Dense linear algebra on high-performance computers

Jeremy Du Croz

NAG Ltd., England

1 The LAPACK project

Can we provide portable software for computations in dense linear algebra which is efficient
on a wide range of modern high-performance computers? If so, how? Answering these
questions — and providing the desired software — is the goal of the LAPACK project, on
which this paper will focus. For a wider survey of dense linear algebra on high-performance
computers we refer to [9]. -

In more detail the aims of the LAPACK project are to develop a library of Fortran 77
subroutines which will supersede Linpack and Eispack. It will cover the solution of systems
of linear equations, linear least squares problems, and eigenvalue problems — and the
usual related computations such as matrix factorizations, orthogonal transformations, and
estimating condition numbers or error bounds. More information about LAPACK is given
in [1]. The first public release of LAPACK software is currently planned for March/April

1991. ;

LAPACK aims to improve on Linpack and Eispack in several ways:

e a consistent software design, integrating Linpack and Eispack into a single package
¢ increased functionality /
e new or improved numerical algorithms

o efficiency on high performance computers

This paper will emphasize the last of those topics—performance.

2 Factors which affect performance

LAPACK was originally targeted to achieve good performance on single-processor vector
machines and on shared-memory multi-processor machines with a modest number of pow-
erful processors (such as an Alliant FX/8, a Convex C240 or a Cray YMP). Since the start
of the project, a new class of machines has emerged for which LAPACK software is well-
suited—the high-performance workstations, such as the IBM RISC /6000 or machines based
on an Intel i860. (LAPACK is intended to be used across the whole spectrum of modern
computers, but when considering performance, the emphasis is on machines at the more

powerful end of the spectrum.)

Here we discuss the main factors which affect the performance of linear algebra software on

these classes of machines.

72

2.1 Vectorization

Designing vectorizable algorithms in linear algebra is usually staightforward; indeed for
many computations there are several variants, all vectorizable, but with different charac-
teristics in performance (see, for example, [5]). Linear algebra algorithms can come close to
the peak performance of many machines — principally because peak performance depends
on some form of chaining of vector addition and multiplication operations, and this is just
what the algorithms require.

However, when the algorithms are realized in straightforward Fortran 77 code, the per-
formance may fall well short of the expected level, usually because vectorizing Fortran
compilers fail to minimize the number of memory references — that is, the number of
vector load and store operations. This brings us to the next factor.

2.2 Data movement

What often limits the actual performance of a vector—or scalar— floating-point unit, is
the rate of transfer of data between different levels of memory in the machine. Examples
are: the transfer of vector operands in and out of vector registers; the transfer of scalar
operands in and out of a high-speed scalar processor; the movement of data between main
memory and a high-speed cache or local memory; or paging between actual memory and
disc storage in a virtual memory system.

It is desirable to maximise the ratio of floating-point operations to memory references, and
to re-use data as much as possible while it is stored in the higher levels of the memory
hierarchy (for example, vector registers or high-speed cache).

A Fortran programmer has no explicit control over these types of data movement.

2.3 Parallelism

The nested loop structure of most linear algebra algorithms offers considerable scope for
fine-grained loop-based parallelism on shared-memory machines. This is the principal type
of parallelism that LAPACK at present aims to exploit, but we return to this question in
Sections 5.4 and 6.

This type of parallel processing can sometimes be generated automatically by a compiler,
but often requires the insertion of compiler directives.

3 The BLAS as a portability base

How then can we hope to be able to achieve sufficient control over vectorization, data
movement and parallelism in portable Fortran code, to obtain the levels of performance
that machines can offer?

The LAPACK strategy for combining efficiency with portability is to construct the software
as much as possible out of calls to the BLAS (Basic Linear Algebra Subprograms); the BLAS
are used as building-blocks.

The efficiency of LAPACK software depends on efficient impleméntations of the BLAS being

73

provided by computer vendors (or others) for their machines. Such implementations are
already provided, for example, by Alliant, Convex, Cray, IBM (incomplete) and Siemens.
Thus the BLAS form a portability base for LAPACK. Above this level, all the LAPACK
software (with a few exceptions mentioned in Section 5.4) is truly portable.

