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1 Introduction

The purpose of this paper is to review methods for high resolution objective analysis
with special emphasis on analysis methods applied in numerical weather prediction.
The first part of the paper discusses general issues, such as the range of spatial scales,
the degree of isotropy, the degree of stationarity and balance conditions. One out-
standing problem is the increasing lack of observed data when we go towards higher
resolution analysis. Following this general introduction, some operational analysis
and data assimilation schemes used for high resolution numerical weather predic-
tion are reviewed and discussed. Various schemes for objective analysis applied for
meso-scale case studies and for nowcasting and very short-range weather forecasting
are also briefly reviewed. Some experiences from the developement of a data assim-
ilation scheme for a common Nordic/Dutch high resolution forecasting system are
finally described and discussed.

2 A discussion on general problems in high reso-
lution analysis

2.1 Scales and structures

A key problem for objective analysis in general is the question of what spatial scales
to be analyzed. In terms of the generally utilized optimum (statistical) interpolation
technique [14] these spatial scales are defined by a spatial correlation function. The
definition of a proper spatial correlation function has sometimes been overlooked and
spatial correlation functions like the Gaussian were often utilized in many opera-
tional applications, not so much for its spatial spectral characteristics, but rather for
practical computational reasons. The importance of a good selection of correlation
functions was recognized early by e.g. Julian and Thiebaux [18]. Due to recent find-
ings by Hollingsworth and Lonnberg ([17] and [23]) at ECMWF, the importance of
a proper selection of spatial correlation functions is today fully recognized and most
operational forecasting centers apply spectrally well based structure functions. In
order to analyze all the required scales properly, it is also necessary to select data
influencing the grid-point values in such a way that all scales are represented (or to
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avoid the data selection problem). This requires, however, a large number of ob-
served predictors for each gridpoint to be analyzed. In order so save computing time
it is necessary to make certain computational shortcuts like in the ECMWF analysis
[24] by letting several gridpoints share the same observational predictors. Another
possibility is to let the analysis work as a two-step procedure with different analysis
methods used for analysis of large and small scales. This is done in the French high
resolution Péridot forecasting system [13]. The weather service of Japan has tested
a two-step procedure for analysis of tropical cyclones [21]. In a first step, small-
scale (bogus) information on tropical cyclones is introduced into the analysis first
guess fields with proper meso-scale”structures and in a second step synoptic scale
information is introduced with a synoptic scale analysis.

As we go towards higher resolution analysis, several questions related to ba-
sic assumptions in the structure function formulations arise. An-isotropy certainly
should be taken into account when we want to analyse smaller scale phenemena like
frontal zones. One way to proceed is to to formulate flow-dependent (and thus non-
stationary) and an-isotropic analysis structure functions. Certain attempts have been
made to use ad hoc formulated flow-dependent structure functions for analysis of hu-
midity ([2] and [13]) by elliptic-shaped structure functions elongated in the direction
of the frontal zone in the analysis first guess field. Another trial to model an-isotropy, -
e.g. land/sea effects, within the analysis of near-surface parameters was tried in the
Swedish PROMIS-project [1]. Jgrgensen [19] managed to detect and model baro-
clinically tilting structure functions by studying empirical ECMWF forecast error
covariances, stratified according to flow type.

We know that forecast models are good at simulating an-isotropic structures like
fronts, provided the large scale forcing for the frontogenesis is correctly defined. An
alternative to the use of statistical an-isotropic structure functions would therefore
be to try to change this large-scale forcing until the forecasted front is in agreement
with observations. This requires, however, a fourdimensional analysis including the
constraint of a forecast model. Variational analysis including adjoint model tech-
niques are very promising tools being developed at present (see companion papers
in this volume). It is most likely, that the application of these four-dimensional data
assimilation techniques will replace the need for development of statistically based
flowdependent structure functions.

2.2 Balances and adjustment processes

Another important problem in high resolution analysis and data assimilation is the
question of adjustment processes and balances. The application of partial geostrophic
balance in the (small) analysis increments and the use of the non-linear normal mode
initialization are well established in synoptic scale data assimilation. More funda-
mental research is certainly needed in order to establish proper balance conditions,
to be used for analysis as well as for initialization for smaller scale data assimilation.

