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1. INTRODUCTION

A long-standing problem in the integration of numerical weather
prediction models, using the primitive equations, is that the maximum
permissible timestep has always been governed by considerations of stabili-
ty rather than accuracy; for the integration to be stable, the timestep has
to be so small that the time-truncation error is very much smaller than the

spatial truncation error.

The situation improved considerably following the development of
semi-implicit time integration schemes (Robert, 1969; Kwizak and Robert,
1971; Robert et al., 1972). By treating the linear terms responsible for
high-frequency oscillations in an implicit manner, it was possible to use
timesteps six times longer than for the earlier explicit leapfrog schemes,
with no loss of accuracy. Nevertheless, the maximum stable timestep
remained much smaller than seemed necessary from considerations of accuracy

alone.

Robert (1981, 1982) proposed combining the semi-implicit integration
scheme with a semi-Lagrangian treatment of the advection terms in a baro-
tropic model, and more recently Robert et al. (1985) extended this scheme
to a multi-level model. They found that the timestep could be increased by

a further factor of six over that for an Eulerian semi~implicit scheme, in
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the context of a finite-difference model defined on a horizontally uniform

grid.

In this paper we adapt Robert's technique, both to a regional
finite-element model with variable resolution and to a global spectral
model. Following Robert, these applications are based on combining the
semi-Lagrangian treatment of advection with a three-time-level semi-
implicit scheme. It is also possible to construct two-time-level semi-
Lagrangian semi-implicit schemes; these are presented in a companion paper
by Staniforth and C6té (1988).

2. A SEMI-IMPLICIT SEMI-LAGRANGIAN SéHEME

In order to prepare the ground for later developments, we first
illustrate the application of a semi-implicit semi-Lagrangian scheme to the
shallow-water equations on a polar stereographic projection, without

explicitly considering the details of the horizontal discretization.

Let x and y be the coordinates of the projection; u and v are the x-
and y-components of the wind vector, ¢ is the perturbation geopotential, o,
is the mean geopotential, m is the map scale factor and f is the Coriolis

parameter. Defining wind images U = u/m, V = v/m, the equations take the

form:
g_g-fvf%ﬁwuxg—}%:o 7 (2.1)
%% + fU + %% + K g; =0 (2.2)
-g—g + D + ¢D -0 (2.3)
where K = %(U? + V2), S = m?, D = (% * g—‘;) d
%E = %+ s(U-g—iJ' v%).

Suppose now that the model variables U, V, ¢ are defined at a set of
grid points at time-levels t and (t-At), and that the integration is to be
carried forward to time-level (t+At). For each gridpoint X, we consider

the trajectory of a particle which arrives at x at time (t+At), and we
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approximate this trajectory by a straight line in (x,y) space over the time
interval [t—At, t+At], as illustrated in Fig. 1. Thus in (x, y, t) space,
the trajectory begins at (5-29, t-At} and ends at (5, t+At).

To implement the semi-Lagrangian algorithm, the first step is to
find o for each gridpoint X. A time- and space-centred discretization of

v = dx/dt along the trajectory yields the equation defining a:

2a
v(x - a, t) = 55,
l.e.
o = Atv(x-a, t). (2.4)

Since Eq. (2.4) is implieit, Robert (1981) suggested the following
simple iterative scheme:

(k+1) (k)
2

= Atev(x-a "7, t) (2.5)

(o)

where k is the iteration number. If o is taken to be the value found at
the previous timestep, then two iterations are usually found to be suffi-
cient. Since x-a is not in general a gridpoint, the right-hand side of
(2.5) has to be evaluated by a suitable interpolation scheme; for this

stage of the computation, bilinear interpolation seems to be adequate.

Once o has been found, the total derivative in-(2.1) can be approxi-

mated by
aw |, Ut - Ut
dt 20t
where
Ut = U(x, t+at) | (2.6)
U~ = U(x-20a, t-at) (2.7)

and similarly for dv/dt in (2.2) and d¢/dt in (2.3). The values U™, V7, ¢~
again must be found by interpolation of the fields at (t-At); this time a
more accurate interpolation scheme (e.g., bicubic) is necessary to avoid

smoothing the fields.

