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1. INTRODUCTION

The problem of extended-range prediction, on the monthly time scale, has a
strong probabilistic element. This is reflected in the ensemble forecast
technique, in which a number of numerical model integrations are produced
from distinct initial states, each nominally compatible with the
uncertainties associated with some initial analysis. The differences grow
with time, eventually reaching saturation level, represented by the
separation between integrations from random initial states. At some prior
stage, the distribution of integrations forms a probability forecast for
the atmospheric state.

The potential benefits of ensemble forecasting have been demonstrated using
the perfect model approach (e.g. Seidman, 1981; Murphy, 1988), where nature
is itself represented by a model integration. Ensemble averaging can
improve skill significantly through the elimination of random forecast
errors, and the spread of the distribution can be used to predict the
forecast skill. 1In practice the capacity to realise such benefits is
1imited by the model’s deficiencies, which introduce an additional source
of forecast error. The more skilful the model, the more useful ensemble
forecasting should prove. However, on some occasiocns skilful extended-
range predictions are possible beyond the normal 1imit of deterministic
predictability, using a GCM capable of only modest accuracy at medium

range (Mansfield, 1986). 1In such cases ensemble averaging can improve

skill (Murphy, 1988), and geographic variations in local ensemble
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spread are found to correlate with corresponding variations in lecal skill.
Kalnay and Dalcher (1987) have found similar evidence of local spread/skill
correlation in medium-range forecasts.

In this paper some resuits are given from a set of eight ensemble
forecasts, produced using the UK Meteorological Office (UKMO) global 11—
level GCM. The results supplement those from a large sample of individual
extended-range integrations of the same model described in Murphy and
Dickinson (1988), hereafter denctad by MD.b It was found that the model’s
mean ferecast skili, relative to ths observed climate. remained
significantly positive out to one month over the domain 30-90°N. However,
this depended on the availability of an accurate sstimate of the model’s
systematic error, removal of which improved the skill. There were
relatively few integrations in which the extended-range skill remained
consistentiy above average on the hemispheric scale. Nevertheless, the
frequency of occurrence of high Jocal skill, important in the context of
the present paper, was encouragingly large.

The 11-level model ensemble forecast results are presented in section 3.

An important concern is the sensitivity of the results to model
formulation. Apart from the aforementioned impiications for the enszemble
technique, it is of particular interest to asssss the relative importance
of short/medium range skill and climate drift in dstermining the ger=sral
level of extended-range skill. The model dapendence of geographical, case-
by-case and seasonal variations in skiil is also important. Comprehensive
investigation of these topics is beyond the scope of this paper. Howaver,
some paraliel results are given from a corresponding set of ensembles
producsd at ECMWF using the T63 version of their spectral model.

The UKMO model integrations form part of an ongoing sroject to develop a
methedoloay for extended-range prediction. Future plans in this arsa are
discussed in more detatl in section 4. From autumn 1988 we will begin to
run producticn, reai-time ensemble forecasts to coincide with the UKMO
long-range forecasting (LRF) conferences. Much of the work reported in
this paper is therefore directed towards devesioping tools for interprating
and analysing ensemble forecasts so that they might form a practical and

useful input into the long-range forecasting process.
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2. MODELS AND EXPERIMENTS

Both the UKMO and ECMWF experiments employed the lagged—average forecast
(LAF) technique of Hoffman and Kalnay (1983). Each UKMO ensemble consisted
of seven integrations initialised from consecutive UKMO operational
analyses at 12 hour intervals, as in the case discussed by Murphy and
Paimer (1986). The eight experiments were run at three month intervais
from December 1985 to September 1987. Table 1 shows the analysis time of
the Tatest member of each ensemble.

The ECMWF experiments, described in detail by Brankovic (1988), were nine-
member ensembles with a 6 hour gap between successive (ECMWF operational)
analiyses. 1In one case, March 1987, the ensemble size was reduced to eight
as the third member was unavailable for technical reasons. The latest
analysis time was always 12 hours beyond that used in the corresponding UKMO
experiment (Figure 1).

