Horizontal Discretization and Forcing
by
Zavida 1. Janji¢, fedor Mesinger
(University of Belgrade, Yugoslavia)
and
Thomas L. Black”
(National  Meteorological Center, Washington)

l. Introduction

This presentation addresses two problems. The first one is that of
the response of the flow simulated by finite-difference models to small
scale forcing. The second problem is related to the treatment of
topographical forcing, and, in particular, the choice of the vertical
coordinate.

1. Smail scate forcing

After the pioneering work of Winninghoff (1968) and Arakawa (1970;
also Arakawa and Lamb 1977) it has become clear that various rectangutar
horizontal grids are not offering the same advantages for the simulation of
large- and synoptic-scale atmospheric motions. Additional arguments have
been summarized by Mesinger (1981), and by Janji¢ and Mesinger (1984). The
evidence accumulated so far strongly suggests that, with presently available
finite-difference schemes, the non-staggered, and the staggered D grid
should not be used. The remaining two possibilities are the staggered C grid
and the semi-staggered B/E grid.

In simulation of the geostrophic adjustment process, the B/E grid has
a grid-separation problem with the short waves, particularly in the case of
the external and the lower internal modes. However, a technigue has been
developed (Mesinger 1973; Janji¢ 1974, 1979), which to a large extent
overcomes the problem (Vasiljevi¢ 1982; Cullen 1983; Janji¢ and Mesinger
1984).

The C grid, on the other hand, has a difficulty with higher internal
modes, but for all wave lengths. These modes are present in models with
currently used vertical resolutions and it is not known whether something
can be done about this problem.

* Lecture presented by Z.1. Janji¢
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For simulation of the slowly changing quasi-geostrophic motion,
horizontal advection schemes which strictly control nonlinear energy
cascade towards smaller scales have been developed for both the C and the £
grid (Arakawa and Lamb 1981; Janji¢ 1984). However, not all of the
conservation properties of the two schemes are the same. Arnong the
differences, the C grid scheme conserves potential enstrophy, while the E
grid scheme conserves momentum, and imposes a more stringent constraint
on the false cascade of energy towards smaller scales. Thus, on balance,
properties of the E grid scheme do not appear inferior, and may be superior,
to those of the C grid scheme.

Finally, a recent study of Dragosavac and Janji¢ (1987) shows that,
with currently used horizontal resolutions, the linear amplitude response of
the centered B/E grid schemes to forcing by topography may be generally
more accurate than that of the C grid schemes. Thus, according to this study,
the B/E grid may be advantageous for the simulation of the steady solutions
induced by topography, even on the synoptic scale.

The present considerations are devoted to a further study of the
properties of the staggered C grid and the semi-staggered E/B grid. Namely,
in case of a small-scale forcing, convergence properties of simplest second-
order finite-difference schemes are examined in a series of numerical
experiments with varying resolution. On the E grid, the modification
preventing grid separation is applied.

12 Vertical coordinate and horizontal discretization

The o system has become popular because of its simple lower

boundary condition and a straightforward formal horizontal discretization.
However, the o coordinate is known to have difficulties in the presence of
steep topography. These difficulties are not restricted to the pressure
gradient force error; problems are encountered also with lateral diffusion
and horizontal advection (see e.g. the review paper by Mesinger and Janjic,
1987). With increased horizontal resolution these difficulties will not
disappear. On the contrary, they can be expected to become more serious
since better resolution of the model topography resuits in generally higher
and steeper mountains.

Notwithstanding the sizable theoretical evidence, the effects of the
g coordinate problems have been difficult to demonstrate clearly and
convincingly in comprehensive atmospheric models. The reason for this has
been either the lack of competitive reference forecasts produced using an
alternative discretization technigue, or the uncertainties concerning the
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representativeness of the results due to the differences in the formulations
of the models which have been compared.