The semi-implicit part of the scheme consists of averaging the

pressure-gradient terms in (2.1) and (2.2), and the ¢,D term in (2.3),
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along the trajectory; thus for example in (2.1),

3¢ 119yt 4 (39)-
9x M Z[Eax) ¥ (ax) '
The remaining terms in the equations will be evaluated at time-level t and
half-way along the trajectory, at x-a ; to (2.6) and (2.7) we add the
notation

U® = U(x-a, t). : (2.8)

Egs. (2.1)~(2.3) are thus discretized as follows:

— -

Ut - U 1 ddy+ 3¢y 9S+y°%

=g V3 .Egg) + [5;)_J * (Kgg) =0 (2.9)

VP o VT e s L -i§$]+ + (ﬂ):1 + (k2" -0 (2.10)
25t 2 |'oy 3y’ | 9y '

¢+‘¢_+1/2¢ [D* + D7] + (¢D)° = 0O (2.11)
2At 0 ) '

Notice that the system (2.9)-(2.11) 1is completely centred in time and
space, thus maintaining the second-order accuracy in time of the Eulerian

semi-implicit scheme.

Once o has been found for each gridpoint, all the terms in (2.9)-
(2.11) defined at (x-a, t) and (x-2a, t-At) can be evaluated. Putting all
these "known" terms on the right-hand side, Egs. (2.9)-(2.11) take the

form:
+ .
(U + At%i—) = R, (2.12)
v+ add) - - ;
Atﬁ) = R, (2.13)

(¢ + o,atD)"

R, Co(2.14)

To solve this system, we take %— (2.12) + 2 (2.13) and substitute

X oy
for p* in (2.15), yielding a Helmholtz equation for ¢+:
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Fig. 1 The approximated trajectory as used in a three-time-level

semi-Lagrangian scheme.
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FLNP S B (PR (2.15)
axz ayz @os(At)z ¢ - L .

Once (2.15) has been solved for ¢+, the new wind image fields U" and V' can
in principle be found by substituting baeck in (2.12) and (2.13), and the

timestep is completed.

A "non-interpolating" variant of the scheme has also been proposed

(Ritchie, 1986). 1In this approach, we first find g using (2.5) (which does
* * ]

require interpolation) and then define o such that x~20 1s the nearest

grid point to x-2q. The advecting wind is then split into two parts:

*
v=v + v

* *
where v = g /At, and terms such as d¢/dt are approximated by
. - a 0
d¢ ¢ ¢ 199 | yide
& T ot ¢ {%(U xSy (2.16)

with the notations of (2.7) and (2.8) now replaced by

u-

*
U(x-2a , t-At), (2.17)

U0 = Ulx-a , t) (2.18)

and (U')® in (2.16) defined by

*
(ur)e =u® - U .

The remaining terms in the equations are again evaluated as in
(2.9)-(2.11), but using the new definitions (2.17) and (2.18) for the
quantities evaluated at time-levels t and (t-At). Again a system of the
form (2.12)-(2.14) is obtained, and the timestep is completed in the same

way.

This non-interpolating version has two potential advantages. First,
the quantities at (t-At) are defined at gridpoints, so no interpolation is
required to evaluate them, and the smoothing effects (and the cost) of
interpolation are eliminated. Second, on a uniform grid the quantities at

time t, as in Eq. (2.18), are defined either at gridpoints or halfway
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between them, so they can be evaluated by simple interpolation formulae.

The viability of the "non-interpolating" semi-Lagrangian scheme was
demonstrated by Ritchie (1986) both for a passive advection problem and in

a semi-implicit shallow-water equation model.

3. APPLICATION TO A FINITE-ELEMENT MODEL
Since Robert (1981, 1982), Robert et al. (1985), and Ritchie (1986)

had so clearly demonstrated the advantages of a semi-Lagrangian semi-

implicit scheme in a gridpoint model, it was natural to ask whether it
could be extended to models using other forms of horizontal discretization.
The first such application was described by Staniforth and Temperton
(1986).