The questions of balances and adjustment are closely related to the questions
of temporal resolution of the analysis and model spin-up. For higher resolution
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data assimilation we need to increase the frequency of analysis cycles in order to
be able to analyse higher frequency meteorological variations by e.g. going from
6 hour assimilation cycles to 3 hour assimilation cycles or even to continuous data
assimilation. If we do so, however, we will have problems with the analysis destroying
balances established by the model and the decreased data assimilation cycle will not
allow the model to re-establish these balances.

2.3 Lack of observations and quality control

Increasing the frequency of data assimilation cycles will also magnify the problem
of using single level data. As an example, at 03UTC, 09UTC etc. we Iﬁainly have
observed surface data and aircraft data available in addition to satellite data. A
proper utilization of single level data will require more advanced and dynamically
sound structure functions than those used today employing e.g. the assumption of
vertical-horisontal separability. These result in too barotropic analysis increment
structures when no complete three-dimensional observations are available. Again,
flow-dependent structure functions is one way to deal with this problem, but four-
dimensional data assimilation using the forecast model itself to distribute the ob-
served information might be the most promising solution.

The most crucial problem for high resolution analysis is the relative lack of data
that increases when we go to smaller scales. Remote sensing data, e.g. satellite
soundings, satellite image data, radar data and wind profiler data with high tem-
poral resolution, are the possible sources of data to fill in holes between the sparse
conventional observational sites. The utilization of these data will require research
efforts to interprete the raw data signals into model parameters. The best way to do
this interpretation is probably through the forecast model itself. As an example, pre-
cipitation data determined from satellite image data, should be used directly to tune
the model state (divergence, water vapour and cloud liquid water) to produce the
same precipitation amounts. To do this efficiently, four-dimensional data assimilation
techniques are probably needed.

The relative sparseness of observed data for higher resolution analysis also makes
the quality control of observations a more difficult and crucial task.

3 Review of analysis methods used for operational
high resolution numerical weather prediction

An overview of some existing operational (or near-operational) data assimilation
schemes used for high resolution numerical weather prediction is given in Table 1.
There are several similarities between the schemes mentioned. Most of the schemes
are based on intermittent data assimilation including an objective analysis scheme
and a non-linear normal mode initialization scheme [26]. Optimum interpolation
is the predominantly utilized analysis technique. The Norwegian analysis scheme,
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Country/ Grid Assimilation/ Analysis
scheme resolution initialization cycle ’ Analysis method
3h-Global
UK. 75 km Repeated insertion/ analysis Univariate OI, geostrophic and hydrostatic
UKMO LAM divergence damping at -12h corrections (SC scheme is being developed)
France Intermittent/ 3D multivariate OI,
Péridot 35km NLNM 12h ) Direct use of TOVS radiances
Norway Intermittent/ SC approximation to 3D
+ LAMGO 50 km dynamic 6h multivariate Ol
Sweden Intermittent/ 3D univariate OI, variational adjustment of
SMHI LAM 100 km NLNM 6h mass- and wind-field increments
Denmark Intermittent/ SMHI scheme, (Modified KNM1 scheme
DMI LAM 100 km NLNM 6h ' is being tested)
Nether- Intermittent/
lands 50km Bounded derivative 3h 3D multivariate OI
KNMI LAM method
Spectral Intermittent / 6h
ECMWF T106 NLNM 3D multivariate OI
Intermittent/ 6h LAM version of ECMWF analysis scheme
HIRLAM 50 km NLNM (3h) 3D multivariate OI
U.S.A. 6 h
NMC Regio- 150 km NLNM Global 3D multivariate Ol
nal Model f.g.
Japan Intermittent/ 2D multivariate OJ and
JMA LAM 127 km NLNM 12 h spectral analysis in the stratosphere
Australia
Regional . Intermittent/ SC scheme
model 250 km NLNM 12 h (3D multivariate O1 scheme being developed)

Table 1: Opérational (or near-operational) high resolution data assimilation schemes.
(SC=Successive Corrections,0I=0Optimum Interpolation, NLNM=Non-Linear Nor-
mal Mode initialization)

utilizing the successive correction approximation to 3D multivariate optimum inter-
polation as proposed by Bratseth [10], is one exception, although this scheme also is
based on optimum interpolation theory in the sense that-the analysis fields will con-
verge towards the optimum interpolation analysis for a proper selection of analysis
parameters.

Some specific features of the U.K. Met. Office data assimilation scheme, the
analysis scheme of the French Péridot forcasting system and the baroclinically tilting

structure function in an experimental Danish LAM analysis scheme are discussed in
more detail below.