A global, 11-level grid-point GCM with a regular 2.5 x 3.75° latitude-
longitude grid (STingo, 1985), was used for the UKMO runs. The version of
the model, which includes gravity wave drag (Palmer et al, 1986), was as
described in MD, except that operationally—analysed SSTs were inclugad in
all experiments save the March 1987‘case, in which c]imato]ogica] vai.as
were used. The SST anomalies, based on an average of the 10 days preceding
the initialisation date of the first ensemble member, were heid fixed
relative to an SST climatology, which was updated every five days during
the forecasts. The ECMWF experiments used their operational spectral model
at 763 resolution, incorporating an envelope orography (Tibaldi,1986). For
the December 1985 and March 1986 cases a 16-level version was used, but the
remaining experiments used a 19-level version. After June 1986, gravity
wave drag was incorporated. A1l integrations used ECMWF operationally-
anaivsed S$STs, held constant throughout.

In the following section the experiments are verified as 30 day forecasts,

although the UKMO integrations were actually 40 days long. The verifying
UKMO observed data is valid at 00Z, which compliicates the assessment of the
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ECMWF integrations, whose archived forecast fields are all valid at 12Z.

In practice each ECMWF field was verified against the observed data for the
following midnight (Figure 1). This is liable to penalise the ECMWF
scores, relative to the UKMO results. However, the effect may be offset by
the later analysis time of the most recent integration. For a time-
averaging period of 10 days, to which all of the following results

refer, the influence of these factors on the results should be quite

small.

Forecast Initialisation date
Dec. 1985 002 15.12.85
Mar. 1986 002 16.03.886
June 1986 002 15.06.86
Sept. 1986 002 14.09.86
Dec. 1986 00z 14.12.86
Mar. 1987 002z 15.03.87
June 1987 002 14.06.87
Sept. 1987 002 13.06.87

Table 1. Initialisation time of latest member
of each UKMO lagged-average forecast.
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Figure 1. Analysis times of forecasts in UKMO and ECMWF ensembies relative
to analysis time of iast member in UKMO ensemble (T+0).
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3. [ENSEMBLE FORECAST RESULTS

A1l the results guoted in this section refer to 10-day average fields of
mean sea-level pressure (MSLP). In sub-sections 3.1 and 3.2 the domain used
is 30-90° N. Forecast and observed anomalies are formed relative to
normals from the years 1951-80. The basis for this choice was discussed in
MD. Anomaly correlation scores for both the UKMO and ECMWF experiments are
given in sub-sections 3.2 and 3.3, without any empirical correction for
model systematic errors (SE). For the UKMO model, some further results are
included to show the effect of removing an estimate of the seasonal SE in
the mean flow prior to verification. Each seasonal SE estimate was obtained

from a set of 12 integrations taken from the years 1982-85 (see MD).

In the following, <> is used to denote an average over a large number of

independent experiments.

3.1 Time variation of ensemble spread

The growth with time of the LAF ensemble spread reflects the increasing
uncertainty in the forecast arising from analysis errors, and prediction
errors incurred during the extrapolation of lagged analyses up to the start
of the forecast period. If su is the variance of an ensemble of size M 1in
some experiment, and wo is the corresponding observed climate variance,
then the point at which

<F> = (M/(M~1))<smM/wo> (1)
becomes equal to unity represents, in principle, the upper Timit of
potential predictability (Murphy, 1988). Note that normalisation by we
before averaging over experiments avoids weighting the results towards
seasons of high variability. In practice, <F> must be modified to account
for the effects of model SE.

Let a2 represent the mean square SE in the model’s mean flow, normalised by
the mean observed climate variance. Similarly, B2 may be defined as the
modei’s variance about its own ciimatology, normalised in the same way.

An unbiased measure of intrinsic predictability is then given by
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<F/> = <F>/B2, (2)
since the ensemble variance is then compared to the mods] variability. To
determine B2, first note that

<We/Wo> = a? + B2, (3)
where we is the variance of a model forecast relative to the observed
climatology. Next consider the anomaily correlation, ce, between two
independent model integrations initialised, say, on the same date in two
different years. It may be shown that

a2/B2 = <ce>/(1~<ce>), (4)
assuming that any difference between the observed normals used in forming
the anomalies, and the true atmospheric climate appropriate to the
experiment years, is small (see MD).
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In practice. a mean value of ce was found for the two experiments in a

given season, by averaging the value for each pair of corresponding ensemble
members. The results were then averaged over the four available pairs of
experiments to obtain <ce>. Estimates of a2 and B2 were then deduced by
calculating the mean value of ws/wo Over all ensemble members and
experiments.