The model in this case was the regional barotropic finite-element
model of Staniforth and Mitchell (1977, 1978). The domain of the model is
quasi-hemispheric, with a solid-wall boundary in the vicinity of the
equator, and a variable-resolution grid with uniform high resolution over
the region of interest (see Fig. 2). The discretization is based on

bilinear finite elements.

In trying to apply a semi-Lagrangian semi-implicit scheme to this
model, an immediate problem is that the Eulerian version of the model is
based not on the momentum form of the equations as in (2.1)-(2.2) but on
" their differentiated (vorticity-divergence) form; the reasons for this
choice are discussed in Staniforth and Mitchell (1977). The essence of the
semi-Lagrangian scheme lies in the treatment of the advective terms; the
vorticity equation has a natural advective form which is appropriate for
semi-Lagrangian treatment, but the divergence equation does not contain

suitable advection terms.

_ Two Solutions to this problem, différing only in their treatment of
the rotational part of the wind field, were proposed by Staniforth and
Temperton (1986). The U, V and ¢ equations were first written in the form
(2.9)-(2.11), or equivalently (2.12)-(2.14); all derivatives and products

appearing in the right-hand sides R,, R,, R, were evaluated using the
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bilinear finite-element basis. Adding the (discrete) x-derivative of

(2.12) to the corresponding y-derivative of (2.13) gives
+
+ _ -
(0/8)* = -ato, + o, ) + (R + (Ra), . (3.1)
and substituting in (2.14) gives a discrete form of the Helmholtz equation
(2.15):

+

-6 -
[pxx + ¢yy (I>°S(At)2] = R,. . (3.2)

As shown by Staniforth and Tempertoﬁ (1986), the boundary conditions for
this Helmholtz equation are obtained by setting the normal component of the

wind images at time (t+At) to zero at the boundary.

After (3.2) has been solved for ¢*, the right-hand side of (3.1) can
be evaluated explicitly, and the divergent component (Ud,vd) of the wind
field at (t+At) can be found by solving a Poisson equation for the velocity

potential x*:

(x

+ +
wx T Xyy) T (D/8) (3.3)

with Neumann boundary conditions (zero normal derivatives). After solving
(3.3), we set

()" = s (V)" = xy (3.4)

As mentioned above, the two proposed schemes differed in their
treatment of the rotational wind field. For Scheme A, the y-derivative of

(2.12) was subtracted from the x-derivative of (2.13) to give

(¢/8)" = (O wyy)+ = (Ra), - (Rl)y (3.5)

where

aV oU
L = (BX ay)'
Hence the Poisson equation (3.5) may be solved for y* (using Dirichlet
boundary cenditions), and the rotational component (Ur’ Vr) of the wind
field at (t+At) found from

(U )" ==yt (V)7 =

- y o M (3.6)
thus completing the timestep.
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HORIZONTAL GRID CONF IGURATION
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Fig. 2 The 101 x 101 non-uniform grid of the finite-element model. For

clarity, only every other line of the mesh is shown.
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(a)

" CONTROL RUN ON UNIFORM GRID DAY 2

(b)

| D
EULERIAN DT = 10 MIN DAY 2

Fig. 3 48-hour forecast height fields: (a) control run on uniform grid,
(b) Eulerian run on non-uniform grid (At = 10 min). Contour

interval 10 dam.
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(C)

cd)

SCHEME B DT = 90 MIN DAY 2

Fig. 3 (continued). 48-hour forecast height fields: (c) Scheme A,
(d) Scheme B, both with At = 90 min. Contour interval 10 dam.
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For Scheme B, an alternative method was used to update the rota-
tional part of the wind field. Taking the curl of Egs. (2.1) and (2.2)
gives a vorticity equation in advective form:

aqQ
= - ® (3.7)

where Q = ¢g+f. A semi-Lagrangian discretization of (3.7) gives

+ - —
prreanl COM

from which we obtain

(p. +y )+ = IE" - 2at(qQp)e - f*‘:l/s*‘. (3.8)

XX Yy

The solution procedure for Scheme B proceeds as in Scheme A, except that

(3.8) rather than (3.5) is solved for y+.

