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Abstract

We compare implementations of a multigrid method and a spectral method
for solving the Helmholtz equation on the sphere on the Intel iPSC/2 dis-
tributed memory parallel computer. Solving Helmholtz equations is the heart
of any semi-implicit time-stepping scheme in a global weather model. The
multigrid solver employs a full multigrid solution scheme and longitudinal line
relaxation smoothing. The spectral method uses spherical harmonics as basis
functions, employing rhomboidal truncation and symmetric-antisymmetric de-
composition. Benchmark results, together with analysis of parallel speedup and
efficiency, are presented for both scalar and vectorized versions of the codes.

1. INTRODUCTION

Weather forecasting has always required a lot of computer power. Weather centres
have been using the most powerful computers available from the pioneering experi-
ments on the ENIAC till current supercomputers. Today, global weather forecasts are
being computed on vector supercomputers, with a small number of concurrent pro-
cessors sharing a global memory and delivering a performance up to a few Gigaflops
(Simmons and Dent 1989 , Dent 1992). Recent developments in computer technology
suggest that in the relatively near future the most powerful machines will make use
of more massive parallelism. They may well have on the order of several thousand
interconnected processors equipped with local memories and their peak performance
may soon reach a Teraflops. This all motivates the study of parallelization strategies



for algorithms relevant to weather models, and their implementation on distributed
memory systems.

The weather models themselves have undergone several developments during the
last two decades. One important direction has been the movement towards more
implicit time-stepping schemes. By now, semi-implicit discretizations of both grid-
point and spectral models (Robert 1969 , Kwizak and Robert 1971) have been widely
adopted in operational models. Spectral models have been adopted in many centres,
due to their accuracy and the absense of pole problems. These models have been
recently improved by combining semi-Lagrangian advection techniques with the semi-
implicit discretization (Robert 1981, Robert et al. 1982, Coté and Staniforth 1988,
Ritchie 1988, 1990). Semi-Lagrangian techniques combined with a better handling
of pole problems are also renewing the interest in grid-point models (McDonald and
Bates 1989, Bates et al. 1990). A common feature of all semi-implicit models is the
necessity of the solution of at least one Helmholtz-type equation every timestep.

The purpose of the present work is to examine techniques for the parallelization
of spectral as well as grid-point Helmholtz solvers on distributed memory parallel
machines. This can be viewed as a kernel problem for the parallelization of global
weather models. Our aim here is not to exhaust all possible strategies for paralleliza-
tion, but rather to derive reasonable approaches based on general considerations. Qur
implementation makes use of some parallelization tools (Hempel 1987, Bomans and
Hempel 1990), which simplify the job and give some portability to the codes. We did
not attempt to specifically tune the programs for running on the iPSC/2, the machine
used for benchmarking. ~

The Helmholtz solvers chosen for our experiments were a spectral method, using
spherical harmonics with a rhomboidal truncation (Machenhauer 1979 , Orszag 1970)
and a full multigrid algorithm (Barros 1991). The choice of the spectral method
is standard, with the exception of the truncation. Full rhomboidal truncation was
preferred (instead of a 2/3-triangular truncation) for convenience, since it leads to
a perfect load balance and since in a linear problem like the Helmholtz equation,
aliasing is not a problem. Multigrid was chosen as the grid-point solver because of its
optimal complexity (which makes it very fast) and because of its broader applicability,
since it is not very sensitive to small changes in the equation form (Barros et al 1990).
These solvers are described in Section 2, followed by a description of the parallelization
strategies in Section 3. Our benchmark results on the iPSC/2 are presented in Section
4. Some conclusions are presented in Section 5.

2. THE HELMHOLTZ SOLVERS

2.1 The Full Multigrid Solver

In this section we describe the multigrid method (cf. Barros 1991 ) used in our



experiments. The Helmholtz equation
—Autcu=f (1)

on the unit sphere is discretized through centered finite differences on a latitude-

longitude grid, which includes the poles as grid-points. Written in spherical coordi-
nates (A, 8), (1) reads
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In spherical coordinates the mesh is chosen to be rectangular and uniform. The mesh
parameter h in spherical coordinates is defined by the relations A = 27 /Ny = 7 /Ny,
where the numbers Ny and Ny denote the number of grid-points on each latitude and
longitude. N, and Nj are chosen as powers of two, which obeys the relation Ny = 2N,
implied above. This is convenient for the coarsening process in the multigrid scheme
and favors a good load balancing on hypercubes. The discretization leads to five-point
stencils on the regular grid-points. At the poles, an integral form of the equation is
used for the discretization. The resulting formulas relate the average of the solution
at the first latitude line closest to the poles to the solution value at the pole (see
Barros 1991 for details).

In the multigrid method a sequence of coarser grids is introduced, each one ob-
tained by doubling the meshsize of the previous finer grid. We denote these grids
as G (finest grid) to Gy, (coarsest grid). G, is chosen as a uniform 45 degree grid,
having thus 8 x 4 grid points.

The equations are solved to the level of the truncation error through a full multi-
grid scheme. In this procedure, the equation is first solved on the coarsest grid G,,
through several relaxation sweeps. The solution is then interpolated (through bicubic
interpolation) to Gy,-1, where it is used as a first approximation to the solution. A
multigrid V(1,1)-Cycle is then performed to compute the solution on this grid. This
process of interpolating the solution from G; to obtain a first guess on G;_; and then
computing the solution on G;_; through a V(1,1)-Cycle is repeated until the solution
on the finest grid G, is obtained. The fast convergence of the V(1,1)-Cycles (one
cycle reduces the residual to less than 10% of its initial value, independently of the
meshsize) allows the use of just one cycle on each level of the full multigrid proce-
dure to obtain a solution with an error smaller than the discretization error. The
computational work of the whole procedure is linearly proportional to the number of
unknowns on the finest grid.