Figure 2a shows the time variation of a? and B2 for 10-day mean fields, for
each model. Note that the time origin is taken as the analysis time of the
central ensemble member for the model in question, and all ensemble members
are treated as if they possessed the same analysis time. The climate drift
in the mean flow grows to significant proportions in both models, reaching
just over 50% of the observed climate variance by 30 days for the UKMO
model, and just under 50% for the ECMWF model. At this stage the drift is
apparently levelling off in both cases. Both models also underestimate low
freguency variability, but the discrepancy is greater for the UKMO model.
This is an important factor, given the reguirement that a model should be
able to simulate the full range of possible atmospheric evolutions, in
order to produce realistic probabilistic predictions at extended range. For
practical forecasting purposes, the seasonal and spatial variation of a2
and B¢ 1is important. To determine this accurately, a very large number of

experiments is required.

On average the UKMO ensembles show a greater value of the corrected sgread
<F/> at days 1-10 (Figure 2b), but this is probably due simply to the
greater spread of the initial analyses. The subsequent rate of growth of
<F/> is similar 1in both models. However, both models may underestimate the
idealised rate of divergence occurring in a hypothetical ensemble of
identical real atmospheres, evoiving from a closely-grouped set of i1nitial
states (Lorenz, 1982), Therefore, whilst the ensemble spread remains well
short of saturation level for both models at a range of one month, the

implied degree of remaining potential predictability may be optimistic.

3.2 Large-scale forecast skiil

Figure 3 shows the ensemble-mean forecast anomaly correlation score in each
experiment for both models, for the domain 30-90° N. Note that for this

and subsequent figures the time origin reverts to that shown in Figure 1.
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Figure 3. Skill of ensemble mean forecasts for 10-day mean MSLP field over
region 30-90° N for each experiment for ECMWF model ( }, UKMO model
(=== ) and UKMO model with SE removed (x—-x--x).
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There are no cases of high skill at extended-range, although the ECMWF
forecast score remains above 0.3 throughout in December 1886. The ECMWF
model is consistentiy more skilful in December 1986 and March 1987, and is
vastly superior at medium range in September 1986. However, the UKMO model
is better in the two summer cases, particularly June 1986. Both models
tend to be more skilful at medium range in winter and spring, compared to
summer and autumn. For the UKMO model this feature was clearly apparent in
the runs studied by MD.

The effect of SE removal in the UKMO model is variable, being large and
positive in the September 1986 case, but negative at all time levels in the
two winter experiments. Overall the average effect is very small for thes 10-
day mean fields. (The mean effect of applying the correction to independent
forecasts was greater in MD). In the current experiments, nevertheless,

the average score for the mean of days 1-30 is improved from 0.26 to 0.35

by removal of the SE. For the longer period the SE will typically form a

greater proportion of the uncorrected forecast climate variance.

The distribution of individual forecast scores in each experiment is shown
in Figure 4, for days 1-10, 6-15 and 11-20, for the ECMWF and uncorrected
UKMO models. Some corresponding 500mb geopotential height results are shown
for the ECMWF model 1in Hollingsworth et al (1987). At days 1-10, the UKMO
model tends to show a greater trend across the analysis times. This is
particularly apparent in the two autumn experiments. Whilst in part due
simply to the greater spread of analysis times, this also refliects a more
rapid decay of medium-range skill. By days 11-20 there is no evidence of
any systematic variation of skill with analysis time for either model. As
remarked by Hollingsworth et al (1987), the distribution of scores
generally becomes wider at the later forecast times. This is a natural
result of the spreading of the ensemble. However, the apparent effect may
be accentuated by the non-linearity of the anomaly correlation statistic.
Note that there is little evidence of clustering in the individual forecast
scores, although this does not necessarily rule out such behaviour in the

distribution of forecast fields (Murphy and Paimer, 1986).

In cases where one model was noted to be superior from Figure 3, the

difference is found to be guite consistent across the individual ensemble
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Figure 4. Skill of ensemble members for 10-day mean MSLP field over region 30-
90° N for each experiment for ECMWF model and uncorrected UKMO model. The
analysis time of each forecast (in hours) is given relative to the analysis
time of last member of UKMO ensembie.
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members. For example, at days 6-15 every ECMWF intearation shows higher
skill than every UKMO integration in the December 1986 and March 1987
cases. However, in the June 1986 experiment every UKMO integration shows
positive skill at days 11-20, whereas every ECMWF integration shows
negative skili. In MD it was suggested that menthiy predictions of
significantly above-average skill might be possible on around 25% of
occasions. An important topic for future consideration is whether different
models wiil perform unusualiy well on the same cccasions. The current
results suggest, tentatively, that this may not be the case. If the skill
of extended-range predictions depends strongly on medium~range skili, this
would be one possible reason why case-by-case variations in predictability
should be model dependent.