A linear stability analysis of the two schemes was presented by
Staniforth and Temperton (1986). The principal conclusions were as
fat

follows: Scheme A is stable for £ 1, but there is an O(Ax“) damping

of the slow modes each timestep, independent of At. This results essen-
tially from an inconsistency in the way the vorticity is derived from the
stream function at time-levels (t+At) and (t-At); for the linear finite-
element scheme, taking a first derivative twice gives a different result
from taking a second derivative (the situation is analogous to that on an
unstaggered finite-difference grid). For Scheme_g, the linear analysis

gives stability for ,fAt

£ 0.966 (this value appears instead of 1 as a
consequence of using a fourth-order accurate approximation of the Laplacian
in (3.8)), and neutrally stable slow modes. On the basis of this analysis,
the two schemes should have similar stability properties; but Scheme A is

shown to yield damped solutions.

To compare the performance of the Eulerian and semi-Lagrangian forms
of the barotropic finite-element model, Staniforth and Temperton (1986)
carried out a series of experiments over a square domain of side 20 000 km,
using a polar stereographic projection. A control integration was run on a
uniform 201 x 201 (100 km) mesh, using the Eulerian formulation of
Staniforth and Mitchell (1977, 1978) with a timestep of At = 10 minutes.
The "experimental” -integrations were run on a variable-resolution 101 x 101

- grid, which coincided with the uniform mesh of the control experiment over
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the region of interest. Since Robert et al. (1985) had identified the lack
of a proper initialization procedure as a source of difficulty in measuring
the time-truncation error of a semi-Lagrangian scheme, the initial fields
(derived from a 500 mb analysis) were carefully balanced for both the

control and experimental runs.

Experiments were first performed to examine the stability of the
schemes on the nbn—uniform grid. For the Eulerian version of the model,
the maximum stable timestep was found to be between 12 and 15 minutes. 1In
complete contrast, both the semi—Laérangian schemes A and B were found to

be stable with timesteps of 90 minutes.

To examine the accuracy of the schemes a series of 48-hour integra-
tions was run on the non-uniform grid, using the Eulerian scheme (At = 10
minutes) and the semi-Lagrangian schemes A and B (At = 10, 20, 30, 45, 60
and 90 minutes). These integrations were then compared with the uniform-
grid control run. Fig. 3 shows the 48-hour forecast height field from the
control run, the Eulerian scheme, and the two semi-Lagrangian schemes with
At = 90 minutes. Clearly, the control forecast is quite accurately repro-

duced by all three runs on the non-uniform grid.

R.m.s. differences were computed between each forecast on the non-
uniform grid and the control forecast on the high-resolution uniform grid,
over the area of interest. These are presented in Fig. 4, as a function of
timestep length. For a 10-minute timestep, the semi-Lagrangian Scheme B
reproduces the control forecast more accurately than the Eulerian scheme,
which is already close to its stability limit. Moreover, for Scheme B
there is little or no deterioration in accuracy as the timestep is extended
to at least 60 minutes, and the accuracy remains acceptable even with a
timestep of 90 minutes. Scheme A behaves quite differently; with short
timesteps the damping results in a serious loss of accuracy. As the
timestep increases ﬁo 45-60 minutes the errors become less serious, but the
accuracy never matches that of either the Eulerian model or the semi-

Lagrangian Scheme B.

A further interesting demonstration of the accuracy of Scheme B is

given in Fig. 5, which shows maps of the differences from the control run,
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Fig. U4 Rms differences from the control run, over the region of interest,
as a function of At: height fields.

Eulerian, + Scheme A, ¥ Scheme B.
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Fig. 4 (continued). Rms differences from the control run, over the
region of interest, as a function of At: wind fields.

« Eulerian, + Scheme A, ¥ Scheme B.
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EULERIAN MINUS CONTROL DAY 2

SCHEME B MINUS CONTROL DAY 2

Fig. 5 Differences between the 48-hour forecast height fields over the
region of interest, experimental minus control. Contour interval
0.5 dam.
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over the region of interest, for the Eulerian scheme (At = 10 minutes) and
Scheme B (At = 30 minutes). Theidominant source of error in the Eulerian
scheme appears to be the advection of spatial truncation error into the
region of interest from the area of lower resolution outside. The effect
is much less pronounced for Scheme B, which suggests that this scheme is
giving significantly more accubate results over fhe non-uniform part of the
grid. In‘tﬁe cohtext of‘fegional modelling, this fesult provides addi-
tional juétifioation th the approach of using a non—uniform'grid with the
boundaries well aWay frém the area of intereét, since the semi—Lagrangian
scheme handles more accurately the "driving flow" over the non-uniform part

of the grid.