A V(1,1)-Multigrid cycle (on grid G;, i < m) comprises the following steps:
e Application of one relaxation sweep to the current approximation @; on G
(producing i)

e Evaluation of the residual r; = f; — L;@i; on G; (L; stands for the discrete
operator on G;)



o Residual transfer to Gy, producing fiy; = I,-i+1r;, where If"'l is the transfer
operator

¢ Solution of the equation L;{1ui41 = fi41 either through one V(1,1)-cycle starting
with @;41 = 0 (if 4+ 1 < m) or through several relaxation sweeps (if i + 1 = m)

e Interpolation and addition of the coarse grid correction u;;;, producing @; =
i + Iy uin

e Application of one relaxation sweep to @;, producing u;

Our multigrid solver employs a zonal line-relaxation, where we solve simultane-
ously for all the unknowns common to a latitude circle. A cyclic tridiagonal system
has to be solved for each line. Each relaxation sweep is performed zebrawise: the
odd-indexed lines (including the poles and the equator) are relaxed first, followed by
the even-indexed lines. This order not only gives a better smoothing of the error, but
also enables the parallelization of this part of the algorithm. The relaxation can be
performed independently on each odd-index line, and then on each even-index line.
After a complete relaxation sweep the residuals vanish (and therefore do not need to
be computed) at the even lines. This fact is used in the evaluation and transfer of
residuals. The transfer operator is a full-weighting procedure - a weighted average of
the residuals at the nine fine-grid-points surrounding a coarse-grid-point is transferred
to the coarse grid. The transfer of corrections from coarse to fine grids is performed
through bilinear interpolation.

2.2 The Spectral Solver

In the spectral method (Machenhauer 1979, Orszag 1970), the solution u of the
Helmholtz equation (1) is expanded in spherical harmonics. The solution process takes
advantage of the fact that spherical harmonics are eigenfunctions of the Laplacian on
the sphere. Employing a rhomboidal truncation, u is written as:
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where Y(), 0) = ¢™*P™(8) are the spherical harmonics, A is the longitude, 6 is the
latitude and P is the Legendre polynomial of degree n and order m. M is the trun-
cation parameter. When the equation to be solved is nonlinear, M is typically given a
value satisfying M < 2Ny/3. Such a truncation is sufficient to eliminate aliasing due
to quadratic nonlinearities (Orszag 1970). Because the Helmholtz equation is linear,
we chose not to truncate and used the value M = Nj.

The relation
~AY] 4+ ¥ = (e n(n + D)X 3)



enables, once the right-hand-side expansion
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is known, the direct computation of the spectral coefficients of u by dividing the
spectral transform of the data f';" by the corresponding eigenvalue of the Helmholtz
operator ¢+ n(n +1): .

iy = fr/(c+n(n+1)) . (5)

The first step in the spectral solution process is the evaluation of the spectral
coefficients of the right-hand-side

fr= o [7 L SOmTR O mdudr (6

where p = sin 6, and the overbar denotes complex conjugation. This is done numer-
ically in two steps, with the aid of a Gauss-Legendre quadrature which is computed
on a Gaussian grid {(A\i, p;), 1 =0,...,2Ny — 1, j = 1,..., Ny}, where the );’s are
uniformly spaced and the p;’s are the roots of the Legendre polynomial Py, (u). We
first compute the direct Fourier transforms by
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for all j and m and then compute the direct Legendre transforms by
a Ne
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for all m and n, where w(y;) are the Gauss-Legendre quadrature weights. Relation
(5) is used for the computation of @7*. The solution values on the Gaussian grid are
obtained by computing the inverse Legendre transforms by

lm|+M
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for all j and m followed by the inverse Fourier transforms

M
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We notice that the whole solution process consists of performing (Fast) Fourier
transforms in steps (7) and (10) and discrete Legendre transforms in steps (8) and

(9)-
The code employs the FFT routine FFT771 from (Temperton 1983). The coeffi-

cients and the roots of the Legendre polynomials are computed using routines from
the software package Spherepack by Adams and Swarztrauber (Swarztrauber 1984).



3. PARALLELIZATION STRATEGIES

3.1 The Multigrid Method

A standard technique for parallelizing grid-point problems, such as those arising
from discretized partial differential equations, is grid partitioning. It is also a natural
choice when parallelizing multigrid schemes (cf. Hempel and Schiiller 1989, Brandt
1981). The idea is to divide the computational domain into subdomains, each proces-
sor being responsible for computing the solution in one of them. For two dimensional
applications on rectangular computational domains, one usually subdivides the do-
main into N, X N, subrectangles of equal size, with N, = N, x N, being the total
number of processors. The parallelism comes from the locality in the computations to
be performed. For example, when computing the residuals (from a finite difference op-
erator) at a grid-point, information is needed only from the surrounding grid-points.
Thus, with the possible exception of grid-points lying near the boundaries of the
subdivision, all the information needed is already within the processor. It is there-
fore rather convenient to provide each processor with some extra grid-lines near its
boundaries, where copies of the data lying in neighbouring processors can be stored.
In this way, all information required for the computations, also near the boundaries,
will be available and the programming will be simplified. Communication is needed
to update the information in these overlapping regions, whenever the corresponding
data is modified in one of the processors. A grid partition and the corresponding
overlapping regions are represented in Figure 1.

The actual choice of a grid partition should be based on efficiency considerations.
To illustrate this point, consider a pointwise Jacobi-relaxation. The use of a stripwise
partition (1 x N, or N, x 1) minimizes the number of messages to be sent (each
processor then has only two neighbours) for updating the overlapping regions, but
maximizes the message lengths, which are proportional to the perimeter of the sub-
rectangles. On the other hand, an Npl/ 2x Npl/ ? partition would minimize the message
lengths, but maximize the number of messages. The best choice thus depends on the
problem size, the number of processors, the communication start-up latency and the
communication bandwidth of the system used.