3.1 The U.K.Met.Office repeated insertion data assimilation
scheme

The U.K. Met. Office fine mesh data assimilation scheme [7] is an intermittent data
assimilation scheme with repeated insertion of observed data during each time-step
of the data assimilation forecast cycles of 3 hours. If T is the initial time of the
forecast, data assimilation is started at T - 12h with a global analysis interpolated to
the fine mesh area. Then repeated insertion of obvervations valid at T - 9h is carried
during the forecast model integration between T - 12h and T - 9h. Data assimilation
_cycles are then carried out in the same way for the time intervals between T - 9 h, T
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Figure 1: Schematlc dlgram of the assimilation 1ncrernent in the U.K. Met.Office
scheme.

- 6h, T - 3h and T with the observations valid at the end of these intervals.

The basic idea of the repeated insertion data assimilation over a period of 3h with
N time steps is schematically illustrated in Figure 1. At every timestep "n” a data
assimilation increment A X, is evaluated as the difference between the forecast model
state at time-step n and the observed state at time-step N. The data assimilation
increment AX,, is scaled by a factor x and added to the forecast model state. For the
the fine mesh model this nudging” factor x is 0.0 at the start of the data assimilation
cycle (time-step 0) and it grows linearly to 0.175 at the end of the data assimilation
cycle(time-step N). The aim of this procedure is that the data assimilation state
should approach the observed state at the end of the data assimilation cycle.

The assimilation equations in the U.K. Met. Office fine mesh data assimilation
scheme can schematically be represented by '

AX = Y Wi(X? - X))

;+At/3 = A(X:) + Da(X:)

:+2At/3 = A( t+At/3) + Dd(X;+At/3)

Xivar = A(X} 1 2ne/3) + Daf t+248/3)

Xivar = B(Xiya) +x(AX + H(AX) + G(AX))

The first equation represents univariate optimum interpolation with interpolation
weights pre-calculated in advance of the data assimaltion in order to save computing
time. This is possible because of linearity of the optimum interpolation, with values
of interpolation weights being only influenced by observation site positions and type
of variable.

The A-operator represents forward time stepping of adjustment terms, B advec-
tion terms and D divergence damping terms. An enhanced divergence damping was
introduced to control the gravity noise (since no initialization is carried out). H rep-
resent hydrostatic adjustment of temperature due to analysis increments of surface
pressure. These are calculated in such a way that the geopotentials above a certain
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level are not modied by surface pressure increments. G represents geostrophic wind
increments as calculated from the mass field analysis increments.

The U.K. Met.Office is developing a new fine mesh data assimilation scheme uti-
lizing a successive correction analysis. One important reason for this new scheme is
the non-necessity to pre-calculate the analysis weights which makes it possible to im-
plement a truely continuous data assimilation with observations inserted repeatedly
during a time interval centered around the true observation times.

3.2 The French Péridot analysis scheme

Péridot is the operational high resolution (As = 35km) short-range forecasting sys-
tem of the French weather service. The analysis scheme of Péridot [13] is based on
3-dimensional multivariate optimum interpolation of forecast errors. Initialization is
carried out with a non-linear normal mode scheme. Here we will briefly discuss two
unique features of the Péridot data assimilation scheme, the direct use of satellite
sounding radiances (TOVS) and the Fourier merging of the Péridot analysis with a
coarse mesh analysis.

Input observational data to the Péridot analysis are, in addition to coventional
data, TOVS micro-wave and infra-red radiances and histogram analyses of AVHRR
pixel data within the TOVS infra-red fields of view. The AVHRR histogram data are
used to distinguish clear or near-clear TOVS fields of view, for which TOVS radiances
are utilized directly in the mass- and wind-field analysis, from the cloudy areas for
which bogus humidity observations are generated.

Deviations between observed radiances and radiances calculated from the forecast
model profiles, i.e. radiance forecast errors, are used as predictors in the mass- and
wind field analysis. Thus, spatial correlations for radiance forecast errors as well as
cross-correlations between e.g. radiance errors and temperature and wind forecast
errors are needed. Models for these correlations have been obtained by a Monte-Carlo
technique:

e Start from a set of (true) radiosonde profiles of geopotential, temperature and
humidity.

e Use forecast error covariances of these variables to generate a number of forecast
error profiles being random realizations obeying these covariances.

e Run a forward radiance calculation routine to obtain simulated "true” as well
as forecast radiances.

e Evaluate the covariance matrix of the simulated forecast radiance errors of the
different radiance channels as well as cross-correlations between radiance errors
and errors of geopotential, temperature and humidity.

