SOFTWARE ENVIRONMENT FOR nCUBE MASSIVELY PARALLEL SYSTEMS

Matthew Hall
nCUBE U.K. Limited

ABSTRACT
The traditional supercomputer market consists of very fast sequential
systems, whose software environment is well understood. These systems
however have serious limitations:

* Their speed is limited by the physics of silicon.

* They have limited scalability.

* They are very expensive.

The nCUBE system is a scalar "masssively parallel]” computer. It
incorperates a network of between 32 and 8,192 general purpose
processing nodes. This approach offers a system that is highly scalable, has

a relatively low cost, and does not approach the physical limits of silicon.

Programming an nCUBE system is very similar to that of sequential systems
however to achieve scalability the implementation of the algorithm would
require adaption to a parallel environment. Normally this involves

partitioning and also communicating between nodes.

In many cases the "parallel code" will be almost idential to its equivalent

"sequential code" this is illustrated in the text.

1. INTRODUCTION

Traditionally, the computer industry has offered ever faster, more
distributed, more compact implementation of conventional, sequential
computers - those which process a single instruction at a time, in a serial
sequence. The programming of these machines is well understood, but

their ultimate performance is limited by the speed of integrated circuits.

The low end of performance in traditional computers is represented by
minicomputers and workstations. A more aggressive solution is offered by
mainframes and, more recently, vector processing supercomputers - those

which process ordered sets of data simultaneously.

104

These traditional solutions has serious limitations:

* Limited Speed - Maximum throughput is limited by the physics of silicon.
* Limited Scalability - At best, these systems have only limited ability to
expand. Some of them can be expanded into tens of processors working
together, but not into hundreds or thousands of processors.

* Poor Reliability - With few processors and tightly coupled (shared)
memory, the systems have poor reliability. Component failures often have
global effects.

* High Cost - System cost is high, measured in terms of performance.
Typically, the systems have many components which frequently use exotic

and expensive materials. Both initial cost and maintenance cost are high.

2. The nCUBE ARCHITECTURE

The nCUBE hardware architecture is based on a scalable network of
between 32 and 8,192 general-purpose processing nodes and one or more
UNIX-based hosts. The hosts are connected to the nCUBE network by I/O
nodes, which are themselves built around general-purpose nCUBE
processors. Both distributed and shared I/O are supporied. I/O services can

be provided directly by the I/O nodes or through the host.

The nCUBE system uses a multiple-instruction, multiple-data (MIMD)
architecture in which each processor operates independently on the
programs and data stored in its local memory. Each processing node runs
like a stand-alone sequential computer, with up to 64 MBytes of local DRAM
memory. The processing nodes coordinate their activity by communicating
with each other and with the host. The data and control messages are passed
on high-speed DMA communication channels supported by hardware
routing, a routing method that is faster than store-and -forward methods.
Any node can communicate via DMA with any other node on the network,

including I/O nodes.

The host workstations serve as operator interfaces to the nCUBE network.
Hosts can share their memory and 1/O resources with the processors in the
network. For large problems, a single host can use all the processors and
memory in the nCUBE system. Alternatively, the nCUBE can be divided into
subsets of processing nodes that are dedicated to individual hosts in a multi-

host environment, in such configurations, computations and message

105

passing by one user are completely protected from other users on the

network.

The topology of the nCUBE network is a hypercube - an n-dimensional
cube. The processors in the hypercube can be imagined to lie at the nodes
(vertices) of the cube, and neighbouring nodes are linked along the edges
of the cube by the message-passing communication channels. Each node is
therefore linked to its n neighbouring processors, and the entire

hypercube contains 2™ processors.
Yy

nCUBE systems are expandable. Two nCUBE networks of the same dimension
can be merged to form an nCUBE network of the next higher dimension. A

single system clock drives all the processors.

3. STRUCTURING PARALLEL APPLICATIONS

The application algorithms that run on each nCUBE processing node are
identical to those that run on sequential machines. To achieve efficiency,
however, some parts of the programs that implement these algorithms need
adaptation to the parallel environment. Typically, this involves two things:
* Partitioning the data and/or code among the nCUBE processors.

* Communicating between nCUBE processors and with the host.

! »

Partitioning 0 /““—'—> 4

Communicating

Figure 1

106

Before processing begins code and data nced to be downloaded to the local
memory in the processing nodes. During processing, partial results
obtained at the boundaries of partitioned data or code in each node may

need to be communicated to neighbouring nodes.

nCUBE library functions automate or simplify partitioning and
communication. In applications such as matrix and finite-element
problems, these library functions automatically perform the appropriate
partitioning and interprocessor communication. Downloading of code and
data to the local processors is also performed automatically. The examples to
follow demonstrate a few of these nCUBE library functions. All standards
UNIX, FORTRAN, and C functions can be used. nCUBE also provides
extensions, including cross-compilers, high-level runtime environments,
and support for the automated code-producing tools from third-party

vendors such as ParaSoft and Pacific Sierra Research (PSR).