In the full multigrid algorithm we mainly deal with local computations, with the
exception of the line-relaxation, which couples the unknowns common to a latitude
circlein a cyclic tridiagonal system. The solution of tridiagonal systems on distributed
memory multiprocessor systems has been extensively studied by Krechel et al 1990.
They showed that the simultaneous solution on N, processors of several tridiagonal
systems requires on the order of log N, communication steps with message lengths
linearly proportional to the number of systems. We made estimates based on their
results and on actual communication and computation times on the iPSC/2 (see also
Bomans and Roose 1989), in order to choose the best approach for parallelizing the
full multigrid algorithm. According to these estimates, the best strategy is to use
a longitudinal stripwise partition, thus avoiding the communication for solving the



tridiagonal systems, which will then lie completely within a single processor. The
same conclusion is valid also when vectorization is taken into account, although a
meridional partition may be competitive in this case.
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Figure 1 - Grid-point allocation to processors

The solution of the cyclic tridiagonal systems is the most time consuming part of
the algorithm. In our scalar parallel computations we apply a block Gaussian elim-
ination (requiring 14 FLOPS per unknown) for this purpose. However, this routine
itself is neither parallelizable nor vectorizable. We thus change to cyclic reduction
(amounting to 17 FLOPS per unknown) when vectorizing the code. We make no use
of precomputations in the solution. Using precomputed bidiagonal LU-factors would
reduce the operation counts of both tridiagonal solvers and, therefore, would give a
potential increase in the final efficiency (reduction in the wall clock time) of the full
multigrid algorithm.

We now give a more detailed description of the parallel algorithm. Each of the
N, = 2Mr processors will be given N; = Ny/N, = 2Me~Mr latitude circles to treat.
The processors will be connected in a ring topology (easily imbedded in a hypercube),
each one being directly connected to its northern and southern neighbour. The last
processor treats N; latitude lines plus the north pole, the first is responsible for
the south pole and N; — 1 latitude circles (incurring a small load imbalance). Every
processor is provided with one extra latitude line at its north and its south for storage



of data from the neighbouring processors; we thus work with overlap-width equal to
one (see Figure 1). We assume that at least two latitude circles are allocated to each
Processor.

In the initialization phase of the algorithm, each processor is provided with the
information necessary for the communication, such as its own processor number and
the number of the first and the last lines of latitude located in its immediate neigh-
bour processors. A global numbering of the latitude lines - from south to north - is
employed. Also the right-hand-side values on these lines are provided.

The algorithm commences with the relaxation process. The residual is smoothened
with a relaxation sweep on the odd-indexed lines, which can all be treated indepen-
dently. After this half-sweep the values on the overlapping regions must be updated.
Each processor (but the first) sends its new first line values to its southern neighbour.
Accordingly, every processor (but the last) receives an updated latitude line from its
northern neighbour and stores these values on the corresponding overlapping line.
The new values are needed for the second half-sweep of the relaxation on the even
lines, after which another exchange of updated values is necessary. Every processor
(but the last) sends now its last latitude line to its northern neighbour and receives
information from the south to update its overlapping region (with the exception of
the first processor).

The processes of interpolation and residual evaluation and transfer are completely
local and therefore trivially parallelizable, since all the data needed for these is al-
ready stored in each processor after a complete relaxation sweep. When interpolating
the correction to the next finer grid in the V(1,1)-Cycle, the values needed for bilin-
ear interpolation are already available in every processor (see Figure 1). However,
the bicubic interpolation employed in the full multigrid solution interpolation stage
requires an extra coarse grid line near the processor boundaries. Therefore, in the
full multigrid interpolation stage, every processor sends to its southern and northern
neighbours also the coarse grid solution values of its second and next-to-last latitude
line, respectively, thus providing each processor with a second extra line in the north
and in the south, but only for coarse grid values. The bicubic interpolation can then
be performed. In reality, only the values at even-indexed fine grid latitude lines are
interpolated, since the odd line values would be immediately updated (and never
used) by the subsequent relaxation sweep.

We have made the assumption that each processor is given at least two latitude
lines. While this is a reasonable assumption for the finer levels in the multigrid pro-
cess, we shall eventually reach a coarse grid where this rule will be violated, unless
we stop the coarsening process too early and work with a relatively fine coarsest grid.
In this case, however, computing the coarsest grid solution - directly or iteratively
- becomes costly. It is better to reduce the number of active processors and keep
coarsening the grid. Our choice is to use only one processor on the coarsest grid (a
45 degree uniform grid), four processors on the next finer grid, and then to double
the number of active processors when passing to finer levels, until reaching the total
number of available processors. When reducing the number of active processors (com-



ing from finer to coarser levels) we will need to collect data from 2 or 4 processors
into one (agglomeration process) and then to redistribute the data (deagglomeration
process) when reactivating nodes on the way back to finer grids. The agglomeration
and deagglomeration processes are implemented with the aid of a special routine for
this purpose provided in the Suprerum communications library (Hempel 1987).

Our parallel multigrid algorithm has been designed so that it exactly reproduces
the results of a sequential version, independently of the number of processors em-
ployed. This has been very convenient in the debugging phase, since we could check
the code for correctness during all stages of development.

3.2 The Spectral Method

We consider two strategies to parallelize the spectral method, both using a longitu-
dinal stripwise data allocation to processors when computing the Fourier transforms.
In this way, all the data needed for each individual FFT will be stored on the same
processor and communication can be avoided at this stage of the algorithm. Paral-
lelism is achieved by performing several FFT’s simultaneously in different processors.
The strategies differ in the treatment of the Legendre transforms.

The rotation approach uses a ring topology and rotates the data one full cycle dur-
ing the computation of the Legendre transforms. The data is the Fourier transformed
right-hand-side in the direct transform and the Legendre transformed spectral coeffi-
cients in the inverse transform. At each of the NNV, stages of the cycle, each processor
adds the contribution from the data it has currently in its local memory to the spectral
coefficients. After completion of the Legendre transforms, the data for the spectral-
to-grid-point FFT’s will reside in the right processors and no more communication is
needed.

In the transposition approach, a global transposition of data from longitudinal to
latitudinal stripwise storage is performed between the direct Fourier and Legendre
transforms, as well as a back transposition between the corresponding inverse trans-
forms. In this manner, all the data needed for each individual transform will always
reside in the same processor, see Figure 2 for an example of both decompositions.

