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ABSTRACT

Two series of monthly mean forecasts for January 1981 to January 1985
have heen carried out with a global version of the numerical model used
at the French weather service .

In the {first one, each forecast consists of 9 integrations with a T21
version, The forecast 1is expressed in a 3-category probabilistic way .
The results show that lagged average forecasting is systematically
superior to Monte Carlo forecasting and that the gaussian hypothesis
for the forecast distribution is reasonable .

In the second one, each forecast consists of 5 lagged average
integrations with a T42 version. The 3-category forecasts are
generalized te density forecasts, under the gaussian assumption., The
results show that the intra-forecast dispersion 1is not the best
criterion to determine the standard deviation of the probabilistic
prediction, With a climatological standard deviation and a model-
predicted average, the probabilistic forecast of 850 hPa temperature is
shown to be hetter than the simple climatological probabilistic

forecast .

1. INTRODUCTION

The recent attempts 1o produce Dynamical Extended Range Forecasts by
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several meteorologists (Miyakoda et al., 1986 ;Cubasch and Wiin Nislsen,
1986 ;Mansfield,1986; to quote but a few) have shouwn that a slight
predictability remains in the larse scale part of the forecast up to a
monthly range, with & wide skill variability among the cases, The low ,
but significant, skill of such forecasts requires to complete a
forecast by an indication on its skill This can ke achieved by
providing & forecast of z skill index (e.g. anomaly correlation) Such
an approach has been developed for short and medium range forecasts by
using the spread of a forecast ensembie {Xalnay and Daicher, 1987) or
by achieving a linear regression of the ckill index by several
predictors (Palmer and Tibzldi, 198¢).

Another way to express our confidence in a prediction, instead of
predicting a value and an expected error for this value, is to predict
a probability density for this value. As it is presently impossible to
develop a numerical model which directly produces probability densities
;a5 Epstein (1969) did with a simplified model, the numerical weather
forecast models are used to provide several forecasts for the same
variable, and then an empirical distribution is calculated (Hoffman and
Kalnay, 1983). Such an ensemble forecast can he obtained by
perturbations in the initial conditions which simulate the analysis
errors (Monte Carlo Forecast) or by lagged initial conditions {Lagged
Average Forecast). Probabilistic forecasts can also be ohtained from a
single numerical forecast by parameterizing the density {e.g. a
gaussian distribution with the forecast value as mean and a glven
standard deviation)

A probabilistic forecast is more difficult +to display and to verify
than a deterministic one, In the first part of the paper we shall

describe simple techniques for mapping and checking a forecast, using 9-
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case samples of forecasts with a low resolution model, In the second
part we shall try to improve the forecasts by using 5-case samples of
forecasts with a higher resolution model, and by optimizing the density

distribution .

2. FORMULATION OF PROBABILISTIC FORECAST

2.1 Description of the first experiment

We have carried out 45 650-day integrations with a global T21-15L
version of the operational model of the French weather service. The 45
integrations concern 5 January months (1981 to 1985) and each forecast
consists of 9 integrations obtained as follows :3 initial situations
are considered (14 15 and 14 December at 00Z) and each 1nitial
situation provides 3 different starting situations by small
perturbations on the variables, Then 45 averages are computed for the 1
January-31 January period, A forecast for a given year consists thué of
% predicted values and a reference value obtained by averaging the 36
(=45-9) remaining values, A deterministic prediction can be achieved by
providing the difference between the 9-sample mean value and the
reference value. This procedure allows to remove the modellsystematic
error which is important at such lags and for such a resolution. The
predicted anomaly is then compared with the observed anomaly which has
heen calculated by the same way from ECMWF dally analyses (e.g. the
January 1981 observed anomaly is the difference between the January
1981 mean and the January 1982 to 1985 mean)

This experiment and its results are described in Déqué (1988), The
deterministic prediction 1is shown to be better than the climatological
one (i.e. zero anomaly) and the persistence one (mean 15 Nov.-15 Dec.

anomaly) for 850 hPa temperature over Europe. We shall focus our
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discussion on this last field in the following since its prediction on
a monthly time scale could be helpful to human activities, particularly
in winter (e.g. for fuel storage). Here Europe corresponds to the area
35°N-80°N and 15°W-20°E. The Root Mean Square (RMS) error is 2.1°C for
the model, 2.5°C for the climatology, and 3.64°C for the persistence
(the model systematic error is -2.6°C). For each January except 1984 ,

the model 15 the best predictor .