You can combine sequential and parallel operations. Portions of your
application that cannot conveniently be partitioned and do not require
maximum processing efficiency can be left intact and run on a single
nCUBE processor without modification. Such an approach may minimize

software development time at only a modest cost in processing time.

3.1 Partitioning

To 'run efficiently in a parallel environment, a sequential application must
be partitioned (or decomposed). This involves dividing the data and/or code
among the available or allocated nCUBE processors. It may also involve
changing DO-loop limits, array dimensions, and subroutine parameters So

that each processor can operate on a subset of the data.
There are two basic approaches to partitioning:

Partition the Data - Divide the data for a program among the available
nCUBE processors so that each processor's subset of data is processed by
identical copies of the program. This is also referred to as parallelism by
data. Examples of data partitioning include:
* Each processor handles fixed sub-region of the total data region.
* Each processor handles a subset of the total-data, wherever the

data are located in the data region.

107

* Each processor handles a variable-sized sub-region of the total data

region, with the same number of data in each region.

Partition the Program - Divide the instructions in a program among the
available nCUBE processors so that each processor's subset of instructions
processes all of the data. This is also referred to as parallelism by function.
Examples of program partitioning include:

* Some processors handle only I/O.

* Some processors handle only the user interface.

* Some processors handle only database searches or data

reformatting.

The nCUBE library functions follow general rules for partitioning. These
rules apply to all programs, including non-standard programs whose

partitioning cannot be automated by library routines.

Balance the Computation Load at Each Processor - Efficient parallel
applications use approximately the same processing time on all processors.
By partitioning problems so that each processor has a similar processing
load, some processors will not be idle while others are processing.

Balance the Memory Usage of Large Data Structures - Look at the large
read/write data structures. If these structures are the main objects of
computation, if they can be partitioned so as to give a balanced share of
processing to each processor, and if they can fit within the memory
available at each nCUBE processor, then an efficient parallel application

can usually be based on their partitioning.

3.2 Communication

Communication is often required to

* Download applications from the front-end processor to each nCUBE
processing node.

* Exchange data between the processing node at data-partition
boundaries.

* Exchange messages between the processing nodes at function-
partition boundaries.

* Upload results from the processing nodes to the front-end

processor for final assembly and presentation. -

108

As in partitioning, nCUBE library functions automate or simplify these
programming tasks. For example, nCUBE library functions perform such
things as global summations across all processors, using a logarithmic
broadcast tree which is transparent to the programmer. All nCUBE
processors are networked together by DMA channels with hardware
routing. Gray codes are used for processor addressing although nCUBE

library functions make these details transparent to the programmer.

nCUBE systems are well-suited to the loosely synchronous method of
communicating between processors. In this method, the activities of all
processors are synchronized through paired writes and reads. A source
processor writes to the destination processor, and the destination processor
then reads the message. The read is blocking; it prevents further
processing until it is finished, thereby ensuring that the application runs
in an orderly manner. The synchronization occurs when processors are
both senders and receivers, as in regular matrix applications where

submatrix boundary data is exchanged.

Not all parallel applications need interprocessor communication. Our first
example in the next section does not use it, because the partitioned data sets
are not interdependent - that is, they do not have boundary conditions that

must be communicated to neighbouring processors.

The nCUBE library functions follow general rules for communication.
These same rules also apply in complex applications whose communication

routines cannot be fully automated:

* Minimize the Communication-to-Computation Ratio - Keep interprocessor
communication time small, relative to computation time. One way to do this
is with the proper choice of partitioning. Depending on the application,
this may imply partitioning in which each partitioned part of the data or
code involves a large amount of computation but the number of partitions
is small (to minimize communication between partitions). It may also imply
partitions which are simple in their geometry - forming whole objects or
whole procedures rather than parts of objects or procedures. The Laplace
equation example shown in the next section can achieve a communication-
to-computation ratio of approximately 1% by making each data partition a

submatrix of at least 30 x 30 data points. Rations considerably higher than

109

this can still achieve very efficient performance compared with
conventional sequential processing, but lower ratios usually in better

performance.