Figure 5 shows that the average skill of the ECMWF ensemble-mean forecast

is considerably larger than that of the uncorracted UKMO model at days 1-10.
This confirms the additional medium-range skill of the higher resolution
model alluded to above. However, the difference is accentuated by the use
of older analyses in the UKMO experiments. FEach pair of ensembles have four
analysis times in common. The average individual forecast score for these
cases is 0.64(0.59) fof the ECMWF(UKMO) model, compared with 0.66(0.53) for
the average score over all ensemble members. The ECMWF score remains
slightly superior at all subsequent time levels. This may reflect the
benefit of maximising medium-range skill. Alternatively, the fact that the
ECMWF mode] possesses slightly smalier climate drift, and simulates the
observed variability somewhat more realistically (Figure 2), may be

important.

Following on from the discussion of Figures 3 and 4, the divergence between
models in a given experiment may yield additional information on
predictability. This can be investigated by considering a single ‘super-
ensemble’ containing all individual integrations from both modeis. In
general the impact of such a super-ensemble depends on whether the two
constituent ensemble distributions show significant differences.
Alternatively, the super-ensemble distribution may be indistinguishable
from a single ensemble of increased size from one of the models. If the two
models do contribute independent information of approximately equal

guality, the skill of the super-ensemble mean should exceed the average

100



skill of the constituent ensemble means. Figure 5 shows that this is
indeed the case at all time levels. In fact, up to days 11-20, the super-
ensemble score exceeds that of both models taken individually. This
suggests that such an approach may be worthwhile, although it remains to be
shown that the skill of the super-ensemble would outstrip that of an

ensemble of increased size from a singie model.

Forecast period §| Mean individuall Ensemble-mean Last individual
-{(days) forecast score forecast score forecast score
1-10 G.53(0.68) 0.58(0.69) 0.64(0.72)
6-1% 0.27(0.31) 0.32(0.36) 0.32(0.36)
11-20 0.12(0.12) 0.13(0.15) 0.13(0.06)
16-25 0.05(0.07) 0.06(0.09) 0.05(0.04)
21-30 0.04(0.15) 0.05(0.21) 0.12(0.24)

Table 2. Mean anomaly correlations over all experiments for forecasts of
10-day mean MSLP over 30-90° N for uncorrected UKMO model and ECMWF model
(in brackets). The score for the ensemble mean is compared to the average
score for all individual ensemble members, and to that for the individual
forecast from the most recent analysis.

Returning to separate consideration of the two models, Table 2 shows the
effect of ensemble averaging on the practical forecast skill in each case.
Compared with the average individual forecast score, the ensemble mean

gives improved skill for both models at each time level, but the size of

the increase is fairly small. The ensemble-mean score is lower than that of
the integration from the most recent analysis at days 1-10, and equal to it
at days 6-15. Production of an optimally weighted ensemble-mean may yield
further benefit at medium range (Dalcher et al, 1988). However, attempts
along these lines with the UKMO model (not shown) suggest that in terms of

anomaly correlation, the impact is very small for time-mean fields.

It is instructive to compare the practical impact of ensembie averaging
with an idealised upper 1imit obtained using a perfect model approach.
Figure 6 shows some appropriate results for the UKMO model with SE
removed. The perfect model approach was implemented by producing an extra
integration from the analysis time 12 hours later than that of the latest
member of each UKMO ensemble. The ensemble was then ‘verified’ against

this integration in each case. Figure 6 shows that the gap between the
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Figure 7. Polar stereographic 51x51
grid used for analysis of local
ensemble spread and skill.
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ensemble mean and individual forecast scores is considerably enhanced
compared with the practical results of Table 2. The perfect model gap is
in close agreement with the theoretical prediction of equation (9) in
Murphy (1988). The most recent individual forecast is inferior to the
ansemble mean at days 6-15, but remains superior at days 1-10. However,
this may be because the spread of forecasts at time zero is overestimated
for perfect model purposes, due to the presence of external prediction
errors in the lagged ensemble members. Despite this, optimal weighting
using the minimum error variance criterion also has a positive effect. For
example, the perfect model anomaly correlation scores of the weighted
ensemble mean at days 6-15 and 11-20 are 0.82 and 0.78 respectively,
compared with 0.79 and 0.74 for the unweighted ensemble mean.

These results demonstrate the targe gulf which currently exists between the
practical and theoretical impact of ensembie forecasting. Even for the
more skilful ECMWF model the same comment applies. Clearly there remains
great scope for improvement, in this sense, through the deveiopment of more
skilful forecast models.