e Assume the horisontal correlation of synthetic radiance errors to be the same
as for temperature forecast errors.
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In order to model all the required covariances and cross-covariances it is also nec-
essary to introduce some separation assumptions. As an example, cross-correlations
between geopotential errors and radiance errors in different horisontal positions are
modelled as a product of a horisontal correlation of the geopotential forecast-errors
and the cross-correlation between geopotential error and radiance error in the posi-
tion of the radiance measurement:

r(eR/ (), €Z((p)) = r(eR](a),eZ!(p)) x r(cZ!(p),Z{(p))

Here, eR](c) denotes radiance error of channel o in position *i” and €Z.(p) de-
notes geopotential error of pressure fevel p in position "k”.

The observational error covariances for the radiance measurements are derived by
comparing co-located satellite radiance observations and radiance values determined
from radiosonde data. The effect of the radiosonde errors is taken care of by subtrac-
tion of a radiance error covariance matrix corresponding to the radiosonde errors,
also derived by Monte-Carlo simulation.

A second unique feature of the Péridot analysis scheme is a Fourier merging of
the analysis fields with a coarse mesh analysis. First, a lateral boundary component
(fulfilling the lateral boundary values, which are the same for the fine-mesh and the
coarse-mesh analysis fields and with zero Laplacian ) is subtracted and then both
analysis fields are transformed by two-dimensional Fourier tranforms. The final fine
mesh analysis is then determined by merging the Fourier coefficients, relying more on
the coarse mesh analysis for the larger scales and relying completely on the fine mesh
analysis for the smallest horisontal scales. The main reason for Fourier-merging with
a coarse-mesh analysis is the difficulty to analyze larger horisontal scales with the
local data selection schemes in the Péridot analysis, designed to do a good job for
the smaller scales, and the lack of observations on larger scales within the relatively
small Péridot area.

The Péridot data assimilation has proven to have good impact on forecasts of
several significant intensive small-scale weather events as compared to runs of the
Péridot forecast model on interpolated coarse mesh analysis fields. Also the use of

satellite radiance data in Péridot has proven to give positive impact for selected cases
[36]. y

3.3 Baroclinically tilting structure functions

A multivariate optimum interpolation analysis scheme, originally developed at the
KNMLI, is being used experimentally at the Danish Meteorological Institute by Jgrgensen
({19] and [20]) for testing baroclinically tilting structure functions. Radiosonde mi-
nus 6 h ECMWF forecast geopotentials were utilized to determine these structure
functions. North American radiosonde stations were selected to get a consistent
data set.Only stations from the western part of this area, where we may expect
the most developed structures in the short range forecast errors due to advection
from data-sparse areas, were actually utilized. Jgrgensen stratified the data subjec-
tively according to flow type. For situations characterized by cyclonic south-westerly
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Figure 2: Vertical cross-sections southwest-northwest of structure functions. Full
lines=without vertical tilt.Dashed lines=with vertical tilt.

flow, Jgrgensen managed to find a significant baroclinic pattern in the forecast er-
ror correlations. The correlation maxima were tilting towards south-west for levels
above a certain reference point and towards northeast for levels below. Jgrgensen
used Fourier-Bessel series to model the correlation functions. No assumption on
horisontal/vertical.separability was necessary to derive this correlation model. A
cross-section of the derived correlation model is given in figure 2, illustrating south-
westerly tilt of the correlation maxima. Jgrgensen utilized the derived correlation
model in data assimilation experiments, whereby she subjectively selected the area
to utilize the tilt and the direction of the tilt. A minor positive impact of the tilting
structure functions was noticed in a test case with a fast developing cyclone, initially
being situated over the Eastern Atlantic and the British Isles. Jgrgensen concludes
that more development work is needed before the tilting structure functions can be
used operationally, especially it is necessary to develop objective methods to deter-
mine when tilts in the-structure functions should be apphed and if so, in what areas
and in what directions.