As an alternative to the o coordinate, considered to be better suited
for higher horizontal and vertical resolutions, a blocking technique with
step-like mountain representation has been recently proposed (Mesinger,
1984). Being a generalized form of the o coordinate, Mesinger's m
coordinate allows the same model to be run either in the o or in the 1 mode.
Thus, in addition to its other possible advantages, an 1 coordinate model can
be used as a tool for closer inspection of the properties of the ¢ coordinate
by making parallel runs in the ¢ and the 1, modes.

If the undesirable effects of the o coordinate problems can be
convincingly demonstrated, and, as the consequence, the decision is made to
abandon the terrain following coordinates, the alternative technique for the
representation of mountains is likely to require reformulation of the
horizontal discretization technique. For example, if a blocking technigue is
applied, the problem of the internal boundaries is introduced. This problem
has been successfuly solved in an 1 coordinate grid point model (Mesinger et
al, 1987; Hesinger and Janji¢, 1987). It is not obvious, however, Whether,
and if so, how this can be done in a spectral model.

In this presentation an attempt will be made to find out whether, as
the theoretical evidence is suggesting, the horizontal resolutions have been
reached at which the alternatives to the o coordinate should be taken into
consideration. In order to do so, the preliminary results will be discussed of
recent parallel experiments in the 1 and the g mode (Black and Janji¢,

1988) using a comprehensive high resolution limited area model (Mesinger et
al, 1987; Janji¢ and Black, 1987).

i Small-scale forcing on the semi-staggered €/B and the
staggered C grid: convergence properties and implications
for the parameterization problem

.1, Design and results of experiments

The same experiment design has been adopted as that of the early
‘source-sink” experiments of Arakawa (1972) and Mesinger (1973). Namely,
the shallow water equations were integrated in a rectangular domain. The
size of the integration domain was 5250 km by 3500 km in the case of the C
grid, and 5303.30 km by 3535.53 km in the case of the E grid. The slight
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difference between the sizes of the integration domains is due to the
different geometry of the two grids and the requirement that the dimensions
of the two domains be as close as possible, with the grid distance the same
in both cases.

The mean height of the free surface of the fluid H was 1000 m and the
Coriolis parameter f was assumed to be 0.0001 s1. The gravity g was 9.80

m s-2. No slip boundary conditions were used. A source and a sink, 1750 km
apart on the C grid, and 1767.77 km apart on the E grid, were placed
symmetrically in the central part of the domain along a line oriented in the

east-west direction. The intensities of both source and sink were 2 m min-1.

The lowest resolution experiment was performed with the grid
distance d=250 km. The experiments were then repeated with 125 km and
©2.5 km mesh size. In the pair of experiments with the lowest resolution,
the source and the sink were restricted to single grid points. In the 125 km
experiments, the source and the sink consisted of four grid points each, with
equal intensity of forcing at each of the four points. Analogously, in the 62.5
km experiments, there were 16 points with equal intensity of forcing at both
source and sink. Since the integration domains of the higher resolution
experiments were of the same sizes as those of the lowest resolution
experiments, the centers of these higher resolution source and sink areas had
to be shifted slightly with respect to their lowest resolution symmetrical
positions. They were shifted toward northwest for the C grid experiments,
and toward west for the E grid experiments; by ,/2d/2 and by ./2d/4 in case
of the medium resolution and in case of the highest resolution experiments,
respectively.

Forward-backward time-integration scheme was used for the gravity
wave terms, and the simplest forward scheme was applied for Coriolis and
advection terms in the equations of motion. The time steps chosen for the
integrations on the E grid were 30, 15 and 7.5 min, depending on the
resolution used. These values represented about 0.71 of the maximum time
steps allowed by the CFL criterion for the forward-backward scheme for the
gravity-wave part of the equations. The E grid results discussed in this
section were obtained using the modification with the weighting factor
w=0.25. One may recall (e.g. Janji¢, 1979) that with w not exceeding this
value, the maximum time step allowed by the CFL criterion is not reduced. In
the case of the C grid, depending on the resolution, the time steps were 20,
10 and 5 min. Note that, with equal spatial resolution, the C grid requires
shorter time step than the E/B grid due to more accurate differencing in the
pressure gradient force and divergence terms.
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As to remaining space differencing, the simplest centered schemes
were used, with differencing performed in between the nearest points
carrying the same variable, and averaging as appropriate.