In both approaches, the data from each equatorially symmetric latitude circle pair
from the northern and the southern hemisphere will be stored in the same proces-
sor. This facilitates the use of the symmetric-antisymmetric properties of Legendre
polynomials to reduce the computational work needed to compute each Legendre
transform by almost a factor of two. In this respect, we follow the multitasked im-
plementation of the ECMWTF spectral model on Cray multiprocessors (Simmons and
Dent 1989). The north-south pairs of latitude circles are then uniformly distributed
to the processors. We assume that the number of latitudes of the Gaussian grid is a
power of two, as well as the number of processors. We also assume that each processor
will be assigned at least one pair of latitude circles.



In the first step of the algorithm, each processor has all the data for computing
the FF'T’s on its own latitude circles stored in its local memory. No communication
is necessary at this step.

In the rotation approach, the spectral coefficients &™ will be allocated to processors
according to a uniform division on the range of n, so that every processor will compute
tiy for all m and for those values of n allocated to it (see Figure 2). Two arrays of
Legendre polynomials, to be used in the direct and inverse Legendre transforms,
respectively, will be stored in each processor. One of them contains the values of
the Legendre polynomials multiplied by the Gaussian weights and the inverses of the
corresponding eigenvalues of the Helmholtz operator. This array will be stored for all
values of y and m, but only for the values of n in the processor’s range. The second
array-stores the values of the Legendre polynomials for all m and n, but just for those
latitude circles p that have been assigned to the processor.

After the Fourier coefficients f™(u;) have been computed, each processor knows
the values of f™(u;) only for those latitude circles assigned to it. The Legendre trans-
form (8) will thus be evaluated in N, (number of processors) steps. Each processor
begins by accumulating the partial sums corresponding to its own latitude circles.
After that it forwards its part of the matrix f™(u;) to its successor in the ring and
receives the part of the matrix contained in its predecessor. Each processor can then
accumulate another part of the sums, forward the part of the matrix it now has to
its sucessor and receive another part from its predecessor. It is obvious that after N,
steps each processor completes the sums. The inverse Legendre transforms (9) are
evaluated in the same way, the parts of the matrix 4™ contained in each processor
being rotated around the ring. After the Legendre transforms no communication is
needed, since all the data is already in place for evaluation of the Fourier transforms
within individual processors.

In the transposition approach, another allocation of the spectral coefficients 47
is used, with a uniform division on the range of m (see Figure 2). For the Legendre
transforms, two precomputed arrays of Legendre polynomials will again be stored (one
with the values multiplied by the Gaussian weights and the inverses of the eigenvalues
of the Helmholtz operator), for all values of n and u, but with m restricted to the
values assigned to the processor in the case of both arrays.

After the Fourier transforms (7), a complete rearrangement of the data in the
processors is performed. The matrix f™(u;), of which each processor stores the
values corresponding to the latitude circles assigned to it, will be ‘transposed’, so
that each processor will then store the matrix values for entire longitude strips, but
just for the range of values of m allocated to it. In order to do that, every processor
has to exchange a submatrix with every other. This can be accomplished in N, — 1
steps in a ring topology. In step k, each node sends a submatrix to the processor
that lies k positions ahead in the ring and receives a submatrix from the processor k
positions behind. After this block-transposition, each processor is able to transpose
its submatrices locally. After the transposition, the computation of both Legendre
transforms (8) and (9) can be done within each processor. The transforms are followed
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by a back transposition of the array wu,(g;), so that the FFT’s (10) can again be
performed within individual processors. This completes the solution process.

Both approaches require the same amount of computation, differing only in the
communication. Rotation involves 2V, messages sent per processor, NV, of them of size
2M Ny/N, and the remaining N, of size 2M?%/N,. The factor 2 emerges because the
spectral and Fourier fields, of size M% and M Ny, respectively, are complex valued.
Assuming M = Nj, 4M? words will be sent by each processor (always to direct
neighbours on the ring). Transposition requires 2(NN, — 1) messages per processor;
half of them of length 2M N,/ N,?, half of them of length 2M?/N,%. Again with
M = Ny, we obtain a total of 4M? /N, words to be sent by each processor. In this
case, each processor communicates with every other processor and the messages will
have to travel across the entire machine. For the iPSC/2, for which the communication
bandwidth is not very sensitive to the number of hops between two communicating
nodes (cf. Bomans and Roose 1989), the transposition approach is more efficient.

Rotation approach - N identical stages Transposition approach - only 1 stage
|

processor 1: “ proc. 1:

processor 2: proc. 2:
S e

processor 3: ]V proc. 3:

processor 4: T proc. 4:

processorboundary  _ _ . . message block boundary > message passing

Figure 2 - Allocation and communication of spectral data in the rotation and trans-
position approaches.

4. PARALLEL BENCHMARKS

4.1 The programming environment and the characteristics of the iPSC/2

In our choice of parallelization strategies for the Helmholtz solvers we did not
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rely on the particular parallel architecture of any machine (although we used the
parameters of the iPSC/2 for estimates). We assumed that we would be working on
a distributed memory machine with message passing communications. The actual
implementation of the algorithms is also independent of the particular machine at
hand to a certain extent, since it uses parallelization tools which are available on a
number of parallel computers with different architectures.

For instance, mapping the problem onto the parallel topology was done with the
aid of a routine from the Suprenum communications library (Hempel 1987). In this
routine, the ring topology is mapped onto the machine and the neighbourhood rela-
tions between the processors are defined automatically. Each processor then knows
his own adress and those of his successor and predecessor on the ring. Also, the ini-

tial information and the parameters defining the problem are made available to every
node by the host.