ST e - r . .
,—/,,:4.;7’ ’’’’’’’’ A\ o |
L 4.5 L =15 ERY ]
- —— -
R ,(:f‘: -~ = ‘:\,_/"\-7
A 1
r 7 o . " g
2 R—//“7 ) )
’ T~ ,’ }/
‘ [sliay 4 ’ -
H i \ /~ , s 4
Y ; , 7

Predicted Observed
Fig.1 :predicted and observed 850 hPa temperature anomaly (°C)
for January 1985
Fig.1 shows the forecast for the best predicted January, that is
January 1985, The sign of the anomaly is well captured, but not :ts
amplitude

2.2 Probabilistic forecast

The above mentioned model skill 1is interesting since we are not very
exacting for long range forecasts, but it expresses a large uncertainty
on the results., A mathematical way to translate our uncertainty is the
probability theory. Two approaches may be considered. The first one .
the parametrical method, consists of choosing a kind of density (for
example a gaussian distribution) and of adjusting a small number of
parameters that define accurately the distribution, In this case the

prediction is carried out by providing the set of parameters, In the
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second one, the non-parametrical method, the density 1s discretized in
a small number of categories, and the prediction consists of giving the
set of probabilities (one for each category) One can also consider a
combined approach which adjusts a given kind of density and uses this
density to calculate probabilities for a few categories, In this
section we shall make the assumption that the 9 individual forecasts
have equal probabilities and that our uncertainty is only due to the
dispersion of these values., We shall choose a non-parametrical approach
since with 9 values one can expect to represent phenomena different
from the classical gaussian shape (e.g. bimodality). We have thus to
choose the number and the boundaries of the categories., We have decided
to take categories with equal probabilities when the distribution 1is
the climatological one. With two categories, the threshold is located
near the average value (which is 0 since we consider anomalies) and the
quality of the predictions is rather bad because you find often a small
predicted value and a small observed one with the opposite sign. We
shall consider here 3 categories, The thresholds (for each grid point)
are given by the terces of the 5-January observed anomaly distributicr.
For 850 hPa temperature over Europe, they correspond nearly to -1°C and
1°C ,and the 3 categories will be referred to as cold, medium, and warm.
The forecast at each grid point consists thus of 3 positive values p, ,
Pz ,Pz the sum of which is 1. They are computed by dividing by 9 the
number of individual forecasts which belong to each category .

2.2 Verification

The problem at this stage is to know what a good forecast is.The
distribution must be sharp and the likeliest category must correspond
to the observed one. .S8et os equal to 1 when the i1th category is

observed, equal to 0 otherwise (i=1 ,2 ,3). The best forecast is pi=0:
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It seems natural to measure the skill by the Brier Score (Brier, 1950):
BE=(P1-04)2+(P2-0231%+(pa-03)= (1
This criterion lies hetween 6 and 2, 0 corresponding to the best
prediction, 2 to the worst one., Let us suppose that we observe s cold
anomaly (0.=1); if we had predicted a warm (ps=1) or a medium {p2=1)
oneg, the BES is 2, though the error seems more important in the former
case. Murphy (1971) proposed & Ranked Probability Score based on the
distance between the cumulative probabilities :
RPB={pP+-0:)%+(P1+P2-041-02) %+ (P +Pa+P5~01 ~02-05 ) 2
=(pP1-04)2+(pPx-03)= {2}