Thus, the study of Staniforth and Temperton (1986) demonstrated that
a semi-implicit semi-Lagrangian sqheme could be applied in a barotropicv
finite-element model. No problems were encoﬁntered with the non-uniform
mesh. Withva gridlength of 100 km over thé region of interest, timesteps
of up to 90 minutes (more than 6 times the stability limit of the Eulerian

scheme) could be used with no significant loss of accﬁracy.

4, APPLICATION TO A SPECTRAL MODEL

In view of the similarities between the two methods of discretiza-
tion, - it was not altogether surprising that the semi-impliéit semi-
Lagrangian scheme, first developed for a gridpoint model, could be adapted
for use in a finite-element model. It was perhaps less evident at the

outset that such a scheme would also be applicable to spectral models.

In a first step towards this goal, Ritchie. (1987) studied the semi-
Lagrangian treatment of advection on the sphere, using a Gaussian grid.
The test problem (advection of a passive scalar F by a steady wind field)

may be written simply as

dF . 9F : R '
T =3 LT VHF =0 (4.1)
where Yy and VH are the horizontal wind and gradient operator

respectively.
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In the context of a three-time-level scheme, a suitable semi-
Lagrangian approximation to (4.1) would be

Ft - F~

e -0 (4.2)

where F* is the value at a Gaussian gridpoint g at time-level (t+At), and
F™ 1s the value at the upstream location r- at time-level (t-At). 1In order
to find the upstream location r- , we first find the "halfway" point r°® at
time t. Spherical geometry introduces two complications: first, the

natural analogue of (2.4) is

r° (t) = g - Atr (t) (4.3)

where f(t) is the velocity vector at r°(t). Since E(t) is tangent to the
surface of the sphere, and g is a Gaussian gridpoint on the sphere, (4.3)

would lead to a position slightly off the sphere. To avoid this problem, a

correction factor b is introduced to guarantee that §°(t)l = a, wWhere a is
the radius of the sphere:
ro(t) = b{g - atr(t)}. (4.4)

It can be shown (Ritchie, 1987) that

-¥%
b = E + (At)? é(t) 2/a% - 2Até(t) . g/az]

and that the factor b introduces an 0(At2?) correction. Hence the analogue

of (2.5), to solve iteratively for the upstream point g°, is

[§°(t)](k+1) - p &) {g - At[i(t)](k)}. (4.5)

The second problem introduced by spherical geometry is that a
straight line in (A, 6) space is a poor approximation to a great circle
trajectory, especially near the poles. The solution is to solve (4.5) in a
three-dimensional Cartesian coordinate system (x,y,z) whose origin is at
the centre of the sphere. The details of this algorithm are given by
Ritchie (1987).

Once (4.5) has been solved for r°(t), the upstream point r-(t-At) is

given by considering position vectors along a great circle trajectory:

ro(t-at) = 2[r(t) - g/a?lr(t) - g. (4.6)
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Given the upstream point r~(t-At), the quantity F~ in (4.2) can be found by
a suitable interpolation scheme (e.g., bicubic interpolation in (A,6)

space).

As in the case of a polar stereographic projection (Section 2), a
non-interpolating semi-Lagrangian approximation to (4.1) can also be
developed (Ritchie, 1987). Here there is an additional impact of spherical
geometry: even when the modified departure point 5*(t—At) is chosen to be
a point of the Gaussian grid, the half-way point g*(t) has no special rela-
tionship to the grid. Consequently, the full interpolation scheme is

required to evaluate the residual advection.