Communication during the algorithms is implemented using macro-constructs
(Bomans and Hempel 1990), which make commands like send and receive portable,
albeit somewhat less efficient. By writing all the communication instructions either
with the macros or with the aid of library routines, a certain amount of portability has
been achieved. For instance, the same codes used for benchmarking on the iPSC/2
have run essentially unchanged on a prototype of the Suprenum computer (with up
to eight nodes, within one cluster). We would also expect no difficulties in making
the programs run on other parallel machines where the macro-constructs have been
(or may be) implemented.

We now give some characteristics of the Intel hypercube we have used for the
benchmarks presented here. It is an iPSC/2 with 32 node processors, each one being
an Intel 80386 equipped with an 80387 numeric coprocessor and an AMD vector
extension board. Each node has a local memory of 4 Mbytes in the scalar mode.
When the vector board is used, the available memory is reduced to 1 Mbyte per
node.

The vector board delivers a peak performance of 2.6 Mflops (measured) for DAXPY
operations (cf. Intel 1988). The iPSC/2 has a relatively high n,/, number (minimal
vector length for achieving 50% of the peak performance); it lies around 50 for all
vector operations. Scalar double-precision performance is around 200 Kflops.

The nodes are interconnected in a hypercube topology by full-duplex channels.
They are equipped with a Direct Connect Module (DCM) for handling message pass-
ing. The communication times can be modelled as an affine function of the message
length. A feature of the iPSC/2 is that very short messages (up to 100 bytes) are han-
dled in a different manner from longer messages. For short messages, communication
has a 370 us start-up time and a transfer rate of 1.5 ps per double-precision word.
For longer messages (more than 100 bytes) the start-up time increases to 700 ps and
the transfer rate decreases to 2.9 us per double-precision word. The maximum com-
munication bandwidth is around 2.7 Mbytes / sec (Bomans and Roose 1989). The use
of the DCM for routing messages makes the iPSC/2 fairly insensitive to the number
of hops between communicating processors. The overhead for communication over
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several links in comparison to nearest neighbour communication is less than 17% for
104 byte messages, dropping quickly for longer messages (around 5% for a 4 Kbyte
message).

4.2 Efficiency measurements

The parallel performance of an algorithm can be measured by its efficiency and
speedup. The speedup on N, processors is defined as

S(Np) =T(1)/T(Ny) (11)

the ratio between the CPU-times for sequential execution (in one processor) and
for running on N, processors. Correspondingly, the parallelization efficiency on N,
processors is given by

E(Np) = T(1)/(N;T(Ny)) - (12)

Normally, a linear speedup (S(NN,) = N,) is the best achievable, corresponding to
100% efficiency. Evaluation of speedup and efficiency of a given problem on N,
processors may be complicated by memory constraints for the computation of T'(1),
unless the problem size on NN, processors is restricted to be unrealistically small. One
way to circumvent this problem is to estimate T'(1), based on measured CPU-times
for smaller problems, which fit in one processor. This is rather simple to do for the
multigrid solver, since its linear computational complexity allows for a simple linear
extrapolation, with very accurate predictions. For the spectral code the extrapolation
is somewhat more complicated, requiring separate estimates for Legendre and Fourier
transforms, but still reasonable. However, if vectorization is used, these extrapolations
will be useless, since the changes in vector lenghts (and consequently in performance)
are not accounted for in such estimates. We prefer to consider the vector speedup
separately from the parallel speedup. Vector speedup, as used here, only measures
the extra gain achieved by vectorization of the problem. It is defined as

Su(Np) = To(Np)/To(Ny) (13)

the ratio between the scalar and vector performance of the algorithm on N, processors.

All the quantities defined will only measure how well the algorithms are vectorized
and parallelized. They say nothing about the absolute performance of the algorithms.
Often the most easily parallelizable algorithms are not the fastests. The absolute
CPU-time required to solve the problem is still the most fundamental measure of the
performance of an algorithm.

When employing a supercomputer in scientific modelling, the aim is usually to
solve the largest possible problem in the smallest possible time. This aim moti-

vates the adoption of a new measure of parallel performance, namely scaled speedup
(Gustafsson, Montry and Benner 1988), which is defined as

Sscaled(Np) = rTml(l)/Tmp(Np) ’ (14)
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where r is the ratio between problem sizes m1 and mp, the largest problems fitting
in one and in N, processors, respectively. T,,; and T,,, denote the corresponding

CPU-times.

Scaled speedup is defined with respect to problem size. Problem size may have
different meanings depending on which problem parameters are held fixed and which
are allowed to vary. In the case of the numerical solution of partial differential equa-
tions, at least three different measures of problem size can be employed: grid size,
serial complexity and solution accuracy. '

Grid size is probably the most common way to refer to problem size in numerical
solution of partial differential equations. When the fastest serial method is used as
a base line for the time T}, at each grid size, the comparison gives credit to the
methods that produce the best parallel speedup over the fastest serial method. A
suboptimal serial complexity has therefore an equally severe impact on the scaled
speedup score of a method as poor parallelizability. On the other hand, using grid
size as a measure of problem size ignores the fact that some methods produce accurate
solutions already on relatively coarse grids when the solution is sufficiently smooth. It
may also be that there are other reasons for using a certain discretization technique,
such as the ability to use existing software. If this is the case, the base line for the
time T,y should always be the same solution method whose speedup is being studied.
This means that scaled speedup is measured with respect to serial complexity, rather
than grid size.

Serial complexity is an appropriate measure of problem size when the task is to
study the parallel efficiency of a certain solution method, rather than solving the given
problem using any method. Using serial complexity to define scaled speedup often
gives credit to ‘brute force’ methods that are easy to parallelize efficiently due to their
simple structure. It ignores differences in both solution accuracy and serial complexity
between methods. Using serial complexity to define problem size in scaled speedup
may sometimes be misleading, since optimal methods in terms of both accuracy and
serial complexity often have a more complex structure, and therefore poorer parallel
efficiency at low resolutions, than simple but suboptimal methods.