The diagrams displayed in Fig. 1.1 represent the height of the free
surface at the sink point after 24 hours of forcing in the case of 250 km
experiments, and the height averaged over four and sixteen forced sink points
in the cases of 125 km and 62.5 km experiments. The dots on the light and
the heavy solid lines correspond to the results obtained on the C and on the E
grid, respectively. As can be inferred from the figure, the solutions on both
grids converge with about equal rapidity. However, the C grid tends to
underestimate the value of height at the sink, while the reverse is true for
the E grid. Thus, the solutions on the two grids converge approaching the
true solution from different sides.

, 230 km 125 km 62.3 km
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Fig. I1.1. Height at the sink point after 24 hours of forcing in the case of
250 km experiments, and the height averaged over four and sixteen forced
sink points in the cases of 125 km and 62.5 km resolutions for the grid C
{dots connected by light solid line), and the grid E (dots connected by
heavy solid line). :

‘This result is consistent with what should be expected from the
geostrophic adjustment theory when applied to the spatially discretized
systems. Namely, in the case of linearized shallow water equations on an f-
plane, if a disturbance is introduced in the height field, the ratio of the
amplitude of the wave solution corresponding to the geostrophic part, Gg, and
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the amplitude of the wave component of the initial disturbance, Go, are given
by

Gg/Go = T /[T +gH(K +1%)]

(see e.g. Janji¢ and Wiin-Nielsen 1977; Daley 1980). Here, k and 1 are the
wave number vector components, and the other symbols used have already
been defined. Due to averaging of the Coriolis force term, on the C grid the
analog of the numerator tends to zero as the shortest resolvable scale is
approached.  Therefore, the amplitudes of the geostrophic part of the
solution will be underestimated. Specifically, for the shortest resolvable
scale the amplitude of the geostrophic part will be equal to zero. For this
scale only the gravity waves can exist. On the other hand, as the shortest
resolvable wave is approached on the E grid without modification, the analog

of the term gH(k2+lz) appearing in the denominator, tends to zero. Thus, the
amplitudes of the geostrophic part of the solution are overestimated. In
particular, for the shortest resolvable scale, the amplitude of the
geostrophic part will be equal to the amplitude of the initial disturbance.

On the E grid, the overestimation of the depth at the sink is related to
the separation of solutions. With the forward-backward scheme, the
continuity equation modified to prevent the separation of solutions (Janjic
1979, Eq. 26) is

hT* T=nT- ALY+ (1*v) T+ (AL)2WEH(V2x-V24)hT. (L)

Here T and T+1 denote the time levels; At is the time step, h* the value of h
at a velocity point whatever its definition may be, v the velocity vector, and
V+- as well as V2x and V2+ are the finite-difference analogs of the V- and

the V2 operator, respectively, calculated using the nearest values located in

the directions indicated by the subscripts. With the modification term in
(11.1) of a higher order in At than the mass divergence term, the total effect

of the modification in a given finite interval of time will depend on the value
of the time step. This being noted, one might suspect that the modification
in performed experiments has not been entirely successful in eliminating the
separation of solutions on the two C sub-grids. Namely, the time step was
only about 0.71 of the maximum time step allowed by the CFL criterion for
the gravity-wave part of the equations.
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112. The effect of the modification on convergence

As pointed out, the efficiency of the modification depends on the
ratio of the actually used time step and the maximum allowed time step by
the CFL stability criterion. The larger the time step used, the more efficient
the modification should be. This situation is illustrated in Fig. 11.2, showing
the height at the sink point after 24 hours in the 250 km resolution
experiment as a function of time step. Indeed, with small time steps, the
depth at the sink point is found to be about twice that of the true solution,
presumably very nearly equal to these of the two highest resolution
experiments shown in Fig. [1.1.

