over—

predictions than for under—predictions. This method does not consider any vertical
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or horizontal eigen function decomposition of ¢. In testing this type of scheme, Clark
(1979) and Hedley and Yau (1988) found significant variations in interior solutions due
to run away circulation using different values for the phase velocity associated with

(70).

Orlanski (1976) also assumed a Sommerfeld radiation condition of the form
(70) holds for the various field variables at the z=constant boundary. The phase
velocity, U, is locally calculated without performing any vertical or horizontal eigen
mode decomposition as in, say, the scheme of Pearson(1974). Analytically, then, this
scheme is likely to be exact only in the idealized case of two—dimensional, hydrostatic,
non-rotating flow for the case of a linear mean flow plus a single wave component.
Comparing with Pearson’s scheme the exact a,nswebrkonu‘ld be Cy = it N/m providing
the phase is directed out of the domain. Numerically, Orlanski approximated (70) using

the centered in time and space approximations

wt1 _ (L= (At/Az)Cy]

s oAt/ Az)C,y
i T L+ (At/A7)Cy]

[T+ (At/A=z)Cy) ¢5-1 ()

¢i 7+
where L, :
_ [ ?_] - ¢?:1 Az

(671 + 657 — 67751 24t

which are designed to minimize the excitation of computational modes. An erroneous

Cs = (72)

analysis was presented by Orlanski (1976) which claimed to show that (71) and (72)
resulted in an exact numerical solution for the idealized case described above. These
equatiéns are in fact nonlinear and one has to take care when keeping track of the real
and imaginary parts of ¢. See appendix for an evaluation of the reflection coefficient:
for the general Orlanski type schemes. As shown in Miller and Thorpe (1981) all the

numerical schemes they tested of the above type had significant reflection coeflicients.

Miller and Thorpe (1981) present an interesting comparison between the
Orlanski(1976) leap—frog formulation of the pseudo-radiation condition and an

upstream formulation which they formulate as
$77! = ¢7(1 - &) + Eu iy (73)

for the upstream formulation and

TS [ N e
G = () T+ ()9 (74)
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for the leap frog formulation where éy and é; are the extrapolation coefficients for
the upstream and leap—frog formulations, respectively. They present analyses on 10
different schemes using a combination of temporal and spatial derivatives. They also
present cases elilninatillg the tempoi'al derivative by assuming a single wave solution.
Their results indicate that the radiation 'conditions give the lowest order truncation

€rror.

Hedley and Yau (1988) present a two—-dimensional contour plot of C'y using (72)
which shows a significant level of noise. Figure 3 shows a reproduction of their Fig. 12.
Raymond and Kuo (1984) show that the range in calculation of Cy using the Orlanski
approach is between plus and minus infinity as a direct result of substituting ¢ which is
multi-dimensional in a formula that only allows for advection in one dimension. They
introduce a condition suitable for multi-dimensional flow baseci upon

6¢+C ¢+C % _

ot oz = Yoy (75)

and describe two approaches to finding C, and C,. One is based upon extrapolation
and the other upon using the governing equation. On a topic related to the
dimensionality issue, Bennett and Kloeden (1978) point out that flow tangential to

the boundary is a cause of severe boundary problems.

Raymond and Kuo found some significant improvements using the multi—
dimensional formulation of C; and C,. This was particularly true for the constant
advection and barotropic vorticity equation. Their results for a cold front case were
not as convincing due to the lack of multi-dimensionality of that problem (by Hedley

and Yau, 1988).
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Fig. 3 Horizontal phase speeds, Cy, from the cloud simulation of Hedley and Yau
(1988). Contour interval is 10 m s~'. Dashed lines indicate negative values.

5. SOME FURTHER ADJUSTMENT PROCEDURES

i) Relazation of tangential velocity components and potential temperature at Inflow

Boundaries

When simulating flow with a limited area model there are a number of boundary
condition problems that occur which are due to internal generation of waves of various
types. This is particularly a problem for calculations bounded by orography. Some
annoying examples are boundary conditions leading to the anomalous production of
vorticity and/or an updraught or downdraught which clings to the inflow 'wall’. In
order to allow information to enter the integration domain we desire a specification of
the tangential velocity components and 8 at inflow boundaries. A direct specification
using external data or some prognostic procedure can lead to sharp gradients of these

variables across the boundary so a relaxation to specification is sometimes used to
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alleviate this problem.

One relaxation scheme used by Kurihara and Bender (1983) is to relax v and

v towards their prescribed reference values,

u?ill = (1 - e)uj_, + el (