Accuracy is probably the most appropriate measure of problem size of all, when-
ever it can unambiguously be defined. Defining an accuracy measure amounts nor-
mally to selecting a norm of the error or the residual. The appropriate norm depends,
however, crucially on solution smoothness. This may be difficult to determine in, for
example, the case of atmospheric fields. Smoothness of a field depends on the scale
of atmospheric motion to be studied. It is also dependent on the smoothness of
other fields, since atmospheric motion is described using a system of partial differen-
tial equations. The particular problem or set of problems used to compare different
methods may also cause an undue bias to scaled speedup comparisons, if the problems
used do not represent typical ’real-life’ solutions.

In the following comparisons and the discussion, we try to pay some attentlon to
the impact of different definitions of problem size on scaled speedup.
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4.3 Benchmark results

4.3.1 Scalar results

We first present the results for purely scalar computations. The solution of the
example problem used has approximately third order smoothness, but is wholly arti-
ficial. It has an analytic solution. As a measure of accuracy, the maximum deviation
of the numerical solution from this analytic solution is given in each table.

Table 1 contains the CPU-times for solution of the Helmholtz equation with the
spectral method. Several combinations of problem sizes and numbers of processors
are considered. The parallelization efficiency (12) is given in parentheses. Some
computing times in one processor had to be estimated (due to memory constraints),
to allow for the evaluation of the efficiency of some problems. The transposition
approach has been employed for the results of Table 1. In Table 2 we present results
for the rotation approach. The rotation approach produces longer execution times
in all cases. Table 3 presents the total execution times for the full multigrid solver,
and Table 4a gives the scaled speedups of both algorithms with respect to grid size,
Table 4b with respect to serial complexity. The multigrid numbers stay the same in
both of the tables 4a and 4b, thanks to its linear complexity with respect to grid
size. The spectral numbers scale by a factor between 7 and 8 (the exact scaling factor
at each grid size was calculated from the serial complexity), instead of 4, with grid
size because of the quadratic serial complexity of the Legendre Transform and the
O(nlogn) serial complexity of the Fast Fourier Transform. In Figures 3 to 5 we
present a graphical comparison between the CPU-times required by the schemes for
the solution of the equations.

Problem Size Number of Processors

max error 1 2 4 8 16 32
16 x 8 34 21| 15

8.17 -1073 (80.9) | (56.7)
32 x16 197 105 63 42

1.33 .103 (93.8) | (78.2) | (58.6)
64 x 32 1330 679 351 206 129

2.09 -10—4 (97.9) | (94.7) | (80.7) | (64.4)

- 128 x 64 9198 | 4624 } 2331 | 1195 656 402
3.15 105 (99.5) | (98.6) | (96.2) | (87.6) | (71.5)
256 x 128 | 65700 8423 | 4283 | 2291
4.60 10— (97.5) | (95.9) | (89.6)

Table 1- CPU-times (in milliseconds) for the parallel execution of the spectral method
(transposition approach). Efficiency is given in parentheses. (* - estimated)
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Problem Size Number of Processors
max error 1 2 4 8 16 32
16 x 8 34 24 24
8.17 -10-2 (70.8) | (35.4)
32 x 16 197 110 71 62
1.33 .10°3 (89.5) | (69.4) | (39.7)
64 x 32 1330 688 374 227 174
2.09 -10~* (96.7) | (88.9) | (73.2) | (47.8)
128 x 64 9198 | 4636 | 2405 | 1290 761 531
3.15 .10 (99.2) | (95.6) | (89.1) | (75.5) | (54.1)
256 x 128 | 65700* 4727
4.60 -10-8 (86.9)

Table 2- CPU-times (in milliseconds) for the parallel execution of the spectral method

(rotation approach). Efficiency is given in parentheses. (* - estimated)

Problem Size Number of Processors
max error 1 2 4 8 16 32
128 x 64 4642 | 2572 | 1451 918 688 620
6.80 -10~* (90.2) | (79.9) | (63.2) | (42.2) | (23.4)
256 x 128 18502 | 9662 { 5056 | 2793 | 1706 | 1238
1.71 .10~4 (95.7) | (91.5) | (82.8) | (67.8) | (46.7)
512 x 256 74008* | 37739 | 19180 | 9963 | 5398 | 3212
4,27 1078 (98.1) | (96.5) | (92.9) | (85.7) | (72.0)
1024 x 512 296032 38222 | 19680 | 10526
1.07 -10-5 (96.8) | (94.0) | (87.9)
2048 x 1024 | 1184128* 39732
2.67 -10~6 (93.1)

Table 3- CPU-times (in milliseconds) for the parallel execution of the full multigrid

algorithm. Efficiency is given in parentheses. (* - estimated)

Processors 2 4 8 16 32
Spectral Method | 1.99 | 3.95 | 4.37 | 8.59 | 16.06
Multigrid Method | 1.96 | 3.86 | 7.74 | 15.04 | 29.79

Table 4a- Scaled speedups of the spectral (transposition approach) and of the multi-
grid method with respect to grid size. (The values refer to scaling of the last entry

in each column of tables 1 and 3.)
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Processors 2 4 8 16 32
Spectral Method | 1.99 [ 3.95 | 7.80 | 15.33 | 28.67
Multigrid Method | 1.96 | 3.86 | 7.74 | 15.04 | 29.79

Table 4b- Scaled speedups as in Table 4a, but with respect to serial complexity.

4.3.2 Vector results

The vectorization of the codes was done with the aid of the VAST-2 vectorizer,
supported by compiler directives where necessary. The codes are still not fully opti-
mized for vectorization. In the spectral solver, we did not attempt to vectorize the
FFT’s. The Legendre transforms were easily vectorized, running up to 7.7 times faster
(on 32 processors, with M=127) than in scalar mode. In the multigrid scheme, the
cyclic tridiagonal solver was only vectorized for systems with more than 32 unknowns
(cyclic reduction was employed in this case). For up to 32 unknowns, Gaussian elim-
ination on scalar mode was faster and thus preferred. This shows the effect of the
large ny/; value of the iPSC/2. Tables 5 and 6 give the total execution times for
the vectorized spectral and multigrid algorithms, respectively. In addition to CPU-
times, also vector speedups (13) are given (in parentheses). Tables 7a and 7b contain
the scaled speedups in vector mode, while a graphical comparison of the CPU-times
required by both algorithms is presented in Figures 3 to 5.