There are now three levels of BLAS:

Level 1 BLAS: for vector operations, such as y «— az + y [11]
Level 2 BLAS: for matrix-vector operations, such as y «— adz + By [4]

Level 3 BLAS: for matrix-matrix operations, such as C «— aAB + 8C [3]

Here, A, B and C are matrices, z and y are vectors and o and 3 are scalars.

The Level 1 BLAS are used in LAPACK, but for convenience rather than for performance:
they perform an insignificant fraction of the computation, and they cannot achieve high
efficiency on most modern supercomputers.

The Level 2 BLAS can achieve near-peak performance on many vector-processors, such as a
single processor of a Cray XMP or YMP, or Convex C2 machine. However on other vector
processors, such as a Cray 2 or an IBM 3090 VF, their performance is limited by the rate
of data movement between different levels of memory. This limitation is overcome by the
Level 3 BLAS, which perform O(n®) floating-point operations on O(n?) data, whereas the
Level 2 BLAS perform only O(n?) operations.

The BLAS also allow us to exploit parallelism in a way that is transparent to the overlying
software. Even the Level 2 BLAS offer some scope for exploiting parallelism, but greater
scope is provided by the Level 3 BLAS, as Table 1 illustrates.

Table 1: Speed of Level 2 and Level 3 BLAS operations on a Cray YMP

(all matrices are of order 500; U is upper triangular)

l Number of processors:] 1] 2] 4 l 8 J

Level 2: y «— adz + By 311 | 611 | 1197 | 2285
Level 3: C «— aAB 4+ C | 312 | 623 | 1247 | 2425

Level 2: 2z « U=z 203 | 544 | 898 | 1613
Level 3: B — UB 310 | 620 | 1240 | 2425
Level 2: z « U~ 'z 272 | 374 | 479 | 584
Level 3: B+~ U"'B 309 | 618 | 1235 | 2398

4 Block algorithms and their derivation

It is comparatively straightforward to recode many of the algorithms in Linpack and Eis-
pack so that they call Level 2 BLAS. Indeed in the simplest cases the same floating-point
operations are performed, possibly even in the same order: it is just a matter of changing
the software. To illustrate this point, here is the body of the code of the Linpack routine
SPOFA, which factorizes a symmetric positive-definite matrix as U Ty,

74

D0 30 J =1, N

INFO = J
S = 0.0E0
ML =J -1

IF (JM1 .LT. 1) GO TO 20
DO 10 K = 1, JM1
T = A(K,J) - SDOT(XK-1,4(1,K),1,A(1,7),1)

T = T/A(K,K)
AK,J) =T
S =5 + Tx*T
10 CONTINUE
20 CONTINUE
S =4(3,3) -8
c ... EXIT

IF (8 .LE. 0.0E0) GO TO 40
A(J,J) = SQRT(S)
30 CONTINUE

And here is the same computation recoded in LAPACK style to use the Level 2 BLAS
routine STRSV (which solves a triangular system of equations). The call to STRSV has
replaced the loop over K which made several calls to the Level 1 BLAS routine SDOT.

po 10 J =1, N
CALL STRSV(’Upper’, ’Transpose’, ’Non-unit’, J-1, A, LD4,
$ ACL,D), 1)
S = A(J,J) - SDOT(J-1, A(1,7), 1, A(1,D), 1)
IF(S.LE.ZERO) GD TO 20
A(J,J) = SQRT(S)
10 CONTINUE

This change by itself is sufficient to make big gains in performance on a number of machines—
for example, from 72 to 251 megaflops for a matrix of order 500 on one processor of a Cray
YMP. Since this is 81% of the peak speed of matrix-matrix multipliation on this processor,
we cannot hope to do very much better by using Level 3 BLAS.

On an IBM 3090E VF (using double precision) there is virtually no difference in performance
between the Linpack and the LAPACK-style code. Both run at about 23 megaflops. This is
unsatisfactory on a machine on which matrix-matrix multiplication can run at 75 megaflops.
To exploit the faster speed of Level 3 BLAS, the algorithms must undergo a deeper level of
restructuring, and be re-cast as a block algorithm — that is, an algorithm which operates
on blocks or submatrices of the original matrix.