Ritchie (1987) reported on a seriés of experiments in which a
passive scalar with an initial "Gaussian hill" distribution was .advected by
a steady wind field corresponding to solid body rotation. The experiments
were designed so that the "hill" passed directly over the pole after half a
rotation. Eq. (4.1) was approximated by an Eulerian spectral scheme, and
by both interpolating and non-interpolating semi-Lagrangian schemes. The
results were compared against analytic solutions. It was shown that the
semi—Lagraﬁgian schemes could be stably and accurately applied to treat
advection on the Gaussian grid with timesteps far exceeding the stability
limit for the Eulerian spectral model. Both versions compared favourably
with the Eulerian scheme in terms of accuracy, with some advantage for the

non-interpolating scheme in the treatment of short scales.

The algorithms described above for the semi-Lagrangian treatment of
advection on the sphere can now be coupled with the semi-implicit scheme in
a barotropic spectral model (Ritchie, 1988). The shallow-water . equations

on the sphere may be written in the form

—t
% £ 1, %ﬂf - - {a@,v,u) - v} S
—t
% %29- g% = - {A(U,V,V)+fU + 2 sineE} : (4.8)
_t
%% + ©4D - - {a(u,v,¢) + ¢D} (4.9)
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where

U - 4.cose V= v cosh,
a a
1 oU oV
D= cos?g {BA * cosh 55}’

L
2 ' cos?e ?
—_t :
A 1s longitude, 8 is latitude, and ( ) indicates averaging in time for

the semi-implicit scheme. The operator A is defined by

1 oF oF
A(U,V,F) = Cosze{U 55+ U cose 56}

and represents the advection of F: thus

dF ___ 9F

it = 3% + A(U,V,F).

The basic barotropic spectral model was similar to that used by
other researchers (e.g. Bourke, 1972), and immediately posed the same
problem as that encountered for the finite-element model in Section 3:
namely, the model was formulated in terms of the vorticity ¢ and the diver-
gence D. In preparation for the semi~Lagrangian treatment of advection,
the model was first converted to U-V form, with the governing equations
given by (4.7)-(4.9). It was shown (Ritchie, 1988) that this could be done
without introducing an explicit spectral representation of U and V, and

that the U~V and z~-D versions of the model were algebraically equivalent.

A semi-Lagrangian treatment of the advection terms in (4.7)-(4.9)
was then introduced, using the algorithms described earlier for the trajec-
tory calculations in spherical geometry. Putting terms at time-levels ¢
and (t-At) on the right-hand side, the time-discretized form of the system
(4.7)-(4.9) becomes:

+

(v + £% 29) - a0

( At i ad) * _ u

V + =3 cos8 55) = Q, (4.11)
+

(¢ + Ate,D) = Q, (4.12)

As in the case of Cartesian coordinates, (4.10)-(4.12) lead to a Helmholtz

66



equation for ¢*:

ot - (At)2e,V2¢% = Q, (4.13)

which is solved in the space of spherical harmonic coefficients.

However, an unexpected problem developed near the poles due to an
_instability associated with the metric term 2 sing E in (4.8) when a semi-
Lagrangian treatment is used for the advection of V. A solution to this
problem was found by considering the horizontal momentum equations (4.7)-
(4.8) in vector form: ;

Iy —t

+ (v » Vv, + fk x v, + V

5t U Yy nt Vgt =0 (.1

and integrating this equation in Cartesian coordinates on a local tangent
plane at each gridpoint. A similar solution, for a semi-Lagrangian grid-
point model on the sphere, has been put forward by Bates (1988). Again we
obtain a system of the form (4.10)-(4.12), which is solved in the same
way, but the definitions of Q, and Q, are altered. The trajectory calcu-
lations themselves are unchanged. The complete algorithm for both interpo-
lating and non-interpolating semi-Lagrangian schemes is given by Ritchie
(1988). [A slightly different solution to the problem of handling metric
terms in the context of a semi-Lagrangian scheme has been proposed by Ccoté
(1988).] ‘

A set of model intércomparison experiments was then performed. The
three U-V rformulations (Eulerian, interpolating semi-Lagrangian and non-

interpolating semi-Lagrangian) were run using a triangular T126 truncation.

