A TECHNIQUE FOR EXPLOITING PARALLELISM IN
METEOROLOGICAL SOFTWARE

D.. Catton
Strand Software Technologies Ltd
Markyate, UK.

Summary: A few problems can be solved on a multi-processor computer by
running simultaneously a collection of quite independent sub-programs, or
processes. In most problems, however, the parallel sub-programs need to
communicate intermediate results between themselves. This communication makes
programming more complex because data may be read by a recipient more than
once, or alternatively, missed altogether. Strand is a new concurrent programming
language for MIMD type machines which has been designed to relieve
programmers from the burdens of co-ordinating communication between many
processes running simultaneously. A Strand program can also be written as a
harness, to co-ordinate communication between processes written in Fortran or ’C’.

This paper summarises the important features of Strand and describes in outline an
experiment in which a Strand harness was written to adapt a weather forecasting
program to parallel running.

1. INTRODUCTION

Multi-processor MIMD machines where each processor can run a different program
offer great flexibility in speeding-up computations through parallel operation. A
class of problems, such as those based on Monte Carlo simulations, can be solved
on MIMD machines by using a collection of independent sub-programs running in
parallel. In most cases however, a parallel solution has to be achieved by having a
collection of sub-programs which communicate intermediate results amongst
themselves as the computation proceeds. Data interchange is usually needed in
matrix manipulation and in the numerical solution of partial differential

equations, see for example, Fox et al (1988).

Data interchange has to be controlled otherwise some data passed on might be read

46

more than once, or alternatively, it might be missed altogether. In parallel
programs based directly on sequential languages such as Fortran or °C, it is
usually necessary for the programmer to take care to arrange the orderly transfer
of data. This can be a burden and can lead to obscure programming errors. The
Strand concurrent programming language, Foster and Taylor (1990), has been
designed to take over the burden of arranging orderly data transfer between
processes.

Strand can also control the running and intercommunication of routines written in
Fortran or ’C’ and it is possible to write a harness program in Strand which
controls the running of a collection of process routines written in C and Fortran.
In this way the numerical parts of a program can be written in well established
formats whilst the supervisory parts needed for parallel computation draw on the
new features provided by Strand. This approach to constructing a parallel program
is sometimes called bilingual programming. The code needed to mediate between
the data storage formats needed by Strand and those needed by Fortran is supplied
as a library routine with each copy of Strand.

2. FEATURES OF STRAND
A Strand program is based on a collection of process definitions which call upon
each other. Program execution is started by a call to one, or more, processes. An
example of a process definition is -
twice(Number, Result) :- Number > 0 |
Result is 2*Number.
twice(Number, Result) :- Number =< 0 |
Result := 0.
This definition has two cases which are selected for execution by the guards,
Number > 0 | and Number =< 0 |. Notice that the computed result has to be
assigned to a named variable and cannot be left anonymous. A program could be
started by the call, twice(2,Answer) when the first case would execute to leave the
result 4 in Answer. There can be several operations on the right-hand side, Strand
seeks to execute all of these in parallel if possible.

Another example of a call is, twice(2,W),twice(W,Answer). This call would
nominally start two instances of the twice process executing in parallel. However,
Strand schedules its computations using dataflow rules and the second instance of
twice process would not be started until the value of W had first been computed by

47

the first process. Figure 1 illustrates the call as a network of two processes
communicating through the shared variable W.

2.1 Stream Data

The above call had to transfer only one item of data between the two processes. In
many problems more than one item has to be transferred, for example, values
might have to be transferred on every iteration. To handle the transfer of a
succession of items Strand uses a stream construct.

The stream construct depends on placing data into list structures and manipulating
these structures with a standard set of conventions. An example of a list used in
the stream construct might be, [1,2|T]. This denotes the list starting with the
numbers 1 and 2 and continuing with further numbers not yet computed. The list of
further number will eventually appear in the variable T.

One case of a program to double each number in a stream might be,
streamTwice([H|T],ListResult) :- H > 0 |
Temp is 2*H,
ListResult : = [Temp|ListResult1],
streamTwice(T,ListResult1).
The stream program deals with the first item on the stream and then spawns a new
process to manipulate the further items on the stream. This form of program gives
the interesting effect that in the call, streamTwice([1,2,3).ListResult), the
starting call generates a process to manipulate 1 and at the same time spawns a
process to deal with the list, [2,3]. The second process similarly manipulates 2
and spawns a process to to deal with [3]. The effect is to vectorise the
computation automatically, see figure 2.