To derive a block form of Cholesky factorization, we write the defining equation in parti-
tioned form thus:

Ajn A Ais vh o 0 Uin U2 Uss
AT Ay A |=| UL UL 0 0 Up Us
AL AL, Ass vh UL Uk 0 0 Uss

Equating submatrices in the second column, we obtain:
A1p = UfilUp
Az UUr2 + UgyUss

75

Hence, if U;; has already been computed, we can compute U;s from
U2 = (Uf) " A1a
by a call to the Level 3 BLAS routine STRSM; and then we can compute Uy from
ULUy, = Agy — UL Uy,

This involves first updating the symmetric submatrix A,; by a call to the Level 3 BLAS
routine SSYRK, and then computing its Cholesky factorization; since Fortran does not
allow recursion, a separate routine must be called (using Level 2 BLAS rather than Level
3), named SUTU2 in the code below. In this way successive blocks of columns of U are
computed. In the code NB denotes the width of the blocks.

b0 10 J =1, N, NB
JB = MIN(NB, N-J+1)
CALL STRSM(’Left’, ’Upper’, ’Transpose’, ’Non-unit’, J-1, JB,

$ ONE, A, LDA, A(1,J), LDA)
CALL SSYRK(’Upper’, ’Transpose’, JB, J-1, -ONE, A(1,J), LDA,
$ ONE, A(J,J), LDA)

CALL SUTU2(JB, A(J,J), LDA, INFO)
IF(INFO.NE.O) GO TO 20
10 CONTINUE

This code runs at 49 megaflops on a 3090, more than double the speed of the Linpack code.
But that is not the end of the story.

We mentioned in Section 2.1 that for many linear algebra computations there are several
vectorizable variants, often referred to as i-, j- and k-variants, according to a convention
introduced in [5] and used in [10]. The same is true of the corresponding block algorithms.

It turns out that the j-variant that was chosen for Linpack, and used in the above examples,
is not the fastest on many machines, because it is based on solving triangular systems of
equations, which can be significantly slower than matrix-matrix multiplication. The fastest
variant on a 3090 is the k-variant, which achieves 57 megaflops.

On a Cray YMP, the use of Level 3 BLAS squeezes a little more performance out of one
processor, but makes a large improvement when using all 8 processors. Table 2 summarises

the results.

Table 2: Speed of Cholesky factorization A = UTU for n = 500

Machine: IBM 3090 VF | Cray YMP | Cray YMP
Number of processors: 1 1 8
j-variant: Linpack 23 72 72
j-variant: using Level 2 BLAS | . 24 251 378
j-variant: using Level 3 BLAS 49 ' 287 1225
k-variant: using Level 3 BLAS 57 287 1438

76

5 Survey of block algorithms in LAPACK

Having discussed in detail the derivation of one particular block algorthm, we now describe
some of the results that have been obtained so far with a variety of block algorthms. Note
that all the results quoted in this paper are preliminary — the code of LAPACK routines
has not been finalized at the time of writing.

5.1 Factorizations for solving linear equations

The well-known LU and Cholesky factorizations are the simplest block algorithms to derive.
No extra floating-point operations are required, nor is any extra working storage. The same
is true of the associated routines for matrix inversion, but they are much less frequently
needed.

Table 3 illustrates the speed of the LAPACK routine for LU factorization, SGETRF in
single precision on Cray machines, DGETRF in double precision on all other machines. A
block size of 1 means that the unblocked algorithm is used, since it is faster than — or at
least as fast as — a blocked algorithm.