Problem Size Number of Processors
max error 1 2 4 8 16 32
16 x 8 46 26 19
8.17 -10~3 (0.74) | (0.81) | (0.79)
32x16 170 93 58
1.33 .10-3 (1.16) | (1.13) | (1.09)
64 x 32 810 423 226 137 93
2.09 .10~ (1.64) [ (1.61) | (1.55) | (1.50) | (1.39)
128 x 64 989 523 | 313 204
3.15-10°3 (2.36) | (2.28) | (2.10) j (1.97)
256 x 128 733
4.60 -10-6 (3.13)

Table 5- CPU-times (in milliseconds) for the parallel execution of the vectorized
spectral method (transposition approach). Vector speedups are given in parentheses.
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Problem Size Number of Processors

max error 1 2 4 8 16 32
128 x 64 2851 | 1655 | 1002 695 575 553
6.80 .10—4 (1.63) | (1.55) | (1.45) | (1.32) | (1.20) | (1.12)
256 x 128 4436 | 2450 | 1480 | 1040 886
1.71.10~% (2.18) | (2.06) | (1.89) | (1.64) | (1.40)
512 x 256 3555 | 2170 | 1559
4.27 1073 (2.80) | (2.49) | (2.06)
1024 x 512 3271
1.07 -10-5 (3.22)

Table 6- CPU-times (in milliseconds) for the parallel execution of the vectorized full
multigrid algorithm. Vector speedups are given in parentheses.

Processors 2 4 8 16 32
Spectral Method |1.91 [ 3.28 [ 6.19 | 10.35 | 17.70
Multigrid Method | 2.58 | 4.64 | 12.80 | 20.96 | 55.68

Table 7a- Scaled speedups of the vectorized spectral (transposition approach) and of
the multigrid method with respect to grid size. (The values refer to scaling of the
last entry in each column of tables 5 and 6.)

Processors 2 4 8 16 32
Spectral Method | 1.91 | 5.85 | 11.05 | 18.47 | 59.85
Multigrid Method | 2.58 | 4.64 | 12.80 | 20.96 | 55.68

Table Tb- Scaled speedups as in Table 7a, but with respect to serial complexity.

5. DI ION

The speedups attained show that both algorithms admit significant gains from
parallel computation. For the largest problems considered, a parallel efficiency of
more than 90% was attained with 32 processors for both algorlthms Both solvers
therefore present a good degree of parallelism.

The two solution methods differ, however, in the grain of parallelism necessary
to attain good performance (say, a parallel efficiency exceeding 50%). While for the
spectral method only one pair of latitude lines allocated to each processor is sufficient
to achieve this, four to eight latitude lines in each node were needed in the multigrid
algorithm for the same efficiency. The larger granularity of parallelism necessary for
the multigrid algorithm is compensated for by its more modest memory requirements:
(O(n?/N,) words per processor against O(n®/N,) for the spectral method). Therefore,
significantly larger two dimensional problems can be solved with multigrid.
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The question of the granularity of parallelism becomes more important if extension
of the algorithms to three dimensions is considered. An exploitation of parallelism in
just one dimension, as is done at present with both algorithms, would be too restric-
tive for multigrid in 3D, leading to too small a grain size even on modestly parallel
computers. For the spectral method, it seems possible that the one-dimensional par-
allelization strategy can still be succesfully applied in three dimensions. However, by
allocating all data in a vertical column to one processor and by making the vertical
dimension the innermost loop, the granularity of both algorithms could probably be
kept at an acceptable level. On highly parallel computers, it would probably be most
natural to amend parallelization over latitudes by parallelization in the vertical. This
strategy would call for another data reorganization stage when computing physics -
ie. the right hand side - in real atmospheric models, though.

The memory constraints on the spectral method caused by the need to store
the coeflicients of the Legendre polynomials would also be relatively weakened when
solving 3D problems, since the same polynomial values can be used on all vertical
levels. However, a lot of memory would now be required by the matrices for the
vertical eigendecomposition of the original 3D Laplace operator that gave rise to the
2D Helmbholtz equations. Ideally, these full K by K matrices - one for each vertical
column - where K is the number of vertical layers, should be stored on a fast access
disk, and in fact, the I/O bandwidth may be critical for parallel systems. This
important question has not been addressed here, partly because the parallel machine
employed had no disks allocated to individual processors.

On a grid-point model, one could opt not to decouple the three-dimensional equa-
tion and instead, apply a three-dimensional multigrid solver. This has the potential
advantages of reducing the computational complexity of the scheme (since the multi-
grid solver has linear complexity, cf. Barros 1991, and the decoupling process requires
a computational work, which is quadratic in the number of vertical layers) and of a
drastic reduction in the memory requirements, by avoiding the storage of the ma-
trices for eigendecomposition. The parallel multigrid code should, however, exploit
parallelism in at least two dimensions.

The vectorization of the codes brought speedups up to a factor three when solving
large problems. These results were somewhat limited by the characteristics of the
iPSC/2, which has a high n,/, value. Especially the multigrid solver would greatly
benefit from a smaller n,,, since it employs a sequence of coarser grids and uses cyclic
reduction in the solution of tridiagonal systems. The speedups achieved in the spectral
method came from the easily vectorizable Legendre transforms. Improvements can
be achieved by the vectorization of the FFT’s, which has not been tried.

From the comparison between the spectral and the multigrid solver presented
in Figures 3 to 5, we can see that for smaller grain parallelism the spectral code
performs better. The spectral method also gains more from the vectorization on
small problems. However, when going to larger problems and to a larger grain par-
allelism, multigrid quickly improves its performance, while the O(n?®) complexity of
the Legendre transform begins to tell on the spectral method. With 32 processors,
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the break-even point between the two vectorized algorithms is close to a 256 x 128
grid. By this problem size, the spectral method already achieves a parallel efficiency
of more than 90% and an extra vector speedup of more than 3, while the multigrid
still performs with 47% efficiency and obtains a vector speedup of 1.4. Halving the
meshsizes increases the efficiency of multigrid to 72% and its vector speedup to more
than 2. For a problem of this size, multigrid should be about twice faster than the
spectral method, which could not be run at this grid size due to memory limitations.

