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1. INTRODUCTION

The forecasts of the atmospheric state produced by a numerical model will

slowly diverge from the observed atmospheric states. This is caused by the

small differences between the model initial state and the atmospheric
initial state. On the average a steady increase of forecast errors with
increasing lead time is observed. However, in the last two decades, it has
become clear that the growth rate of the errors depends on the state of the
atmosphere. Due to this effect the skill of a numerical model varies from
day to day. Skill Prediction aims at forecasting these variations in model
performance. Recent research in this field has concentrated on two
approaches:

i) Monte Carlo; several runs of the numerical model with slightly
disturbed initial states are used to derive the statistical
parameters of the error distribution

ii) Regression techniques. Predictors derived from the initial state and

successive model runs are correlated with the observed error growth.

Last year the European Centre for Medium Range Weather Forecasting (ECMWF)
announced a semi-operational experiment in skill forecasting based on a
statistical regression approach. In this paper we will give some
verification results of this experiment. These verification results will be
based on field verification data obtained from ECMWF. Additionally some

results based on local (KNMI) field verification data will be given. The
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results obtained initiated a statistical study on model errors and skill
prediction. A statistical model of the growth rate variations will be
presented and from this model the evaluation results related to skill

prediction are explained.

2. VERIFICATION RESULTS OF THE ECMWF EXPERIMENT

The ECMWF experiment aimed at forecasting the field verification results
expressed in either Root Mean Square (RMS) error or Anomaly Correlation
Coefficient (ACC). The forecasts were expressed in probabilities. To that
end the ranges of RMS and ACC were subdivided into 5 equally probable
classes. The skill forecast assigned probabilities to each of these
classes. The forecasts were given on a daily basis for different lead times
(day 3, 5, 7 and 9) and for different areas. Later on the observed RMS and
ACC values were distributed as well. For a more comprehensive description
of the experiment reference is made to Palmer and Molteni (1987).

In table 1 some verification results based on data obtained from the ECMWF
are given. In this table a skill score based on the Ranked Probgbility
Score (RPS) (Epstein, 1969) and the hit frequency obtained when the highest
probability class was selected as fore~ast. The RPS waé transformed to a

skill over climatology by

RPSq tmatorogy ~ RPSFoRrEcasT

RPSCLIMATOLOGY

RPSS =

RMS as well as ACC results are presented for two areas. The selected areas
(3 and 7) were most interesting for our local purposes. The results
obtained for the RMS indicate almost no skill whereas the ACC results

indicate a marginal skill. Additionally the RMS forecasts were correlated
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Table 1 Verification results on the skill prediction for RMS and ACC for
" area 3 and area T for day 3, 5, 7 and 9. Verification period
winter 87/88.

Ranked Probability Skill Score (%)

-
Day 3 Day 5 Day 7 Day9
. Area 3 0 2 0 0
RMS
Area 7 0 -1 -2 1
Area 3 12 7 -1 -4
ACC ) )
Area 7 14 16 -1 0
Hit fréquency (chance = 20)
Area 3 23 20 22 22
RMS
Area 7T 28 21 18 22
Area 3 32 32 20 21
ACC )
Area T 29 33 21 31

Area 3 = (71.25 N, 33.75 N), (-11.25 E, 41.25 E)
Area 7 (56.25 N, 45.00 N), (-11.25 E, 15.00 E)
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with the field verification results obtained on a locally defined grid (see
fig. 1). First the probability forecast was transformed to a skill forecast
by

S = 2 * (P, - P5) + (P, = P)

with Pq to P5 the probabilities assigned to the lowest upto the highest RMS

class for day 3 on area 7. This formula was proposed on an expert meeting
at ECMWF in February 1988. From the locally archived +72 forecasts and
analyses the following daily statistics were computed on the given grid:
the average error, the RMS error and the standard deviation (STD) of the
errors. This was done for 500 hPa, 700 hPa and 1000 hPa height forecasts.
In table 2 the correlation coefficients with S are given for verification
period December 1, 1987 upto February 28, 1988. This table also indicates
marginal skill for RMS as well as STD. Remarkable is the high correlation
between mean error and predicted skill. In table 3 similar results for day

5 are given.

3. STATISTICAL MODEL OF SKILL VARIATIONS

The results obtained in the last paragraph initiated a study on the
statistical properties of errors of a numerical forecast. In order to be
able to interprete the results it is necessary to develop a statistical
model. First we will describe the statistical model, next we will present
the experimental results. Finally we will use the statistical model to
construct distributions which can be compared to the observed ones.

First we assume that when the numerical model is run several times starting
from nearly the same initial state the resulting forecast errors at a given

gridpoint will be normally distributed with zero mean and a fixed standard
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Table 2 Correlation coefficients between predicted skill S and the daily

average error ME, the daily RMS error and the daily standard

deviation of the forecast errors STD at different pressure levels

(RMS/EC is the ECMWF-RMS at area T)

ME STD RMS RMS/EC
500 hPa .43 -.14 -.15 ~-.19
700 hPa .35 -7 ~-.13 .
850 hPa .28 -.19 ~-.14
1000 hPa .20 -

-7

N

Note: Correlation between skill and RMS is negative because low RMS
indicates high skill

Table 3

Table 4

As table 2 but now for day 5

ME STD RMS RMS/EC
500 hPa .20 -.16 -.06 -.07
850 hPa .10 =17 -.01 '
-.14

1000 hPa

.03

-.15

Mean (ME) and Standard Deviations (STD) of observed and generated
RMS-distributions

ME

>
I
OO O OoOuUTw

1.84
1.85
1.89
1.88
1.88
1.88
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deviation (Bias is neglected). Furthermore we assume that variations in
forecast skill, due to different initial states, will lead to variations in
the standard deviation of the errors. So the overall distribution at a
given gridpoint will be a mixture of normal distributions with different
standard deviations. Now we will study forecast quality on the basis of RMS
on a given area. Therefore we also assume that we can find within this area
a number of gridpoints sufficiently apart for the errors to be
uncorrelated. This means that the sum of squares of the errors will have

a X2 distribution for a given model skill. Assuming next that skill
variations have nearly the same effect on the whole area we can conclude
that the overall distribution of the RMS will deviate from the y?
distribution. The variations in standard deviations will be enhanced in the
RMS values.