3.3 Local forecast skill and spread

The present experiments do not include a case showing exceptional skill on
the hemispheric scale at extended range (see previous section). Although
occasional examples of such cases have been captured (Hollingsworth st al,
1987), the prospects for more regular extraction of useful information at
extended range may depend crucially on the ability to identify locally
skilful areas in advance (eg Molteni et al, 1986; Murphy, 1988).

In this section local forecast anomaly correlation, and its relationship to
local ensembie spread, is considered using the polar sterecgraphic grid of
E1x51 points shown in Figure 7. Spread and skill values were calculated
over boxes of dimension 7x7 points, centred on each point within the inset
region. Figure 8 shows, for both models, maps of the local skill of the
ensemble-mean forecast, averaged over all experiments for days 1-10 and 11-
20. Considerable geographic variations are apparent, values ranging from
below zerc to 0.8 or greater at days 1-10. For this period the mean skill
of the ECMWF model is superior (Table 3). The fractional area for which the

score exceeds the 0.6 level, often taken as a baseline of useful skill

103




‘PBpeYS BJe 9°( ueyl] JBleBJD UOLIB|BJUCD YILM SBBUY "0Z-1]
sAep [sued Jemo| 8yl pue QL-| sAep sMmoys |[aued Jsddn Byl "peAcuwsd 3¢ YiLM {opou
oW () pue |epow OWMN (4) ‘L8pow 4MWOT (B) J0J SiuswiJadxs | (B JBAD pebe.sAr
(0Lx) uoLle|9.4100 AlBWOUR BBJE [BDO| 4O UOLINGLIASLP [eoLydesBoan g eunbL4

(z) (®)

l
|

|

|

|
=

104



//\f\
$ o e

\/

2

AR :
T/ 7
S <
Aol

Figure 9. Observed local r.m.s. anomaly magnitude (x10) for 10-day mean
MSLP for (a) days 1-10 and (b) days 11-20. Local values were normalised by
the space averaged value in each case. The normalised vaiues were then
averaged over all experiments. Areas where the mean value exceeds 1.2 are
shaded.
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Figure 10. Average point-by-point
correlation, pe, between experimental
variations 1in local ensemble spread
and skill for uncorrected UKMO
(== ) and ECMWF (—————) models.
(X==x~=x)} and (x—x—x) show
corresponding correlations between
skill and the square root of the mean
climate variance among individual
ensemble members.

Figure 11. Average correlation, ps,
between geographical variations in
local ensemblie spread and skill for
uncorrected UKMO (-—————- )} and ECMWF
{(——) modeis. (x——x—--x) and
{x—x—x) are corresponding
correlations between skill and the
square root of the mean climate
variance among individual ensemble
members.
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Forecast period S KILL BIRN
{days) 1 (0.8) 2 (0.4) 3 (0.0) 4 (-0.4) 5 (-0.8)

1-10 .88(.81) B5(.42) 02(.02) §i~.49(-.36)~-.78(~.68)
45% 30% 16% 8% 2%

11-20 86(.75) .58(.38) LO1(L01) §-.59(-.37)|-.83(~.69)
12% 23% 30% 21% 5%

21-30 .89(.75) L65(.38) I-.04(.00) §~.66(-.38)}i-.856(~.74)
13% 26% 31% 23% 9%

Table 4. Average local ensembie-mean forecast anomaly correlation for 10-
day mean MSLP, observed at points where the mean score for individual
enssmbie members falls within a given range {(average value in brackets),
for the UKMO model with SE removed. Each skill bin is of width 0.4, centred
on the value shown. The arsa-wsighted relative frequency (%) associated
with =ach bin 1is also given.

Despite this drawback, in all the experiments there are areas, even at days
11-20 and beyond, where the local skill reaches a useful level. Table 4
shows that the wide distribution in skill is partly due to the local effect
of ensemble averaging. Where the average score for the individual ensemble
members is positive, the ensembie mean shows a significantly improved
score. However, the reverse effect is observed in areas of negative skill.
This polarisation increases the premium on the a priori prediction of
skill. For example, the ensemble-mean score exceeds 0.6 over 32% of the
total area on average at days 11-20, compared with 12% for the average
individual forecast score. Clearly the dependence of such results on the
choice of skill score is an important question. Further work is in

prograss in this regard.