4 "Review of analysis methods used for mesoscale
case studies, nowcasting and very short-range
forecasting

4.1 Successive correction schemes

Successive correction analysis schemes [6] have been widely applied in connection
with diagnostic case studies, mainly since they are easy to apply. By successive
iterations the analysis is modified , generally for smaller and smaller scales for each
iteration. Formally one iteration is carried out as follows:

ZN WA (fOBS ft(}\))
EN WA

fo(A+1) = fo(A) +
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Here A denotes the iteration number, f; field (analysis or first guess) values, f; field
values interpolated to observation points, f%29 observed values and WgAi the interpo-
lation weights. These weights may vary from iteration to iteration. Different versions
of successive corrections mainly differ in the formulation of the weights. The Cress-
man SC method [12] has been frequently used in numerical weather prediction and
it uses the following form of the weighting function '

WgAi = (Ri - rﬁi)/(Ri + r;i)

where r,; denotes the distance between the gridpoint and the observation site. R, is
an influence radius which is decreased for each iteration, resulting in corrections of
smaller and smaller scales of the first guess field errors. It is also commeon to apply
a spatial smoothing of the field between each iteration of the Cressman SC scheme.

The Barnes SC method, [3] and [4], has received wide acceptance for mesoscale
analysis. It utilizes an exponential weighting function

: WQA,- = exp(—rq/K))

and it is normally applied in two scans, one weighted average scan and one weighted
correction scan. The scan-dependent parameter K, is determined by specification of
the desired spectral response of the analysis.

4.2 Statistical interpolation schemes

Albeit popular in numerical weather prediction, optimum (statistical) interpolation
[14] has so far not been widely applied in other meteorological fields, probably be-
cause of the requirement to specify spatial correlation functions for the parameters
to be analysed. Cats [11] utilized statistical interpolation in connection with an
air pollution study to analyse wind components close to surface from a meso-scale
network of stations. Within the Swedish project PROMIS for nowcasting and very
short-range forecasting, various statistical interpolation schemes [1] have been devel-
oped mainly for analysis of near-surface parameters in a meso-scale grid (As=20km).
Within these schemes, an-isotropy with regards to land-sea contrasts near the surface
is handled by an-isotropic struture functions. The structure functions are separated
into two parts, one taking care of the land-sea contrasts and one being a function of
distance. The land-sea contrast is handled by classifying all stations and gridpoints
according to their position in relation to the coastline. Thus the total correlation

between the temperatures T; in position ”i” 7y

and T} in position ”j” is given by
w(T;, T;) = B(Class;, Class;)a(rs;)

where «(r;;) is a distance-dependent function and the B-function is given by a
table, see Table 2.
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Inland | Near | Coast | Inland | Sea

coast " lake
Inland 1.00 0.95 0.88 0.88 0.80
Near coast 1.00 0.95 0.95 0.88
Coast 1.00 0.95 0.95
Inland lake 1.00 0.95
Sea 1.00

‘Table 2: Correlation table used in a spatial correlation model for analysis of 2 met

temperature to distinguish the positions of gridpoints and observation stations in
relation to the coastline

4.3 Variational techniques

The concept of variational objective analysis was introduced by Sasaki [32]. Early
applications utilized variational methods to combine univariately analysed wind- and
mass-fields under the constraint of simple , e.g. geostrophic, relations. The main ad-
vantage of variational objective analysis, however, is the possibility to include more
complex, also non-linear, constraints. Several authors have applied such variational
analysis techniques also for meso-scale studies, e.g. Lewis and Bloom [22]. Recently
McGinley [27] applied a three dimensional variational analysis scheme to ALPEX
data to study some cases of interesting cyclogenesis with suspected meso-scale forc-
ing. Starting from univariately analysed mass- and wind-fields, McGinley utilized
the variational least-square minimization principle to modify these analysis values
under a weak constraint of the full momentum equations (to minimize the devia-
tions between observed and computed momentum tendencies) and under a strong
constraint of conservation of mass. By including the lower boundary condition of full
orographic blocking of the flow, finally, it was possible to obtain a very realistic anal-
ysis/diagnosis of the low-level wind field in the vicinity of the complex orographies of
the Alps and the Pyrenees. In addition, features like frontal zones and vertical veloc-
ity patterns were much improved compared to the same features in the un-adjusted
grid-point data. : '

Variational objective analysis schemes discussed above have required the input
data on a regular grid in order to solve the variational equations. These gridpoint
data were generally obtained by some simple spatial interpolation technique, e.g. suc-
cessive corrections. Wahba and Wendelberger [37] have applied a variational analysis
technique based on representation of the spatial variations with spline functions,
- minimization of the differences between analysis and observations directly in the
observation points and utilization of generalized cross-validation to determine the
proper smoothing of the field. The following function is minimized:

am
NS o e | [ et

Here "{” denotes the analysis field, ” f°25” the observations, o; normalization
factors to take observational accuracy into account, m a free parameter which is
related to the desired power spectra of the analysis and Aggy the cross-validation
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parameter which determines the general fit of the analysis to the observed data (or
the smoothness of the analysis). The cross-validation parameter is determined from
the data by excluding, in principle, one observed datum at a time and determination
of the parameter which in the mean gives the best fit to the excluded data.
Four-dimesional data assimilations methods, described in companion papers in
this volume, are certainly most promising methods to be used for meso-scale case
studies, especially since the relative lack of observed data on the meso-scale necessi-

tates the use of full forecast model eQua,tions to compensate for the relative sparseness
of data.