Table 3: Speed of SGETRF/DGETRF for square matrices of order n

No. of Block Values of n

processors | size 100 | 200 | 300 ; 400 | 500
IBM RISC/6000 1 32 19 25| 29 31 33
Alliant FX/8 8 16 91 261 32 46 57
IBM 3090J VF 1 64 23| 41} 52 58 63
Convex €240 4 64 31| 60| 82 100 112
Cray YMP 1 1 132 | 219 | 264 | 272 | 283
Cray 2 1 64 110 { 211292} 318 | 358
Siemens /Fujitsu VP 400-EX 1 64 46 | 132 { 222 | 309 | 397
NEC §X2 1 1 118 | 274 | 412 | 504 | bB7T
Cray YMP 8 64 195 | 556 | 920 | 1188 | 1408

Table 4 gives similar results for Cholesky factorization, extending the results given in Ta-
ble 2.

For symmetric indefinite matrices, LAPACK, like Linpack, provides the Bunch-Kaufman
algorithm, factorizing A as PUDU TpT where P is a permutation matrix, and D is block
diagonal with blocks of order 1 or 2. A block form of this algorithm has been derived
by Sorensen, and is implemented in the LAPACK routine SSYTRF/DSYTRF. It has to
duplicate a little of the computation in order to “look ahead” to determine the necessary
row and column interchanges. But the extra work is more than compensated for by the
faster speed of updating the matrix by blocks, as is illustrated in Table 5.

LAPACK, like Linpack, will provide LU and Cholesky factorizations of band matrices. The
Linpack algorithms can easily be restructured to use Level 2 BLAS, though that has little
effect on performance for matrices of very narrow bandwidth. It is also possible to use Level
3 BLAS, at the price of doing some extra work with zero elements outside the band [8].
This become worth while for matrices of large order and semi-bandwidth greater than 100
or so.

77

Table 4: Speed of SPOTRF/DPOTRF for matrices of order n with UPLO = ‘U’

No. of Block Values of n

processors | size 100 | 200 | 300 | 400 | 500
IBM RISC/6000-530 1 32 21 29| 34 36 38
Alliant FX/8 8 16 10| 27 40 49 52
IBM 3090J VF 1 48 26 | 43| 56 62 67
Convex C240 4 64 32| 63| 82 96 | 103
Cray YMP 1 1 126 | 219 | 257 | 275 | 285
Cray 2 1 64 109 | 213 | 294 | 318 | 362
Siemens/Fujitsu VP 400-EX 1 1 53 | 145 | 237 | 312 369
NEC SX2 1 1 155 | 387 | 589 | 719 | 819
Cray YMP 8 32 146 | 479 | 845 | 1164 | 1393

Table 5: Speed of SSYTRF for matrices of order n with UPLO = ‘U’ on a Cray 2

Block Values of n
size |} 100 | 200 | 300 | 400 | 500
1 751128 | 154 | 164 | 176
64 78 | 160 | 213 | 249 | 281

5.2 (@R factorization

The traditional algorithm for @ R factorization is based on the use of elementary Householder

matrices, of the general form
H=1-7uul

This leads to an algorithm with very good vector performance, especially if coded to use
Level 2 BLAS.

The key to developing a block form of this algorithm is to represent a product of b elementary
Householder matrices of order n as a block form of Householder matrix [12]:

HHy... Hy=I-UTUT

where U is an n-by-b matrix whose columns are the individual vectors u;, us,...,us, and T
is an upper triangular matrix of order b. Extra work is required to compute the elements of
T, but once again this is compensated for by the faster speed of applying the block form.
Table 6 summarises results obtained with the LAPACK routine SGEQRF/DGEQRF.

5.3 Eigenvalue problems

Eigenvalue problems have so far provided a less fertile ground for the development of block
algorithms than the factorizations so far described. Nevertheless useful improvements in
performance have been obtained. '

The first step in solving many types of eigenvalue problem is to reduce the original matrix
to a “condensed form” by orthogonal transformations.