30 min 15 min 7.5 min

Fig. l1.2. Height at the sink point ¢heavy dots) after 24 hours in the 250
km resolution experiment a3 a function of time step.

In experiments illustrated in Fig. [1.2, this perhaps unattractive
dependence of the effect of the modification on the time step can of course
be removed by increasing the weight of the modification with decreasing
time step. An issue of a more general interest is that of a possibility for
achieving a faster convergence with given, and not unnecessarily small time
steps, such as those used for experiments of Fig. I1.1.
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The modification has been introduced on the basis of purely physical
arguments (Mesinger 1973, 1974; Janji¢ 1974, 1979).  However, an
alternative approach, which sheds new light on the nature of the
modification, may also be convenient. Namely, at the beginning of the time

step in between the time levels T and T+1, the starting value of height ht™
at a grid point, can be defined as a linear combination of the value of height

at that grid point, and the value h'" obtained by fourth order interpolation
from the surrounding eight points, i.e.

e = T+(1-c0n'T.

Using the notation of grid points introduced in Fig. 11.3, after some algebra,

)
2 !

. . .
7 0 5
3 4
&

Fig. I1.3. Stencil and notation of the grid points used in the discussion of
the modification term.

one obtains
h ¥ =ochg T+(1-00 g+ (1/2)[(hy+hy*hg+ha-4ng)-(1/2)(hg+hgthpthg-4ng)l}*

or,

hg ¥ =hg ¥+1(1-0<)/2] [(hy+hy+hs+hg-4hg)=(1 /2)(ns*hg+hy+hg-4ng)]®.

On the right hand-side of the last equation we recognize the modification
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term of Eg. (1) with the factor ng(At/d)2 replaced by (1-e)/2. If we
choose x=1/2, the factor (1-«)/2 takes on the value 1/4 which corresponds
to the modification applied with w=0.25 for the maximum time step allowed
by the CFL stability criterion. In other words, with &=1/2 the modification
will have its maximum weight permitted for stability. With w=1/4, it has

had its maximum weight permitted not to affect the CFL condition of the
gravity-wave part of the equations.

To check the effect of an increased weight of modification on
convergence, the E grid experiments of Section 11.2 were repeated with
o=1/2. The results obtained are indicated by the dots on the heavy solid line

in Fig. 11.4. The results obtained with w=0.25, already shown in Fig.il.1, are
also displayed in this figure for comparison (dots on the light solid line).

0 250 km 125 km 62.9km
=30
-100
x = /2
ppo— W
-150 e
™
e w =025
-200

Fig. I1.4. Height at the sink peint after 24 hours of forcing in the case of
250 km experiments, and the height averaged over four and sixteen forced
sink points in the cases of 125 km and 625 km resolutions for the weight
of the modification which i3 maximum permitted for stability (dots
connected by heavy solid line), and for the weight which is maximum
not to affect the CFL stability condition with the parameters chosen as in
the experiments shown in Fig. 1 {dots connected by light solid line}.

Apparently, with «=1/2, the situation has improved considerably, the
convergence being accelerated by approximately a factor of two, which
coincides with the increase of the actual weight of the modification. The
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results of the E grid experiments are now clearly better than those on the C
grid.

Iti. Vertical coordinate and horizontal discretization
[H1.1  The model
a. The vertical coordinate

The HIBU+ (Hydrometeorological Institute and Belgrade University +
GFDL, NMC and NCAR/UCAR) limited area model was used in the experiments.
The model uses the so called m vertical coordinate (Mesinger, 1984) defined

by

M=Pp)/ (g PN ; MgIP(Zg)-P. /1P, (0)-p, ]

Here, p is pressure, the subscripts S and T denote the values at the bottom
and at the top of the model's atmosphere respectively, z is the geometrica!
height, and prf is the reference pressure depending only on height. Normally,
with this coordinate the mountains are represented as steps shown
schematically in Fig. 11.1, and the flow is blocked at the vertical sides of