The timestep wds At = 10 min for the Eulerian model, while the
semi-Lagrangian models used a timestep of 1 hour. An integration of the
Eulerian model with a T213 truncation (and At = 6 min) was used as a

control run. The initial conditions were taken from a global 500 mb FGGE

analysis, via nonlinear normal mode initialization.

The integrations were run out to 5 days; the forecast Northern
Hemisphere height field for each model (T213 control and the three T126
models) is shown in Fig. 6. Notice the strong cross-polar flow, which
apparently triggered the instability due to the metric term discussed
earlier. Bearing in mind the length of the forecast, the differences are

very small.
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(a

(b)

Fig. 6 5-day forecast height fields: (a) T213 control run, (b) T126

Eulerian model (At = 10 min). Contour interval 10 dam.
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(C)

(d)

Fig. 6 (continued). 5-day forecast height fields: T126 semi-Lagrangian
models, At = 60 min. (e¢) interpolating, (d) non-interpolating.

Contour interval 10 dam.
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Fig. 7 Global rms height differences between experimental T126 and
control T213 forecasts. Solid line, Eulerian model (At = 10 min).
Long dashed line, interpolating semi-Lagrangian model
(At = 60 min). Short dashed line, non-interpolating

semi-Lagrangian model (At = 60 min).
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For a more quantitative intercomparison, the global area-weighted
r.m.s. differences between the forecast 500 mb height fields were calcu-
lated after each 24-hour interval. 1In Fig. 7 each T126 model is compared
to the control run; the results show that the semi-Lagrangian models both
give an accuracy which is quite acceptable in comparison with the Eulerian

model at the same resolution.

Another point of some interest is the conservation of energy when
the semi-Lagrangian schemes are used for long integrations.v In order to
examine this question, the two T126 semi-Lagrangian forecasts were extended
to 20 days. The interpolating version was unfiltered, while the non-
interpolating version included a time filter (Asselin, 1972) with a coeffi-
cient of 0.02. The evolution of potential (P), kinetie (K) and total (T)
energy is presented in Fig. 8. The curves for the two models are almost
indistinguishable, and the total energy is conserved to within about oné

per cent.

The study of Ritchie (1988) thus demonstrated that bo@ﬁ
interpolating and non-interpolating versions of the semi-implicit
semi-Lagrangian scheme could be applied to a barotropic spectral model. At
a resolution of T126, stable and accurate forecasts were run with a
timestep of 1 hour, around 6 times the stability limit for an Eulerian
model with the same resolution. It was also shown that the schemes could

be used in 20-day integrations with negligible loss of energy.

5. CONCLUDING REMARKS
The studies of Staniforth and Temperton (1986) and Ritchie (1988)

showed that three-time-level semi-implicit semi-Lagrangian schemes could be
applied successfully to finite-element and spectral models of the shallow-
water equations. Timesteps of the order of 60-90C minutes were used with
acceptable accuracy, whereas the corresponding Eulerian models were
restricted to timesteps of around 10 minutes because of the CFL stability
criterion for the Eulerian treatment of advection. The stability criterion
for the three-time-level semi-implicit semi-Lagrangian schemes is approxi-

mately lfAt < 1,‘and is a consequence of the explicit treatment of the
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ENERGY FOR T126 RUNS
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Fig. 8 Evolution of potential (P), kinetic (K) and total (T) energy
during 20-day runs of the T126 semi-Lagrangian models. Solid

line, non-interpolating model; dashed line, interpolating model.
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Coriclis terms. With these schemes we are clearly in a better position to
choose the timestep on the basis of accuracy rather than stability.

The real challenge now, of course, is to incorporate a semi-
Lagrangian treatment of advection into the corresponding multi-level
finite-element and spectral forecast models, as has already been done in a
gridpoint model by Robert et al. (1985). At the time of writing (December
1987), the first successful experimental forecasts have already been run
(Simard and Tanguay, personal communication) using a semi-Lagrangian
version of the 15-level finite-element regional model of Staniforth and
Daley (1979). In these forecasts, a fully three-dimensional semi-
Lagrangian treatment of advection has been used. Meanwhile, work has
started on coding a semi-Lagrangian version of the RPN spectral model
(Béland and Beaudoin, 1985).
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