78

Table 6: Speed of SGEQRF/DGEQRF for square matrices of order n

No. of Block Values of n

processors | size 100 | 200 | 300 | 400 | 500
IBM RISC/6000-530 1 32 18| 26| 30| 32| 34
Alliant FX/8 8 16 11| 28| 39| 47| 50
IBM 3090J VF 1 32 28| 54| 68| 75| 80
Convex C240 4 16 35| 65| 82| 97| 106
Cray YMP 1 1 177 | 253 | 276 | 286 | 292
Cray 2 1 32 105 | 208 | 269 | 303 | 326
Siemens/Fujitsu VP 400-EX 1 1 101 | 237 | 329 | 388 | 426
NEC 5X2 1 1 217 | 498 | 617 | 690 | 768

As for QR factorization, the unblocked algorithms all use elementary Housholder matrices,
and have good vector performance. Block forms of these algorithms have been developed
[6], but all require additional operations, and a significant proportion of the work must still
be performed by Level 2 BLAS, so there is less possibility of compensating for the extra
operations.

The algorithms concerned are:

e reduction of a symmetric matrix to tridiagonal form, to solve a symmetric eigenvalue
problem: LAPACK routine SSYTRD applies a symmetric block update of the form
A« A-UXT — XU7T, using the Level 3 BLAS routine SSYR2K; Level 3 BLAS
account for at most half the work.

e reduction of a rectangular matrix to bidiagonal form, to compute a singular value
decomposition: LAPACK routine SGEBRD applies a block update of the form A «
A-UXT —-YVT, using two calls to the Level 3 BLAS routine SGEMM,; Level 3 BLAS

account for at most half the work.

e reduction of a nonsymmetric matrix to Hessenberg form, to solve a nonsymmetric
eigenvalue problem: LAPACK routine SGEHRD applies a block update of the form
A« (I-UTTUT)(A - XUT); Level 3 BLAS account for at most three-quarters of
the work.

Note that only in the reduction to Hessenberg form is it possible to use the block Householder
representation, described in subsection 5.2. Extra work must be performed to compute the
n-by-b matrices X and Y that are required for the block updates — and extra workspace
is needed to store them.

Nevertheless the performance gains can be worthwhile on some machines, for example, on
an IBM 3090, as shown in Table 7. ’

Following the reduction to condensed form, there is no scope for using Level 2 or Level 3
BLAS in computing the eigenvalues and eigenvectors of a symmetric tridiagonal matrix, or
in computing the singular values and vectors of a bidiagonal matrix.

However, for computing the eigenvalues and eigenvectors of a Hessenberg matrix—or rather
for computing its Schur factorization— yet another flavour of block algorithm has been
developed: a multishift QR iteration [2]. Whereas the traditional Eispack routine HQR

79

Table 7: Speed of reductions to condensed forms on an IBM 3090E VF

(all matrices are square of order n)

Block Values of n
size |l 128 | 256 | 384 | 512
SSYTRD 1 15[22| 26| 27
16 15| 26| 32| 34
SGEBRD | 1 23| 26| 28] 29

12 23| 33| 38| 41

SGEHRD 1 271 29} 30| 30
24 36 | 51| 57| b8

uses a double shift (and the corresponding complex routine COMQR uses a single shift),
the multishift algorithm uses block shifts of higher order. It has been found that the total
number of operations decreases as the order of shift is increased until a minimum is reached
typically between 4 and 8; for higher orders the number of operations increases quite rapidly.
Because the speed of applying the shift increases steadily with the order, the optimum order
of shift may be in the region 8 to 16, say. (Note that for this algorithm timings are not
only machine-dependent, but also data-dependent, because they depend on the pattern of
iterations.) The overall gain in performance is not spectacular—the total time may be at
best halved—but no faster method has yet been developed.

5.4 Other parallelizable algorithms in LAPACK

Although the main thrust of LAPACK has been to develop block algorithms wherever pos-
sible, this has not excluded a few other algorithms that promise good scope for vectorization
or parallelization.

For example, routines have been developed to apply the method of bisection to compute
eigenvalues or singular values, in a way that allows either vectorization or parallelization.
And for the symmetric eigenvalue problem, code is being developed for the divide-and-
conquer method [7].

For these algorithms the parallelism cannot be hidden in the BLAS, and some other (as yet
non-standard) means must be used to express it.