This criterion has the same properties as the BS but takes into account
the fact that the categories are ranked (the highest value is obtained
when one predicts an extreme category and one observes the opposite
one), If (ps,P2,Ps) 15 a random vector independent of (04,02,03), that
1s if we do not have any information to produce the forecast, the
lowest expected value for the RPS is obtained when p: is constant and
equal to the expectation of oz, This kind of prediction is the
climatological probabilistic  prediction. 8Since we have chosen the
categories with equal ﬁrobabilities, the climatological forecast is
pPs=1/3 and the expected RPS 1s 4/9. An informative prediction must
provide an averaged RPS below 0.44. In the case of the forecast of 850
hPa temperature over Europe, the averaged (over the § Januaries and
over the area) RPS is 0.29. If we consider the different Januaries, the
model iz always better than the climatology except in 1981, The model
provides valuables probabillistic predictions, The persistence
predictions have not been considered since they have a lowef skill than
the climatological ones in the deterministic approach, and since it is

difficult and artificial to introduce a probability for this kind of

124



prediction .

2.4  Mapping

We dispose thus of 3 values (p,y,p2,p=) to display instead of 1 when the
forecast is deterministic, One can exhibit 3 maps of iso-probability ,
or only two since the sum is 1. One can also superimpose the isolines
on a single map, but the results are often difficult to interpret. In
fact we have two degrees of freedom and the most appropriate way of
mapping is to draw an arrow field. Epstein and Murphy (1965) have
proposed to use barycentric coordinates, Let 04,0205 be a triangle (see
Fig.2) . A set of probabilities (ps,p2,P=) may be represented by a
point P with barycentric coordinates (p.,p=z,pP=z):

}31p01 +P2p02+P3p03 = Q__ (3)

Since the pss are positive ,the point lies inside the triangle. When a
category is deterministically predicted, pi=1, the corresponding point
is the vertex 0i. The climatological forecast psi=1/3 is represented by
the barycenter (or center of mass) G. The vector GP indicates the
degree of confidence by its length (a short arrow corresponding to a
weak confidence) and the preferred category by its direction (towards
the left, cold; upwards, medium: towards the right, warm), We can
choose any kind of triangle. Epstein and Murphy proposed to take an
equilateral triangle, In this case the distance between two points is
proportional to the BS. We have taken in Fig.? a right isosceles
triangle, so that the distance is proportional to the RPS .

Fig.3 exhibits the forecast for 1985 as Fig.1 but in a probabilistic
way. Most arrows are directed to the left, indicating a cold anomaly .
Over Great Britain, the arrows are shorter, indicating a smaller

probability for the cold category .
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Fig.2:vector representation of a probabilistic forecast
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Fig.3 Probabilistic forecast for 850 hPa temperature in January
1985.

2.5 Further investigations

The Lagged Average Forecasts are shown to be significantly better than
the Monte Carlo Forecasts in this experiment (Déqué,1988) and it is
shown: that the skill increase by ensemble averaging is larger from a
single to 2 integrations than from 3 to 9 integrations., It seems that
less than 9 should be sufficient. Anyway this number will allow us to
test the hypothésis of a gaussian distribution for the predicted
anomalies, If we calculate (p.,p2,Ps? USing a gaussian distribution
with mean and standard deviation computed from the 9 values, the mean
RPS is the same (il.e. 0.29y and for the individual Januaries, the
valuss differ slightly from the previous ones, The distribution of the

? temperature anomalies is therefore near to a gaussian distribution .
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3. QPTIMIZATION OF PROBABILISTIC FORECASTS

3.1 Description of the second experiment

In order to improve our results, we have doubled the horizontal
resolution of the model (T42 truncation) and reduced the time step from
45 min to 30 min. The cost of a single 50-day integration is multiplied
by a factor 5. Considering the results of the previous experiment, we
have only performed 5 integrations for each forecast. They are obtained
by the LAF technique, taking 14 Dec. 00Z ,14 Dec. 12Z ,15 Dec. 00Z ,15
Dec. 12Z, and 16 Dec. 00Z as initial conditions. The forecast periods
are the same (1981 to 1285) and the predicted monthly anomalies are
interpolated on the same grid as in section 2 by spectral truncation .
When compared with ohserved anomalies, the forecasts show a general
skill improvement, at least in the lower atmosphere. The RMS error of

850 hPa temperature over Eurcpe is 1.8°C .