=
4.4 Analysis on isentropic surfaces

In order to utilize the full vertical resolution of radiosonde data, several investigators
(Bleck[9] and Shapiro[34]) have used potential temperature as the vertical coordinate
for objective analysis with meso-scale applications. Using this vertical coordinate sys-
tem, features like fronts and jet-streams are represented in a more adequate manner.
Reimer[31] has used a univariate isentropic statistical interpolation scheme for anal-
ysis of ALPEX data with ECMWF analysis fields used as first guess fields. An
isentropic analysis system is developed within the framework of PROFS, the NOAA
project for nowcasting and very short-range forecasting (see Benjamin[5]).

4.5 Comparisions of different methods

Seaman and Hutchinson [33] have carried out an extensive evaluation and compari-
son of various analysis methods for univariate analysis of a single parameter with a
climatological mean value used as a first guess. 20 years of surface pressure data from
47 southeast Austalian stations were utilized for this test. 5 years of data were used
to optimize the various parameters of the methods selected for comparison and the
remaining 15 years of data were used for analysis experiments. Several different data
densities were simulated by using only subsets of the stations. In order to do a proper
verification of the analysis quality, data from some stations were with-held from the
analysis and used for verification. Seaman and Hutchinson summarize their results
as follows. Best results were obtained using statistical interpolation with structure
functions having proper spectral properties. The Cressman SC method ranked only
slightly below the best optimum interpolation schemes. Spline fitting techniques
utilizing generalized cross-validation showed a greater sensitivity than most other
methods to data density and to interpolation versus extrapolation. Methods that
perfomed well in interpolation also detoriated less in extrapolation. Experiments
with statistical interpolation combined with generalized cross validation to deter-
mine the signal-to-noise ratio indicated improved results when the covariances of
obsevational errors or background errors were poorly known (e.g. approximated by
a Gaussian function ). :

The application of scalar interpolation techniques, such as successive corrections,
to the analysis of wind components involves a certain danger since a purely isotropic
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analysis, component by component, indirectly assumes that the variance of the di-
vergent part of the wind field is the same as the variance of the rotational part of
the wind field (Lorenc [25] ). Pedder[30] has shown that this can lead to very erro-
neous analysis results in case the partition of the two parts of the wind field is not
as implicitely assumed.

5 Experiences of high resolution analysis obtained
during the HIRLAM project

The weather services of the Nordic countries and the Netherlands have established
a common research project for the development of a HIgh Resolution Limited Area
Model (HIRLAM) including a data assimilation system. Some experiences from the
development of a data assimilation scheme for HIRLAM are reviewed below.

5.1 Sensitivity of analyses and forecasts with regard to anal-
ysis first guess error standard-deviations

During the first phase of the HIRLAM-project, several existing LAM systems were
upgraded to meet the required horisontal resolution for HIRLAM (As = 50km) and
used for experiments, see [15] and [28]. Here a sensitivity experiment with regard
to forecast error standard-deviations used in the statistical interpolation scheme will -
be discussed. This experiment was carried out with the SMHI analysis scheme [1],
a non-linear normal mode initialization scheme [8] and a limited area version of the
ECMWF gridpoint forecast model [35].

A rapid small-scale cyclone development occured over the North Sea during the
late evening of September 5 1985. At OO UTC September 6 1985, the cyclone was
fully developed and situated over the Sea of Kattegat (Figure 3). This storm was not
particularely well forecasted by any operational forecasting centre.

The trial +24h forecasts from 5 September 00 UTC carried out by several of
the HIRLAM baseline systems managed to simulate this rapid cyclone development
over the North Sea rather well, Figure 4 shows the forecast produced by the system
described above.