6 The future — LAPACK 2

Recently the NSF has granted funding for a new project — LAPACK 2 — which will extend
LAPACK in several directions:

o developing distributed-memory versions of selected routines
e rewriting selected routines to exploit special properties of IEEE arithmetic

o developing C and Fortran 90 versions of selected routines

80

e extending the scope of LAPACK to include, for example, generalized SVD and new
accurate routines for eigenvalue problems based on Jacobi’s method

e systematic performace evaluation

On present-day distributed-memory machines, we do not expect to be able to hide the
parallelism inside the BLAS. We expect to have to write special code, although preserving
as far as possible the basic structure of the block algorithms described above. A set of
standard communication routines would be a great advantage, and an attempt to specify
them has just begun — under the title BLACS (Basic Linear Algebra Communication
Subprograms).

Acknowledgements

The LAPACK project is a collaborative project, involving E. Anderson (University of Ten-
nessee), Z. Bai (University of Kentucky), C. Bischof (Argonne National Laboratory), J.W.
Demmel (University of California at Berkeley), J.J. Dongarra (University of Tennessee and
Oak Ridge National Laboratory), J.J. Du Croz (NAG Ltd.), A. Greenbaum (New York
University), S.J. Hammarling (NAG Ltd.), A. McKenney (New York University), and D.C.
Sorensen (Rice University), with contributions from many others. The project is supported
by NSF Grant No. ASC-8715728.

References

[1] Anderson, E., Z. Bai, C. Bischof, J.W. Demmel, J.J. Dongarra, J.J. Du Croz, A.
Greenbaum, S.J. Hammarling, A. McKenney and D.C. Sorensen, ‘LAPACK: a portable
linear algebra library for high-performance computers’, LAPACK Working Note 20,
Computer Science Dept, University of Tennessee, Knoxville, report C5-90-105, May
1990.

[2] Bai, Z. and J.W. Demmel, ‘On a block implementation of Hessenberg multishift QR
iteration’, Int. J. High Speed Computing, 1, pp. 97-112, 1989.

[3] Dongarra, J.J., J.J. Du Croz, I.S.Duff and S.J. Hammarling, ‘A set of Level 3 Basic
Linear Algebra Subprograms’, ACM Trans. Math. Software, 16, pp. 1-17, 1990.

[4] Dongarra, J.J., J.J. Du Croz, S.J. Hammarling and R.J. Hanson, ‘An extended set
of Fortran Basic Linear Algebra Subprograms’, ACM Trans. Math. Software, 14, pp.
1-17, 1988.

[6] Dongarra, J.J., F. Gustavson and A. Karp, ‘Implementing linear algebra algorithms
for dense matrices on a vector pipeline machine’, STAM Rev., 26, pp. 91-112, 1984.

[6] Dongarra, J.J., S.J. Hammarling and D.C. Sorensen, ‘Block reduction of matrices to
condensed forms for eigenvalue computations’, J. Comp. Appl. Math. 27, pp. 215-227,
1989. :

[7] Dongarra, J.J. and D.C. Sorensen, ‘A fully parallel algorithm for the symmetric eigen-
value problem’, SIAM J. Sci. Stat. Comp. 8, pp. s139-s154, 1987.

81

(8] Du Croz, J.J., P.J.D. Mayes and G. Radicati, ‘Factorizations of band matrices using
Level 3 BLAS’, LAPACK Working Note 21, Computer Science Dept, University of
Tennessee, Knoxville, report CS-90-109, July 1990.

[9] Gallivan, K.A., R.J. Plemmons and A.H. Sameh, ‘Parallel algorithms for dense linear
algebra computations’, SIAM Rev., 32, pp. 54-135, 1990.

[10] Golub, G.H. and C.F. Van Loan, ‘Matrix Computations’, 2nd ed., The Johns Hopkins
University Press, 1989.

[11] Lawson, C., R.J. Hanson, D. Kincaid and F.T. Krogh, ‘Basic Linear Algebra Subpro-
grams for Fortran usage’, ACM Trans. Math. Software, 5, pp. 308-323, 1979.

[12] Schreiber, R., and C.F. Van Loan, ‘A storage efficient WY representation for products
of Householder transformations’, SIAM J. Sci. Stat. Comp. 10, pp. 53-57, 1989.

82