The error norms in Tables 1 to 3 and 5 to 6 reveal another characteristic prop-
erty of each method. The test problem used in the benchmarks has a solution with
approximately third order smoothness. When the maximum errors of each method
are plotted on a log-log scale as a function of grid size, the spectral method is seen
to decrease the error at an approximate rate of O(h3), whereas the multigrid method
is limited to O(h?) accuracy by the five-point stencil employed in the discretization.
Hence, in the particular case of a solution with three bounded spatial derivatives, the
spectral and multigrid methods are asymptotically equally effective in reducing the
error: the suboptimal complexity of the spectral method and the suboptimal accu-
racy of the multigrid method with a second order finite difference operator cancel one
another. This trend is also displayed in Figure 4.

Spectral methods can automatically utilize any degree of smoothness present in
the solution. In the case of finite differences - like any fixed-order discretization
method - accuracy is limited by the order of the discretization. Accuracy can be
improved by choosing a higher order discretization, at the expense of a linear increase
in the volume of both computation and communication. The impact of a spectrally
accurate discretization on the efficiency in reducing the error depends, however, on
the smoothness of the fields to be solved. Some atmospheric fields, like geopotential,
may have something like three bounded derivatives (cf. Julian et al 1970, Speth
and Madden 1983) at present resolutions (in the sense that third order polynomials
seem to fit best on the spectrum of observational and spectral model fields up to
present operational resolutions). Some other fields - like cloud liquid water - are only
square integrable in the same sense, having therefore zeroth order smoothness. On
such fields, spectral methods gain nothing from their accuracy. When the right hand
side has more than five orders of smoothness - and therefore the solution more than
three - the spectral method is always more efficient with respect to accuracy than any
second order finite difference method. When the right hand side is less smooth, the
break-even point between the methods moves to ever smaller grid sizes, and a finite
difference scheme with a multigrid solver is always asymptotically the more efficient
on sufficiently large problems. ‘

A remarkable fact is, that the combination of the effects of parallelization and
vectorization leads to a superlinear scaled speedup. By superlinear scaled speedup
we understand that computationally N, times more demanding a problem runs faster
on N, processors than the initial problem runs on one processor. Because of the
linear complexity of the multigrid algorithm, it exhibits superlinear scaled speedup
with respect to both serial complexity and grid size, whereas the spectral method only
shows superlinear scaled speedup with respect to serial complexity, i.e. floating point
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Figure 3 - Graphical representation of the CPU-times to solve a Helmholtz equa-
tion with the spectral and multigrid methods. The curves show the variation of the
CPU-times when solving problems of a fixed grid size with an increasing number of
processors (from 1 up to 32). Grid sizes from 16 x 8 up to 2048 x 1024 are considered.
Scalar (above) and vector (below) results are represented.
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Figure 5 - Graphical representation of the CPU-times to solve a Helmholtz equation
with the spectral and multigrid methods. The curves show the variation of the CPU-

times when solving problems of increasing sizes (but keeping the number of grid points

per processor fixed), with an increasing number of processors (from 1 up to 32). Scalar
(above) and vector (below) results are represented. A linear scaled speedup would be
represented by a vertical line. Lines sloping to the left indicate superlinear speedup

attained by the vectorized multigrid algorithm.
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operation count (see Figure 5). Superlinear scaled speedup can be explained by the
fact that by scaling problem size up when more processors are employed, we obtain
longer vectors within each processor, even though the number of unknowns in each
processor remains the same. It is thus a consequence of the stripwise allocation of
data. The gains due to a better vectorization more than compensate for the increase
in communication, thus leading to a CPU time reduction. For example, a 256 x 128
problem is solved on 2 processors in 4.4 seconds, while a 1024 x 512 problem, which
is 16 times larger, needs only 3.3 seconds to be solved on 32 processors with the
vectorized multigrid method.

6. SUMMARY

The parallel solution of the Helmholtz equation on the surface of a sphere on dis-
tributed memory machines was studied. Spherical Helmholtz equations play an im-
portant role in all kinds of spectral or grid-point semi-implicit time stepping schemes
in global atmospheric models, and can thus be viewed as a kernel problem for the
parallelization of global weather models.

We investigate parallelization techniques for a spectral scheme which uses spherical
harmonics and a rhomboidal truncation, and for a full multigrid (grid-point) solver,
employing line-relaxation. A global data transposition strategy shows to be very
convenient for the parallelization of the spectral method. With this approach, all data
for a single Legendre or Fourier transform will be placed within the same processor
by the time it is needed. For the multigrid algorithm we employ a grid-partitioning
technique, with a longitudinal data allocation to processors. This data distribution
allows the solution of the cyclic tridiagonal systems needed in the relaxation to be
performed within individual processors. Because of the locality of the algorithm, the
other components of the method are easily parallelized by grid partitioning.

Numerical benchmarks were calculated on an Intel iPSC/2 hypercube with 32
nodes. A high parallelization efficiency, up to more than 90% (for sufficiently large
problems) was achieved. The parallel algorithms were implemented with the aid of
the PARMACS macro package (Bomans and Hempel 1990), which gives the codes
a certain amount of portability. We could, for example, run the same codes on a
prototype Suprenum computer.

The algorithms have also been vectorized, with an extra speedup of up to a factor
three. The relatively high n;/; value of the iPSC/2 required, however, fairly large
problems for good vector performance. The combined use of vectorization and par-
allelization leads to remarkable speedups in some cases. For instance, a superlinear
scaled speedup of both algorithms with respect to serial complexity has been obtained
through the combination of parallelization and vectorization. The multigrid method
exhibits superlinear scaled speedup also with respect to grid size.
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