The data set used to study the forecast errors consisted of seven winters
(80/81 - 86/87) with daily forecasts and analyses from the ECMWF model
archived locally on the grid given in figure 1. From the data set the day 3
and day 5 500 hPa forecasts and 500 hPa analyses were extracted. For these‘
forecasts the daily errors at each of the gridpoints were computed. However
due to model changes this dataset cannot be considered to be homogeneous.
This is shown in figure 2 where the seasonal mean errors and standard de-
viations for the central gridpoint are plotted versus time. Furthermore the
standard deviation and the bias vary considerably over the area. Therefore
we decided to standardize the errors at the gridpoints. The standardized

error d at day i in a given season at gridpoint k is defined by:

d(i,k) = (e(i,k) - me(k))/std(k)
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Figure 1. Grid used for archiving ECMWF forecasts and
analyses. Solid lines depict the correlation

pattern from left lower gridpoint.
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Figure 2. Seasonal mean forecast error and
standard deviation at day 3, 500 hPa,

central gridpoint.
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where e(i,k) forecast error at day i at gridpoint k

me (k) seasonal mean error at gridpoint k

std(k)

seasonal standard deviation at gridpoint k.

After this standardization the seven seasons were combined. First we
studied the distribution of the errors at the central gridpoint. In figure
3 the cumulative distribution for day 5 is plotted on normal probability
paper. The solid line in this figure represents the normal distfibution
with zero mean and unit standard deviation. As can be seen the plotted
points are close to this line. Next we studied the RMS errors. We selected
the four gridpoints at the corners of the grid and assumed that the errors
at these points were nearly uncorrelated. This assumption is supported by
the correlation pattern, from the lower left corner point, plotted in
figure 1 which was computed from this data set. In figures Y4 and 5 the
cumulative distributions for day 3 and 5 are plotted. The solid lines in
these figures represent the distribution derived from the y? distribution
with four degrees of freedom assuming no variation in the standard
deviation of the errors. Clearly the observed curves deviate from the
theoretical curve and moreover the deviations agree with what we expect
from skill variations: Too many low values and too many high values.

Next we want to compare these distributions with the distributions related
to the described model. These distributions were constructed with Monte
Carlo techniques. The daily variation in the forecast skill was simulated
by drawing a random number e from a normal distribution with p = 0 and

0 = A. With the parameter A the overall skill variation is described.
Thereafter the daily standard deviation of the errors was set equal to t+e.
This value is related to the daily skill. In the next step four random

numbers were generated from a normal distribution with p = 0 and o = 1+e.
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Figure 3. Cumulative distribution of standardized errors at
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Figure 4. Cumulative distribution of RMS values at
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Figure 5. Cumulative distribution of RMS values at

day 5. ( 4 gridpoints, standardized errors )
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Figure 6. Cumulative distribution of generated RMS
values, M=0.2, 4 degrees of freedom.
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Figure 7. Cumulative distribution of generated RMS
values, A=0.3, 4 degrees of freedom.
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From these four numbers, representing the actual errors, the RMS was
computed. This process was repeated 5000 times and for the errors as well
as the RMS values frequency distributions were constructed. In figures 6

and 7 the cumulative distributions of the RMS are shown for A = 0.2 and for

S
I

0.3. The resemblance to the observed distributions is very clear and

>
i

0.2 was selected as a good estimate for the parameter of the observed
RMS distributions (see also table 4). The distribution of the errors was
very close to the normal distribution just as with the observations. This
means that based on this model the variation of the standard deviation of
the forecast error will be about 20%. This implies that about 95% of the
standard deviations will be in the range from 0.6 up to 1.4 on a relative
scale.

In the above model the term 1+e is directly related to the model skill and
the computed RMS represent the observed skill. So it was possible to
qorrelate model skill with observed skill. For A = 0.2 the correlation
coefficient was 0.47. This means that even with perfect knowledge about the
model skill only 22% of the variance in the RMS can be predicted, leaving
78% unexplained. If more grionints (more degrees of freedom) are used in
the computation of the RMS the correlation will improve and for instance at
8 degrees of freedom the explained variance will be 36%. However, regarding
the correlation pattern in figure 1, eight degrees of freedom seems rather

high.

b, CONCLUSIONS
In this paper a statistical analysis of prediction errors was presented.
The simple statistical model that was used allowed some general conclusions

with regard to skill prediction. The analysis showed that the correlation
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between forecast skill and the observed RMS will be about 0.5. This means
that large datasets will be needed to develop stable forecast equations.
Moreover the results obtained with these equations will be masked by the
unavoidable residual variance in the process. So for verification large
datasets are needed as well. These results are important for the Monte
Carlo approach too. At this moment this study indicates that at least one
hundred parallel runs are needed for a Monte Carlo estimate of the standard
deviation. For with a variation of only 20% in the standard deviations an
individual standard deviation has to be estimated with a relative error of
5%. However, the relative error of a standard deviation computed from a
sample of size N is 1//2N. So we need about 200 independent runs.

In our opinion further development of the statistical model will be very
useful. Especially a study of RMS errors based on more gridpoints is
needed. Furthermore the analysis should be applied to more areas and other

seasons.
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