Local ensemble spread was measured using the ancmaly correlation between

the ensemble mean, and all thes individual ensemblie members taken together
(ie {am)%, where au is as defired in Murphy (1988)}. The ccrrespondence
between the spread and the skill of the ensemble mean can be measursad 1in
different ways. One method 1s to calculate a coefficient, pe, at each grid
point, representing the correlation between spread and skill measured over
the available experiments. Figure 10 shows the time variation of the space-

averaged value of pe for both models. The correilations are greatest for
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tHollingsworth et al, 1$80), is markedly greater than in the UKMO mogel.
The general pattern of skill variation is broadly similar for both models.
For example, both show maxima centred near either coast of North America,
although the UKMO model does not show a maximum near Italy. Removal of the
St improves the mean UKMO model score slightly (Table 3), but does not
greatly alter the pattern at days 1-10.

Forecast period ECMWF UKMO UKMO model
(days) mode 1 mode i SE removed
1-10 0.586 0.47 0.51
11-20 0.09 0.12 0.15
21-30 0.12 -0.02 0.05

Table 3. Average local ensembie-mean forecast
anhomaly correlation for 10-day mean MSLP,

For days 11-20, the average skill is much lower. Substantial geographic
variations are still observed, and the patterns for the two models show
more divergence. However, there is an element of persistence from days 1-
10 in both cases. Whilst the overall effect of SE removal is small in the
UKMO model, large changes are observed in certain locations. Note

particularly the large increase in skill over much of Central Asia.

If extended-range skill is 1inked to Tow frequency variability, prefeired
regions for high Tocal skill may correspond to preferred regions for high
variability (Blackmon et al, 1977). The mean observed variability over the
current set of experiments is shown in Figure ¢ for days 1-10 and 11-20.
This was obtained by calculating, for each experiment, the local observed
anomaly magnitude at each point, normalised by the space-averaged r.m.s.
value for the whoie domain. The results were then averaged over all eight
cases. In this way equal weight was given to each season. For days 1-10
there is reasonable correspondence with the skill maps of Figure 8, more
particularly for the ECMWF model, which has a skill maximum near the pole.
This feature is retained at days 11-20, in common with the persistent area
of high variability. However, as in the case of the UKMO model, there is
littie correspondence in other areas. This suggests that the models
generally fail to reproduce changes in the observed low frequency patterns

beyond the medium range.
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days 1-10, but remain positive throughout for the UKMG model. Remcvai of
the SE does not have a consistent positive effect on the correlation Tevels
for this model (Table 5). Interestingly, as with the skill itseif, the
ECMWF model gives the largest vélue at days i-10. This is to be expected,
given that its short/medium range intrinsic error growth rate is closer to
its external error growth rate, as compared with the UKMO model. Figure 10
also shows the average valus of the corresponding correlation, reg, between
skill and the Tocal value of (We)¥, where ws is the climate variance of an
individual forecast, and ~ denotes the average value over all ensemble
members. This is generaily similar to, or a 1ittie greater than. the mean
value of gg. However, as shown in Table 5, this correlation is
surprisingly reduced when the SE in the UKMO model is rsmoved. With only
eight experiments, the results are naturally subject to considerable

sampling error.

Forecast period fe 3 re
(days)
1-10 0.28(0.28) 0.35(0.27)
11-20 0.13(0.08) 0.13(0.11)
21-30 0.04(0.10) 0.16(~-0.07)

Table 5. Average point-by-point correlation over experiments between local
ensemble-mean forecast skill and ensemble spread (pe), for 10-day mean
MSLP. Also shown is correlation re between skill and the square root of the
mean climate variance of individual ensemble members. Values are for the
uncorrected UKMO model, compared with values (bracketed) when the SE is
removed. o

Forecast period fod re (re)inp
(days)

i-10 0.23(0.24) 0.33(0.18) (G.14)

11-20 0.09(0.06) 0.04(-0.09) {~0.08)

21-30 0.04(0.08) 0.18(-0.05) (~0.02)