3.2 Prohabilistic forecast

Our samples are now shorter (5 instead of 9) and it seems bold to
calculate probabilities for 3 categories using  the empirical
distribution, As the gaussian hypothesis does not decrease the skill
with a 9-sized sample, it should be more appropriate to calculate the
mean and standard deviation of the 5-sized sample and to make use of a
gaussian density .

Moreover, the choice of 3 categories is somewhat arbitrary in that case.
For instance, 1if the 3 categories are t<0°C , 0°C«<t<2°C ,and 29C<t and
if we predict a 1large probability for the first category, people who
are concerned with blossom freezing will find the information helpful ,
but those who ask about fuel o0il freezing cannot be satisfied. Then the
choice of the categories should be left to the users and the adequate

meteorological information is the whole probability density. Under the
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gaussian assumption, we need to calculste the mean m and the standard
deviation s, The Zforecast maps involve thus two isoline network, The
forecast verifications need to generalize the RPS formula to an
infinite set of categories which have the same probability with respect
to the climatological distribution. 8et Fao(t), Fe{t), and Fo(t) the
cumulative densities for the climatology, the forecast, and the
observed valute t, respectively, Then ,

Fo(ti=H(t-1) (4}
where H(t) is the Heavyside function H(t)=0 when t<0 and H(t:=1 when
t:>0. A generalized RPS mavy be given by :

GRPS=2];Ff(FQ“’ (W)-Fo(Fe~"{u)))3du (5)
The factor 2 makes the GRPS vary between O and 2 like the RPS. The
small categories are (F. " (W <t<F""{(u+du)) and have the probability du.

In the non parametrical approach, the forecast is given by n values t,,

tz,...,tn and the climatology by N values T,,T2,...,In .Then
N n
GRPS= 2/N Z1 (1/n Z‘ H{Tw-1ts) -H(Tp-to))2 (&)
kz iz

If we substitute a gaussian distribution of parameters m and s for the
set (ty), (5) becomes:

GRPS= 2/N §1 ( G (Te-m)/S) -H(Ty~t))2 e
where G 1is the cémulative density of the normalized gaussian law, If we
use a gaussian distribution for the climatology, (5) cannot be
expressed analytically. Moreover the gaussian distribution is not as
well verified for the temperatures i{from different vears as for the
temperatures from different integrations of the same Janwary, Therefore
we shall make use of (7) to calculate the GRPS, For each vear the
climatological set (Tw! will consist of the 4 observed anomalies of the

remaining vears., The mean GRPE for the climatological forecast is 0.44

if we use (6) and 0.41 if we use (7), 1irrespective of the kind of field
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and of the area of verification (in the first case, one can demonstrate
that the mean G6RPS 1z (1+(N+1)/N2)/3 ), In the case of 850 hPa
temperature over Europe, the mean GRPS of the T42 forecasts is 0.34 ,
which shows that the model forecasts are superior to the climatological
ones .

2.3 Suestion about the standard deviation

If we come bhack to the first experiment ,the mean GRPS is .30 .This
result is surprising since the deterministic prediction is bhetter with
the T42 model than with the T21 version. Since the mean of the
distribution is improved, the standard deviation must be inadequate, We
have substituted, as a first step of checking , a mean standard
deviation for the intra-forecast standard deviation: that is, for
example, instead of the intra-forecast standard deviation of 1981, we
used the average of the intra-forecast standard deviations of 1982 ,
1983 ,1984, ,and 1984 to produce a probability prediction for 1981, The
mean GRPS is found to be smaller (.28 instead of .34). The internal
variabhility of the forecast ensemble 1is not a good estimate of the
uncertainty of the forecast, 0f course this result is verified whatever
the field (temperature,wind,height), whatever the area (globe,
intertropical,Europe) ,and for both T21 and T42 experiments. The
problem is to choose a good estimate for s.We tried the observed and
the forecast inter-month standard deviations, For most fields and areas
the best choice seems to be the standard deviation between &ll the
individual forecasts (i.e. the 45 forecasts for the T21 or the 25
forecasts for the T42). With such a choilce, the GRPS for 850 hPa is .42
,»42 , and .30 for the globe, northern hemisphere ,and Europe in the
T21 experiment and .38, .40, and .28 in the T42 experiment (values to

be compared with .41 for the climatological forecast), The shortcoming
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of this kind of forecasts is that we do not predict our confidence in
the results. We only predict the average of the gaussian law, the
standard deviation being the same whatever the year .