In one sensitivity experiment the assumed forecast error standard deviations used
in the analysis were modified to represent more updated values ([17] and [23]). The
modified values were made a factor 0.4 smaller than the original values. This factor
reflects the quality of ECMWF short range forecast errors compared to the quality
of quasi-geostrophic SMHI forecasts of the 1970’s. When the modified forecast error
standard deviations were used for the analysis in data assimilation for 1 day, however,
the prediction of the intensive cyclone development was far from being as good as with
the analysis based on the larger forecast error standard deviations. The forecast based
on the modified values was-less intense and the position of the low over Kattegatt
was also less well predicted (Figure 5). By tracing the forecast differences back to
the initial state, it was possible to identify the main reasons for these differences to
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Figure 4: HIRLAM sea-level pressure forecast. 5 September 1985 00UTC +24 h.
Initial analysis based on original SMHI forecast error standard deviations.
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Figure 5: HIRLAM sea-level pressure forecast. 5 September 1985 00UTC +24 h.
Initial analysis based on SMHI forecast error standard deviations multiplied by 0.4

be associated with the analysis of radiosonde data in the northern part of the British
Isles. These radiosonde reports indicated a rather strong vertical wind shear, which
was analyzed well when the larger forecast error standard deviations were utilized.
However, when the smaller forecast error standard deviations were used, the analysis
tended to believe more in the analysis forecast first guess field and the observed
vertical wind shear was not fully drawn for by the analysis. Obviously the rapid
cyclone development over the North Sea was very sensitive to the initial vertical
wind shear - sensitivity studies with increased vertical diffusion of momentum in the
forecast model also confirmed this hypothesis. |

The results of this sensitivity experiment illustrate a general and serious weakness
of present operational analysis schemes. The forecast error statistics have been ac-
cumulated from long series of forecast events, and these statistical parameters might
not be the best ones for the analysis of a particular case.

Concerning the forecast error standard deviations, or rather the ratio between the
forecast error standard-deviations and observational error standard deviations which
express the ”signal-to-noise” ratio of the observed values, Wahba [38] has suggested
that generalized cross-validation can be used to determine this parameter from the
observations themselves. In order to test the feasibility of the cross validation ap-
proach for the particular case studied, analysis values for each reporting position
were determined without influence of the observed value for that position and for a
range of signal-to-noise ratios. Table 3 includes RMS-differences between observed
and interpolated sea-level pressure and pressure level geopotential values determined

by the analysis scheme and with different factors multiplying the standard analysis
~ forecast first guess errors used in the SMHI analysis scheme. It is of interest to see
that the minimum values of these RMS-values are obtained for multiplication factors
in between the standard and the revised values, indicating that for this particular case
there is more information in the observed values than expected from the statistics as
given by the ECMWF values.
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Multiplication 500 hPa Sea level
factor geopotential | pressure
0.4 1.167 1.193
0.5 1.065 1.094
0.6 0.999 1.018
0.7 0.981 0.985

0.8 0.981 0.975 -

0.9 ) 0.994 0.978
1.0 1.018 0.990
1.1 1.050 1.008
1.2 1.083 1.030

Table 3: Normalized RMS-differences between observed and interpolated sea-level

pressure and radiosonde geopotential observations for different forecast error standard

deviations B

5.2 Selection of an analysis scheme for HIRLAM

Taking the short project period, 3 years, for HIRLAM into account it was decided
to develop a traditional intermittent data assimilation scheme based on optimum
interpolation and non-linear normal mode initialization. Three different analysis
algorithms, all related to optimum interpolation, were selected for further evaluation. -
One of the candidates, the serial approach suggested by Parrish and Cohn [29], was
excluded on an early stage due to its huge requirements on core space for storage
of covariance matrices and due to the difficulties to apply quality control within the
scheme. The main reason for considering the serial approach was the possibility to
utilize late arriving observations. The two remaining candidate algorithms are still
being tested and evaluated. A limited area version of the ECMWF scheme has been
selected for the "official” HIRLAM Level 1 system, while the Bratseth successive
correction scheme is being tested within the Norwegian (HIRLAM Baseline) system.
Main arguments for choosing the ECMWF scheme were its well-developed status,
[its continuous improvement by the ECMWF staff, its flexibility with regards to new
data sources and the sound quality control. Main arguments for the Bratseth scheme
were low computation cost and the possibility to avoid data selection.

5.3 Sensitivity of analyses and forecasts to correlation scale
length and data search radius

The tuning of the ECMWF analysis scheme for the HIRLAM purposes was carried
out by the aid of experiments, since no data base was available for modelling of fore-
cast error statistics. Data assimilation sensitivity experiments were carried out with
respect to variations in the analysis structure functions and data selection parameters
[16]. The case with a fast developing cyclone over the North Sea, as described above,
was used for these sensitivity studies.

