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1. INTRODUCTION

Much progress has been made in recent years in numerical weather forecasting.
Models and analysis techniques have been developed and refined while the rapidly
increasing power of supercomputers has éctually enabled the scientists to
implement their schemes. However, numerical forecasting is not only a modelling
but also an initial data problem. At a recent meeting on data for global models
(ECMWF, 1987) the need for an improved data coverage and better quality data was
stressed. Much can be gained from improvements in the Global Observing Systen
(G0S). However, very little has happened over the last few years. Instead of
an improvement there are signs of a degradation of the system, in particular in

the conventional surface based observations.

In order to manifest the deficiencies in the availability and quality of the
observations, ECMWF undertakes regular data monitoring and has on various
occasions made the results available to the WMO, data producers and other GDPS
centres. WMO/CBS has endorsed such monitoring activities and recommended the

exchange of results between monitoring centres (WMO, CBS EX(85)).

One of the most important conventional surface based data sets is provided by
the global radiosonde network. Its performance has been studied in detail at
ECMWF. Tools were developed to assess the long-term trend of data availability
and quality at individual stations and to display the results in geographical
maps to facilitate the comparison between stations. The purpose of this paper
is to demonstrate the ECMWF monitoring tools and present examples of their
application to the radiosonde network over North America. As the ECMWF data
assimilation system provides the diagnostic facilities for the data monitoring,

first a brief summary of the ECMWF operational system is given.

2. ECMWF OPERATIONAL ANALYSIS AND FORECAST SYSTEM

2.1 Schedule

ECMWF produces routine global analyses for the four main synoptic hours 00,

06, 12 and 18 UTC and global 10-day forecasts based on 12 UTC data. The
operational schedule with the approximate running times of the analysis and
forecast suite is shown in Fig. 1. As a forecasting centre with the emphasis on

the medium=-range, ECMWF operates with long data collection times of between 18



hours for the 18 UTC analysis and 8 hours for the 12 UTC final analysis.

schedule ensures the most comprehensive global data coverage including the

Southern Hemisphere surface data and global satellite sounding data, thus

obtaining the best possible description of the initial state of the atmosphere.
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2.2 Data assimilation system

ECMWF operates a full data assimilation system with intermittent data
insertion and three main steps: analysis, initialisation and 6-hour forecast to
provide the first-gquess for the next analysis. The system is described by
Lorenc (1981) and the recent revisions of the analysis were documented by Shaw,
Lénnberg and Hollingsworth (1984), and Ldnnberg, Pailleux and Hollingsworth
(1986). The present system is summarised in Fig. 2. A comprehensive quality
control scheme for the data is included in the analysis (Lonnberg and Shaw,
1985). Prior to the use of the data in the analysis the incoming bulletins
undergo telecommunications checks, decoding and simple checks on departure from
rather wide climatological limits. The internal consistency of radiosonde data

is controlled by applying the hydrostatic check.

2.3 The forecast model

The first-guess field is produced with the same operational forecast model

that provides the main 10-day forecast. The resolution of the model is given by
spectral representation which at present is truncated at wavenumber 106.
Therefore features with a half wavelength of approximately 190 km can at best be
expected to be resolved. Physical processes are calculated on the surface grid
of the model which has a near regular resolution of 1.125 degrees in latitude
and longitude. The main features of thé model are presented in Fig. 3. For a
more comprehensive description of the model and the physical parameterisation
reference is made to Tiedtke et.al. (1979), Simmons and Jarraud (1983), Jarraud

et.al. (1985), Tiedtke and Slingo (1985).
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3. OBSERVATION QUALITY MONITORING BY DATA ASSIMILATION

Hollingsworth et.al. (1986) provided the rationale for using modern data
assimilation systems>as the appropriate tools for monitoring the quality of
observations. There is good evidence that in mid-latitude areas, where an
adequate observational network ensures a sufficient data coverage, the 6-hour
forecast error (first-guess error) is quite low and allows the evaluation of the
data quality by comparison with the first-gquess. North America, Europe and most
parts of Asia are suitable areas for such evaluations. In data sparse areas,
however, a more cautious approach is required, before any conclusions on the
data quality are drawn from the comparison with the first-guess alone, as the
model errors might be dominating. Only if additional independent comparisons,
such as results from collocation statistics of radiosonde ascents and
atmospheric soundings derived from satellite radiance measurements corroborate
the data versus first-guess findings may they be accepted with confidence.

ECMWF has developed such additional tools and applies them whenever possible to
confirm monitoring results for radiosondes in data sparse areas, €.g. the

Southern Hemisphere and mid-Pacific Islands.