Table 6. As Table 5 for m and re, correlations between gecgraphic
variations in the corresponding quantities, averaged over all experiments.
Also shown is (rej)inp, the average correlation betwsen geographic
variations in the local skill of the individual forecast from the most
recent analysis, and its local forecast anomaly magnitude, with SE remocved.
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The climate variances used in Figure 10 and Table 5 are not normalised, and
therefore contain the seasonal cycle. This may partially explain their
relatively good performance as skill predictors in comparison to the
ensemble spread, which shows no evidence of significant seasonal
dependence. To test this, Figure 11 shows average values of ps, the
correlation between geographic variations in skill and spread in a given
experiment. The corresponding average of ra, the correlation between skill
and {Wf)?, is also shown. Compared with Figure 10, levels of correlation
are generally a little lower, more notably for the ECMWF model. Although
geographic correlation excludes seasonal effects, the mean value of rg
sti11 generally exceeds that of ps, for both models. However, removal of
SE reverses this result for the UKMO model, and re becomes negative beyond
days 11-20 (Table 6). If (@f)%* is genuinely comparable to ensemble spread
as a skill predictor, it might be thought that skill predictions of a
similar quality can be obtained using a single forecast. Table 6 shows the
correlation {(re)inp between the anomaly magnitude of the most recent UKMO
ensemble membervwith SE removed, and its own local skill. This is a 1ittle
lower than rg for days 1-10, and negative thereafter. For 500mb
geopotential height (not shown), the superiority of ps and re over (re)ino

is considerably more marked.

It is necessary to consider how a given level of ensemble spread/skill
correlation translates into a practical skill prediction facility. Tables
7 to 9 show spread/skill contingency tables for the UKMO model with SE
removed, for days 1-10, 6-15 and 11-20. The spread bins were chosen to
give an approximately equiprobable distribution at days 21-30. A1l pairs
of spread/skill values, for all points and experiments, were included
together in the tables. For days 1-10 the overall spread/skiil correlation
is 0.26. The probability of obtaining a skill score in excess of 0.6
(skill bin 1) is 57%. However, for spread bin 1, containing 37% of
observations, the probability rises to 75%. For spread bins 3,4 and 5,
containing 28% of observations, the probability drops to 42%. Thus a
discriminating approach may yield useful probabilistic statements of likely
forecast skill, despite a rather modest overall level of spread/skill
correlation. This also clearly apparent at days 6—15 (Table 8). The
overall probability of skill bin 1, although still substantial, drops to
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39%. However, for spread bin 1 (25% of observations) the probability is
59%, which is greater than the overall value for days 1-10. Encouragingly,
the probability of skill bin 1 drops monotenically through spread bins 1-5.
Even at days 11-20, when the overali correlation is only 0.05, the
probability of skill bin 1 rises from 32% to 48% for the 12% of
observations in spread bin 1. Note, however, that the probability of skill
bin 5 also increases soméwhat for small spread. This is also a feature of
the ECMWF results (not shown). It may be explained by the fact that areas
of small (correlation based) spread tend to equate to areas of where the
ensemble-mean forecast anomaly is of large magnitude, and therefore has

more scope to be spectacularly wrong at extended range.

4. FUTURE PLANS AND PROSPECTS

4.1 Impact of new computer

The UKMO is in the process of replacing its Cyber 205 computer by a four
processor ETA1? system. The new computer will be available sometime in the
third quarter of 1988 and will be 8 times more powerful than the Cyber 205.
This increase in computer power will enable us to run real-time ensembles
of extended range forecasts for consideration at our two-weekly long-range
forecasting conferences. Each ensemble will consist of at least 7
forecasts, with initial dates separated by 12 hours as in the UKMO
experiments described above. The use of a 6 hourly separation between
forecast data times, as used in the ECMWF experiments, is unlikely because
of the concentrated demands on computer time it implies. Other
integrations, out to a month ahead, will be necessary to provide an
estimate of the model’s systematic error and climatology. It is hoped that
these integrations will form a daily time series, since this is a natural
way of generating a Targe sample of ensembles and will facilitate an

investigation of sub-seasonal fluctuations in model skill.

Some of this increase in computer power will also be used to run higher
resolution models. Initially we will continue to use the 11-level GCM, but
other models will be available on the ETA10, Two models currently being
evaluated are a 2x3° version of the 11-level GCM and the global version of
the UKMO 15-Tevel numerical weather prediction model which uses a 1.5x
1.875° horizontal grid (Bell and Dickinson, 1987). Both of these models
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The UKMO Tong-range forecasting system uses a mixture of statistically
based technigues and medium-range dynamical products (Folland and Woodcock,
1986). Before autumn 1987 temperature and rainfall forecasts were derived
through a combination of subjective and analogue technigues from forecast
MSLP fislds. Now objective methods based on multiplse regP%SS? n eguations
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Figure 12. Forecast time series anomaly correlation for (a) screen
temperature and (b) rainfall averaged over the 10 UK districts and all
forecasts. A as issued at UKMO LRF conferences from Feb 1983 - Jan
1987; [:j] applying regression equations to MSLP fields derived at LRF
conferences from Feb 1983 - Jan 1987; applying regression eguations
to MSLP (and 500mb — 1000mb thickness) fields for 48 UKMO GCM forecasts
with SE removed covering pericd April 1982 - Dec 1985.
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temperature the largest partial correlation is with the 500mb - 1000mb
thickness fieid.