The horisontal correlation of forecast first guess errors is given by a series of zero
order Bessel functions in the ECMWF analysis scheme:

u(r) = 32 Aido(KOr/R)

=1
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Here r denotes distance, n denotes the number of terms in the Bessel function
series, K denote the zeroes of the first order Bessel functions and R is a distance
scaling factor (= 3000 km in the ECMWF original scheme). The A;-coefficients,
derived by regression from empirical correlations, were obtained from ECMWF (]17]
and [23]). '

Sensitivity tests were carried out by changing the number of Bessel terms (added
terms representing smaller scales), by a simple change of the distance scaling factor
R, by varying the maximum search distance for selection of influencing observations
and by changing the assumed forecast error standard-deviations. The forecast error
standard deviations are specified .by the length of the time-period for the forecast
errors to increase to the climatic ones.

Several sensitivity experiments with different values of these analysis parameters
were carried out. In each case data assimilation for one day in advance of the initial
forecast time, 5 September 1985 00UTC, was done. Here we will describe the results
of a few of these experiments. We will limit our discussion to the effects on the initial
wind shear analysis in the area of initial development over and west of the British
Isles and on the effects on the +24 hour sea-level pressure forecast. A verification
map for this forecast is given in Figure 3. _

Figure 6 and Figure 7 contain maps from an experiment with 6 terms in the Bessel
function series, with R reduced from 3000 km to 2250 km, with a data search radius
of 930 km and with a time-period of 36 h for the forecast errors to reach the climatic
ones. The vertical wind shear analysis shows up a smooth elongated structure west of
the British Isles and the 424 h sea-level pressure forecast is an excellent one, better
than those produced with the Baseline systems (Figure 4).

Figure 8 and Figure 9 contain maps from an experiment with R reduced further
to 1500 km and with the data search radius reduced correspondingly to 540 km. .
Now the vertical wind shear map shows a more splitted pattern and with stronger |
vertical wind shears locally. Indeed there are no independent observations available
to confirm which one of the vertical wind shear analyses is the best one over tha
data sparse eastern Atlantic area. The impact on the forecasts shows that that the
smaller scale initial analysis in the second experiment degrades the forecast quality.
There is a less intensive development of the low pressure system and there is also an
increased phase error. We may conclude that the simple reduction of the distance
scaling factor R to 1500 km deforms the total assumed spectrum of forecast errors
too drastically. Also for high resolution analysis there will be large scale forecast
errors present which need proper treatment. Some further experiments showed that
the specification of the proper spectrum as well as the proper data search radius were
needed to analyze these larger scales.

A third experiment with R kept at its ECMWF value (3000 km), with 9 terms
in the Bessel function series instead of 6, with a data search radius of 930 km data
and other parameters being the same as in the experiments described above, was
also carried out. The forecast quality was as excellent as for the first experiment
described above. '
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Figure 6: HIRLAM 850/500 hPa vertical wind shear analysis. 5 September 1985
00UTC. n=6, R=2250 km, Data search radius=930 km (see text).

Figure 7: HIRLAM sea level pressure forecast. 5 September 1985 00UTC 124 h.
n=6, R=2250 km, Data search radius=930 km (see text).
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Figure 8: HIRLAM 850/500 hPa vertical wind shear analysis. 5 Septembér 1985
00UTC. n=6, R=1500 km, Data search radius=540 km (see text). '

Figure 9: HIRLAM sea level pressure forecast. 5 September 1985 00UTC +24 h.
n=6, R=1500 km, Data search radius=540 km (see text).
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Figure 10: HIRLAM 850/500 hPa vertical wind shear analysis. 5 September 1985
00UTC. n=9, R=3000 km, Data search radius=930 km (see text).

Figure 11: HIRLAM sea level pressure forecast. 5 September 1985 00UTC +24 h.
n=9, R=3000km, Data search radius=930 km (see text).’
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6

Concluding remarks

Methods for high resolution objective analysis were reviewed and discussed. Issues
as the broad spectrum of scales, an-isotropies and non-stationarity were identified as
important problems when we go towards higher resolution analysis. Flow-dependent
structure functions and four-dimensional data assimilation techniques were men-
tioned as measures to handle these problems. A clear preference for the four-
dimensional data assimilation approach, being based on physics and dynamics and
being more flexible than statistically determined structure functions, was expressed.
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