4. RESULTS

In this section are presented the ECMWF monitoring results for the North

American radiosonde network. Area statistics are displayed of

a) - data availability (i.e. reception rate at ECMWF, average maximum height
attained);

b) mean observed minus first-guess geopotential height difference;

c) . root mean square observed minus first-guess geopotential height
difference;

a) root mean square observed minus first-guess vector wind difference.

In addition, several stations are examined more closely using tools such as

1ong¥term trend graphs and vertical profiles of observed minus first-guess

differences.

4.1 Data availability

Figé. 4 and 5 display the reception rates at ECMWF from the North American
radiosonde network at 100 hPa for 00 UTC and 12 UTC during the month of December
1986. The numbers plotted are the percentages of the total possible for that
month and synoptic hour. Values are plotted for each station which should

report at that hour, as specified in WMO Publication No. 9 Vol. A.

The 100 hPa height was received on more than 75% of occasions from most of the
stations in the United States. The reception rate for many stations was
slightly greater at 12 UTC than 00 UTC. However, several stations that should

have reported at 12 UTC but not 00 UTC were not received at all.

Figs. 6 and 7 display the average maximum height (in kilometres) reached by the
North Bmerican radiosonde network for 00 UTC and 12 UTC during the month of
December 1986. Values are plotted for all stations received at least once

during the month and refer to parts A and C of the TEMP reports only.

According to WMO regulations the height to be reached on a regular basis is
10 hPa (approximately 31 km) over the North American continent. The figures
indicate that the majority of stations had an average value of around 23 km
(approximately 30 hPa). There are a few stations with average heights well
below the average, such as Bermuda (32°N 65°W) where, on average, 15-16 km

(approximately 100 hPa) was reached.



4.2 Bias of height observations

As discussed in section 3, in datasrich areas such as the North American
continent, the first-guess error of the ECMWF model is low, thereby allowing the
evaluation of data quality by comparison with the 6-hour forecast. Figs. 8 and
9 display the observed minus first-guess differences at 100 hPa for 00 UTC and
12 UTC averaged over the month of December 1986. Assuming a low forecast error,
these values represent the bias of the radiosonde observations at 100 hPa.
Values are plotted for all stations received at least five times during the

month and the units are metres.

Over USA at 00 UTC there is a clear division between positive biases in the west
and negative biases in the east, closely corresponding to the division between
daytime and night-time in December. At 12 UTC, when continental USA is almost
completely in darkness in December, the bias values are uniformly negative.
These figures confirm the findings by Nash (1984) and Lange (1987) that the
North American radiosondes appear to have a uniform radiation error which should

be corrected.

In order to‘study this effect more closely, we may investigate one particular
station in more detail. Figs. 10 and 11 show the evolution of the mean monthly
differences between observations and first-guess over the 13 month period
December 1985 to December 1986 for the radiosonde station 72694 (Salem/McNary).
Separate curves for 500 hPa, 100 hPa and 50 hPa are shown; 00 UTC and 12 UTC
data are displayed in different figures. The number of observations shown above
the time graph box are the number of 500 hPa height reports received during each
month. The graphs clearly demonstrate the radiation correction problem, the
bias being generally positive at 00 UTC and negative at 12 UTC throughout the
year. It can also be seen that the magnitude of the bias increases with height.
The period from December 1985 to April 1986 appears to have a different
character from the rest of the year, particularly at 00 UTC. It is quite likely
that this effect is due to a change made to the ECMWF operational forecast model
in early May when three vertical levels were added in the stratosphere, thereby

improving the resolution around the 50 hPa level.



4.3 Root mean square error of height observations

Figs. 12 and 13 display the root mean square (RMS) differences between
observed values and the first-quess field of geopotential height at 100 hPa for
00 UTC and 12 UTC averaged over the month of December 1986. Values are plotted
for all stations received at least 5 times during the month and the units are
metres. The difference between the RMS values and the bias values gives an
indication of the randomness of the observation error, i.e. if the RMS and bias
values are very similar then most of the observation error is attributable to

the bias.