2.4 Optimizing the standard deviation :first attempt

We can try to predict the standard deviation without using the intra-
ensemble dispersion. The advantage of such a method is to provide a
probability forecast with a single integration, We could use & method
similar to that of Palmer and Tibaldi (1986) to calculate s standard
deviation by linear regression with the mean forecast, but our sample
i5 too short, We shall investigate however in this direction; Let us
suppose that we are able to forecast the RMS error of 500 hPa height
over the northern hemisphere (by regression on the first Principal
Components of this field, for example; but here we shall take the
actual value)., B8et =z the standardized value of the predicticn, In the
T42 experiment we take for z 0. ,1.5 ,-1.5 ,0.6 ,-0.6 for January 1981 ,
1982 ,1983 ,1984 ,1985 respectiveiy. We shall use as standard deviation
s(3,1) = 8%(3) (1 + b z(i)») (8)

where's*(j) is the standard deviation between the forecast individusl
mornths (they are 25 for the T42) at each grid point j and b a parameter
to optimize so that the GRPS is minimum. If b is positive, an expected
good deterministic forecast for 500 hPa height over the northern
hemlsphere (z(1)<0) will increase our confidence in the prediction of
850 hPa temperature over Europe (which seems more natural than the
contrary). Figure 4 {(and other results not shown concerning cther
fields or other areas) shows that the results of section 3.3 ,that

correspond to b=0, are not improved .
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Fig. 4 :values of GRPS for 850 hPa temperature over Europe as a
function of parameter b (see Eqg. 8) ; T42 (solid line) and T21
(dashed line) experiment .
We have also tried to use the RMS error of 850 hPa temperature (instead
of 500 hPa height).In this case we obtain lower values for the GRPS
with b>»0 than with b<0 but the results with b=0 are not improved .

3.5 Optimization of the standard deviation :second attempt

If we consider the intra-forecast dispersion, 1t would be a good
estimate for the standard deviation if the model were perfect, Then the
only source of error would be the increase of small analysis errors ,
due to the non-linearities in the model, We can consider that in fact
there are two sources of error, model deficiencies and initial error
growth, and we propose :

5(3,1) = (Sinera=(],1) + ¢ e2(j))1 2 (9)
where Sinera{j,1i) 1is the intra-ensemble standard deviation for year i ,
e(j) the total RME error (including the systematic error) at grid point
j, which has been calculated here with the 4 remaining years because of
the shortness of the sample, and ¢ a parameter to adjust, Fig.5 (and
other results not shown concerning other fields or areas) shows that
the bhest choice for ¢ is about 0.2 for the T21 experiment and about 0.6

for the T42 one (which has smaller RMS errors). Anyway the values for
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the 6RPS found in 3.3 are not improved .

GRPS
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Fig.5 :as Fig.4 for parameter ¢ (see Fq.9)

4. CONCLUDING REMARKS

When we want to visualize on a large area the results of a probability
forecast, and to compare several cases, 1t is more useful to reduce the
prediction to 3 categories and to represent the set of corresponding
probabilities by a vector, When we want to provide the maximum
information, the whole density 1s necessary. For practical reasons the
forecast sample 15 often too short to use the empirical cumulative
density., The gaussian hypothesis provides a satisfying approximation
and involves only two parameters, If we believe in numerical models, we
use as the average the ensemble mean (minus the model systematic error).
Any other wvalue should result of an artificial choice, But taking as
the standard deviation the ensemble standard deviation vields clearly
an underestimate since it comes to suppose the model is perfset .

The problem of the choice of the standard deviation is open, and & full
optimization would require a large set of independent but homogenecus
probability forecasts, With our five cases, it seems that a reasonable
choice 15 something looking like the model natural variability, However

it would be preferable that this standard deviation would vary from one
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forecast to another, allowing for a discrimination between & priori

good and a priori bhad forecasts .
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