Keep Closely Related Objects on Neighbouring Processors - Messages passed
between neighbouring processors move somewhat faster than messages
between non-neighbouring processors. This is because neighbouring
processors are directly connected by a dedicated communication link.
nCUBE library functions can automatically map data onto processors so that

neighbouring partitions are located in neighbouring processors.

4. PROGRAMMING EXAMPLE

4.1 Laplace Egquation

This example solves the Laplace equation using a simple finite-difference
algorithm. In the parallel version. the data matrix is partitioned into
submatrices and loaded into the appropriate nCUBE processors by a library
routine. This example is loosely synchronized by interprocessor
communication at the boundaries between submatrices. Again, a library

routine handles the communication.

There are, of course other ways to partition data. For example, the matrix
could have been partitioned among the nCUBE processors one-
dimensionally, as a stack of rows. Alternatively, the boundary dedicated
only to that aspect of the calculations, while the remaining processors

handle only interior points.

4.2 Sequential Version

The sequential version begins by declaring the parameter, 32, used in
dimensioning the x and dx matrices for memory allocation. Then the solve

subroutine is called and the program ends.

The solve subroutine dimensions and initialises its own working matrices, x
and dx , and iteratively fills them with the finite-difference calculations.
First the dx increments are calculated, then the results are used to update

the x matrix.

For simplicity, the program ends by printing only one value - that of the

grid point, (n/2+1,n/2), which is one grid point away from the centre of

110

the data matrix. A real application would output to a graphics plotting

program or disk file.

c Sample program to execute simple finite difference algorithm
c SEQUENTIAL VERSION
c Allocate memory
parameter(n=32)
dimension x(n+2,n+2),dx(n,n)
c Execute the algorithm:
call solve(x,dx,n)
end
subroutine solve(x,dx,n)
dimension x(0:n+1,0:n+1),dx(0:n,0:n)
alpha = 0.25
do 30 iter=1,10
do 10 j=1,n
do 10 i=1,n
10 dx(i,j) = x(i-1,j) + x(1,j+1) - 4. * x(1,j) + x(@,j-1) + x(@{+1,j)
do 20 j=1,n
do 20 i=1,n
x(1,j) = x(i,j) + alpha * dx(i,j)
if (i .eq. n/2 .and. j .eq. n/2) then
x(1,j) = 255.
endif
if (1 .eq. n/24+1 .and. j .eq. n/2) then
check = x(i,j)
endif
20 continue
30 continue
write(*,*) 'check = ',check

end

111

4.3 Parallel Version

In the parallel version, a new parameter, m, serves to dimension the x and

dx matrices for memory allocation on each processor.

The divsqu library routine - which is specifically designed for square, two-
dmensional regions - decides how to partition the x and dx matrices into
submatrices and then loads these submatrices into the memories of the n
processors. The divsqu routine also defines ilo, ihi, jlo, and jhi to be the
boundaries of the data region in a particular processor. Then, the solve

subroutine is called and the program ends.

The only changes to the solve subroutine are an include statement, the
array indices, and the call to the getedg library routine. The include
statement declares the ilo, ihi, jlo, and jhi array indices in a common block,
utln.hf. The getedg library routine updates all of the boundary values for
the local region by exchanging data between neighbouring processors in

the two-dimensional mesh, as determined by the previous call to divsqu.

The program ends in the same way that the sequential version ends, except
that a check is made for zero values. This ensures that only the processor

that is computing the grid point, (n/2+1,n/2), prints its result.

c Sample program to execute simple finite difference algorithm
c PARALLEL VERSION

c Allocate memory
parameter (n=32)
parameter (m=32) ... added parameter

dimension x(m+2,m+2), dx(m,m)
call divsqu(n) library routine - partition data
c Execute the algorithm

call solve(x,dx,n)

end

112

subroutine solve(x,dx,n)

$include(utin.hf) ..., common variables

10

20
30

dimensions x(ilo-1:iho+1,jlo-1:jhi+1), dx(ilo:ihi,jlo:jhi)

alpha = 0.25
do 30 iter=1,10

call getedg(x(ilo,jlo)) library routine - comm. data

do 10 j=jlo,jhi
do 10 i=ilo,ihi

dx(ij) = x(-1j) + x(j+1D) - 4. * x(ij) + x(@i,j-1) + x(i+1,)

do 20 j=jlo,jhi
do 20 i=ilo,ihi
x(i,j) = x(i,j) + alpha * dx(i,j)
if (i .eq. n/2 .and. j .eq. n/2) then
x(i,j) = 255.
endif
if (i .eq. n/2+1 .and. j .eq. n/2) then
check = x(i,j)

endif
continue
continue
write(*,*) ‘check = ',check

end

113