More than one process can receive the same stream input and diverse networks of
processes can be set-up.

3. THE MM4 WEATHER MODELLING PROGRAM

MM4 is the code of a medium scale weather modelling Fortran program developed
at Pennsylvania State University and the U.S. National Center for Atmospheric
Research. MM4 computes the time evolution of a set of partial differential
equations in the usual way by dividing the atmosphere into a 3-dimensional grid of
points.

48

Some experiments have been done by I Foster, D. Joerg and R. Stevens of
Argonne National Laboratory, Illinois, U.S.A. to adapt the MM4 code so that it
could run on a multi-processor machine. This work will be reported in detail
elsewhere.

In the parallel computing experiments the basic data had to be divided and spread
over the available processors. In effect, the atmosphere over an area roughly the
size of the continental United States was divided into 16 horizontal layers. Each
layer contained 61x46 grid points, each grid area corresponding to an 80x80 km
square. The values associated with a grid point at time t+1 could be computed in
the usual way from the values associated with several neighbouring grid points at
time t. The atmosphere grid was decomposed along two dimensions into sub-grid

layers of air.

Calculating the new, time t+1, values associated with the points of a sub-grid was
done by a one process for each sub-grid. Of course, several computational processes
had to be allocated to each available physical processor because the available
machines had 64 or fewer, processors. The new values associated with points well
within the sub-grids could be found with the data available at each processor. On
the other hand, to update points near the sub-grid boundaries, values from
neighbouring sub-grids would be needed. These values would be obtained either
from processes on the same processor or from processes on other processors.

4. PROGRAM DESIGN

The essential part of the adapted MM4 program was the Fortran code which
computed the updated values of the points of a single sub-grid. The rest of the
program was concerned with initialising the sub-grid values and with running each
iteration step. At each iteration step the boundary values of each sub-grid had to
be communicated to designated neighbours and in turn, appropriately received.

The sub-grid code was largely that of the MM4 Fortran. It had to be adapted to
eliminate the use of common storage since each parallel process runs in a
self-contained way. Strand and Fortran store data in different formats so a format
conversion is carried out when Strand passes data to the Fortran routine and when

data is returned.

A simplistic approach to writing the harness would be to write a call which would

49

immediately set-up the required sub-grid processes. This call would have already
divided up the initial data for the sub-grids. Writing this call would be heavy

work and it would have to be written differently for each size of machine. A better
approach is to delegate the setting-up work to a program.

A standard design for setting-up programs is the based on the manager/worker
apprbach. In this arrangement a manager process is started first, this reads in
details of the number of available processors and allocates a worker process to
each processor. The manager then reads in details of the parallel processes which
comprise the program. The manager then starts running the program by allocating
program processes to be run by each worker processes. When a worker finishes it
passes back results to the manager and asks for another process to run.

In the MM4 adaptation the main processes are those updating the sub-grid values,
but there are also processes which decompose the initial data. The manager
receives not only values but also error estimate information. A diagram
illustrating a possible general arrangement of a manager/worker network is shown
in figure 3.

5. CONCLUSIONS

The experimental results to be published by Foster, Joerg and Stevens will
demonstrate that a worthwhile speed-up of the MM4 computations were obtained
on all the different multi-processor machines which were available. This shows that
use of a manager/worker program design with the controlling portion written in
Strand and the numerical routines written in Fortran is both portable across
different machines and also efficient in realising the benefits of parallel
computation.

A major advantage of the kind of bilingual program framework discussed above is
that it is easy to change the basis of the computation, for example the grid size
can be reduced in parts of the atmosphere where change is greatest. The changes
can be made adaptively as the computation proceeds because Strand can create
new worker processes dynamically at any time during computation and can invoke
the Fortran processes with new grid size parameters.

50

REFERENCES

Fox, G., M. Johnson, S. Otto, J. Salmon, and D. Walker, 1988: Solving problems on

concurrent processors, Volume 1,Englewood Cliffs, New Jersey, Prentice-Hall,
592pp.

Foster, 1. and S. Taylor, 1990: Strand, new concepts in parallel programming, New
Jersey, Prentice-Hall, 323pp.

Shared memory

2 Answer
twice(2,W) twice(W,Answer)
process process
Fig 1. Process network of call
twice(2,W),twice(2,Answer)
[1,2,3]

[2,3]

[3]

Fig 2. Vectorising effect of stream
processing

51