It éan be seen from Figs. 12 and 13 that most of the US stations had 100 hPa
RMS errors in the order of 30-40 metres, and (referring to Figs. 8 and 9) most
of this error was due to the large bias values. Some radiosonde stations,
however, had RMS errors considerably larger than average, such as 72572 (Salt
Lake City, 41°N 111°W) with a 100 hPa RMS error of 58 metres at 00 UTC. This
station has been studied in more detail by looking at the evolution of the
monthly RMS differences between observations and first-guess over the period
December 1985 to December 1986 (Figs. 14 and 15). The explanation of the curves
and number of observations displayed is the same as that for the time graphs of
bias (see section 4.2). The 00 UTC graph clearly shows that in December 1986
there was a sharp rise in the RMS error at both 100 hPa and 50 hPa, whereas at
12 UTC there was no corresponding increase. The reason for this disparity can
be discovered when the daily departures are examined. Fig. 16 depicts the time
series of observed minus first-guess geopotential differences every 12 hours
during December 1986 at 15 standard pressure levels from 1000 hPa to 10 hPa.
The differences are in metres with a scale of 50 m indicated by dots for each
level. The mean deviation over the month is printed on the right hand side of
each time series, together with the two values of mean * 50 m. A star'at the
observation time indicates that the observation was presented to the analysis.
If a datum was rejected by the quality control procedure within the analysis
program a "flag" of 2 (= probably incorrect) or 3 (= incorrect) is also
indicated by "A = 2" or "A = 3" printed at the time and level affected. It can
be seen from the figure that at 00 UTC December 21 there was an exceptionally
large deviation from the first-guess, which almost certainly caused the sharp
rise in RMS error observed in Fig. 14. Another interesting feature shown in'the
graph for 00 UTC is the annual cycle in the 500 hPa RMS, reaching a peak in the
summer months. This is almost certainly linked to the bias correction problem
discussed in section 4.2, although it is not clear why a similar effect is not

evident at 12 UTC. 9



4.4 Individual station investigation

In this section selected radiosonde stations are investigated more closely

using two more tools:

a) long-term trend graphs of vertically averaged statistics, and
b) vertical profiles of observed minus first-guess and analysis
differences. ’

For vertically averaged statistics, the differences at each of the 10 standard
levels between 1000 hPa and 100 hPa are weighted by the normalised inverse of
the RMS observation errors for radiosonde observations as used in the Centre's

data assimilation scheme and given below:

Inst.Type 1000 850 750 500 _ 400 300 250 200 150 100
SONDE/WIND 2.2 2.5 2.6 3.1 3.7 3.8 3.3 3.0 2.8 2.4
(m/s)

SONDE /GEOP. 5.0 5.4 6.0 9.4 11.6 13.8 14.2 15.2 18.2 21.4

(m)

Graphs labelled RMS give the RMS differences between observations and first-
guess. The BIAS curves show the evolution of the mean monthly differences
between observations and the first guess over the 13 month period. Results are
shown for 00 and 12 UTC separately. The number of observations (part A of the

TEMP) received during each month is indicated above the time graph box.

In the vertical profiles the differences between height and wind observations
and the ECMWF first guess and analysis (interpolated to the location of the
station) are presented for each of the standard pressure levels. The figures
give standard deviation (left) and bias (right) of u=-component (top),
v-component (centre) and geopotential height (bottom) of the differences in the
units ms™! for wind and m for height. The numbers in the centre give the numbexr
of observations used for the calculations (TEMP/PILOT). Dashed lines denote
deviations from the uninitialised analysis, solid lines deviations from the

first-qguess fields.

10



In Figs. 17 and 18 an example of a well-performing station is shown = 72528
(Buffalo). Looking first at the long-term trend graph it is clear that both the
mean error (bias) and RMS error were uniformly low throughout 1986. There is
slight evidence for an annual cycle in the bias, being generally positive during
the summer months and negative for the remainder of the year, although the
absolute values were very small. Fig. 18 shows the vertical profile of observed
minus first-guess and analysis differences for June 1986. The geopotential
height profiles (bottom) indicate that the bias was very low throughout the
depth of the atmosphere, although at 12 UTC a slight positive bias is evident in

the upper troposphere and a larger positive bias in the upper stratosphere.

A contrasting case is shown in Figs. 19 and 20, that of 78016 (Bermuda). The
long-term trend graph (Fig. 19) shows that the vertically averaged RMS error
never fell below 25 m and for most of the year was around 30 to 40 m. A marked
peak in the RMS error occurred in August, corresponding with a negative peak in
the bias. An annual cycle is evident in the bias with large positive values
during the winter months. Looking at January 1986 in more detail the vertical
profiles of geopotential (bottom of Fig. 20) show clearly the uniform positive

bias in the troposphere.

An example of a station exhibiting a marked bias correction problem is given in
Figs. 21 and 22. Station number 91285 (Hilo/Gen. Lyman, Hawaii) had a positive
bias at 00 UTC and a negative bias at 12 UTC (apart from December 1986). It can
be seen that the bias makes up the greater part of the observation error as the
RMS error shows only a small increase over the bias. The character of the bias

profile can be seen clearly in Fig. 22 which shows the results for July 1986.

1



4.5 Root mean square error of wind observations

Figs. 23 and 24 display the root mean square (RMS) vector differences between
observed values and the first-guess field of 250 hPa wind for 00 UTC and 12 UTC
averaged over the month of December 1986. Values are plotted for all stations

received at least 5 times during the month and the units are metres per second.

It can be seen that most of the stations in the USA had RMS vector wind errors
of the order 6 to 8 m s-l, although a few performed significantly worse than

average having errors greater than 10 m s-1.

12
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