Figures 12a and 12b show the skill obtained when these regression sguations
are retrospectively applied to (a) 96 MSLP forecasts produced by the LRF
conferences between Feb 1983 and Jan 1987, and (b) to the the MSLF and
500mb~1000mb thickness fields derived from a set of 48 1i-level GCM
integrations covering the psriod April 1982 to Oct 1985. The skill is
measured in terms of the time series correlation score, calculated from the
mean of the individual scores for sach of the 10 UK forecast areas. The
skill of the MSLP fields from these forscasts in terms of time series
correlation has already been discussed in MD. The dynamical forecasts are
the same set as used in Section 3 to estimate the model’s seasonal SE,
aithough these integrations have this same SE removed. Figures 12a and 12b
aiso give the the skill of the temperature and rainfall forecasts actually
issued at the conferences. It can be seen that for all of the forecast
pericds, the best rainfall and temperature forecasts were produced by the
regressed dynamical forecasts, although the statistical significance of
these improvements is difficult to assess because of the different
selection of cases. The differences between the three systems are more
marked for the temperature foracasts, partly because the dynamical products
forecast 500mb - 1000mb thickness and the statistical products do not.

These resulis are consistent with those for MSLP reported in MD., They hold
out a hope of a significant improvement in the skill of the issued long-
range temperature and rainfall forecasts, especially for the period 6-15
days ahead, once extended-range dynamical forecasts become a regular
feature of the conferences. ‘

5. CONCLUSIONS

In this paper we have examined 10-day mean MSLP fields from two
corresponding sets of 8 LAF ensemble experiments run at quarterly intervals
during the period Dec 1985 to Sept 1987. These form part of a cqntinuing
series of integrations being run at ECMWF with a T63 version of their
spectral model and at the UKMO with an 11-level GCM.
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For both models the mean skill over the region 30-90° N, as measured by
anomaly correlation, remains positive out to 30 days, although neither
model produces an example of a highly skiiful ensemble forecast at
extended range. The ECMWF forecasts are more skilful for days 1-10 as
might be expected given the T63 model’s higher spatial resoiution. Beyond
this forecast period the ECMWF modei remains superior on average, although
the difference is small. There is, however, considerable case-by-case
variability, with the ECMWF integrations being consistently better in
December 1986 and March 1987, but much worse than the UKMO integrations in
June 1986. This shows up cliearly in the distribution of individual
forecast scores (Figure 4). The average skill of a ‘super-ensemble mean’
of both models exceeds that of either constituent ensemble up to days 11-
20. This suggests that the divergence between the models may provide
additional predictability information. 1In either model the ensemble mean
score exceeds the corresponding individual forecast score. However, the
difference in skill is small compared with perfect model estimates, showing
the potential for increased impact as more skilful models become available.

Forecasts from both models show wide geographic variations in local skill
at extended range. This is particularly noticeable when the ensemble mean
forecasts are considered, since ensemble averaging increases skill in
regions where the individual forecast skill is positive, but decreases it
in regions of individual negative skill. Even in those forecasts whare the
large-scale skill is fairly small, useful levels of local skill are
achieved over a significant area, thus underlining the importance of Tiocal
skill prediction. Potentially useful levels of correlation between local
skill and ensemble spread, or average individual forecast anomaly
magnitude, are observed for days 1-10 for both models. Use of contingency
tables show that even where the correlation is rather small, selective

skill prediction may still be possibie.

The UKMO is now nearing the time when ensembles of dynamicail forecasts can
be run in real time to coincide with our long-range forecasting
conferences. This paper has highlighted the potential of the ensemble
forecasting technique for predicting local skill beyond the medium range.
It is hoped that these ideas will be further developed as the number of

ensembles available for analysis rapidly increases. There is also good




evidence that dynamical models can compete favourabliv with more established
(statistical) techniques for predicting time-averaged values of regional
rainfall and near-surface temperatire at extended range through the use of
highly skilful regression sguations. There is distinct possibility,
therefore, that the use of these equations within the framework of ensemble
forecasting could Tead to a real increase in skili over that currentiy
achieved by the UK long-range forecasting system, particularly in the

period 6-13 days ahead.
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