Fig. III.1. Schematic representation of the step-mountain # wvertical
coordinate.
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the steps. However, as can be seen from the definition, the 1 coordinate
degenerates into one of the commonly used forms of the o coordinate if mg is

set to unity everywhere. Thus, in order to compare the two vertical
discretization techniques, the same model can be run in either the  or the ¢
mode.

b. The dynamical part

The highlights of the design of the dynamical part of the model have
already been reported at the ECMWF seminars (e.g. Mesinger and Janjic,
1987). It will suffice to say here that the model is defined on the semi-
staggered Arakawa E grid, the technique for preventing elementary grid
separation (Mesinger, 1973) is used in combination with the split explicit
time differencing scheme (Janji¢, 1979), the horizontal advection scheme
has a built-in strict nonlinear energy cascade control (Janji¢, 1984), the
technique used for the treatment of the internal boundary conditions
preserves all major properties of the horizontal advection schemes
(Mesinger and Janjic¢, 1987; Mesinger et al., 1987), the model vectorizes well
and executes efficiently (Mesinger and Janji¢, 1987; Mesinger et al., 1987).

C. The physical package

A comprehensive physical package has been recently incorporated in
the model (Janji¢ and Black, 1987). The package consists of the Mellor-
Yamada Level 2.5 scheme (Zilitinkevitch, 1970; Mellor and Yamada 1974,
Mellor and Yamada, 1982), the Mellor-Yamada Level 2 scheme for the
"surface” layer (Mellor and Yamada, 1974, 1982) with a dynamical
turbulence layer which is currently 2 metres deep, surface processes, fourth
order lateral diffusion scheme with the diffusion coefficient depending on
deformation and the turbulent kinetic energy, large scale precipitation, Betts
and Miller shallow and deep convection schemes (Betts, 1986; Betts and
Miller, 1886) and the NMC version of the GLA radiation scheme with
interactive random overlap clouds (Davies, 1982; Harshvaradhan and
Corsetti, 1984).

d. The computational problem of the Level 2.5 turbulence closure model

it should be noted that a severe computational problem may be
encountered with the Level 2.5 closure model if the time differencing
scheme for the turbulent kinetic energy generation/dissipation terms is not
carefully designed. Namely, if the closure model is implemented in the split
mode, starting from the Mellor and Yamada Eq. (36) (1982), the equation
describing the time evolution of the square root of the turbulent kinetic

217



energy due to the turbulent energy generation/dissipation may be written in
the form

30/ 9t=Aq?.

Here, the expression A may be either positive or negative and varies in
magnitude depending on the stability and shear, and in an implicit way on the
turbulent kinetic energy. In the time stepping procedure we shall calculate
it diagnostically at the beginning of the time step At. Thus, if the backward

time differencing scheme is used, we obtain
q'm! = q?:+ AT At (q?:+i)2 )
This is a quadratic equation for q%*! with the roots
g% = (1 - J1-4ATALqT )/(2ATAL),
g% = (1 + J/1-4ATALqY )/(2ATAL).

When At 2 0, ;%! 2 q%, and, therefore, g is the physical solution. The

other solution is computational and should be removed. However, this is not
enough to provide stable integrations with conveniently chosen At. Namely,

unless At is kept small, the expression under the square root sign may

become negative. Thus, as the split prognostic equation for the turbulent
kinetic energy generation/dissipation, we are using

(q¥1)2 = [(1 - /T-4ATAIGE )/ (2ATALGYR (q¥)2,
if 1-4ATALqE 2 0;

and (3.1)

(qt+t)2 = [1/(2A77Atq'5)]2 (qT)E’
if 1-4AYAtq* <0.

By doivng so, we are not imposing any artificial constraint on the turbulent
kinetic energy itself. Instead, as can be easily verified from (3.1), the

growth rate of the turbulent kinetic energy is limited, so that (q%*!)2 can not
exceed 4(q%)2. In a way, this can be compared to commonly used procedures
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for slowing down processes which are too fast for the time resolution used,
such as e.g. polar filtering, or implied deceleration of the gravity waves
associated with the application of the semi-implicit scheme.

With the current implementation, the elimination of the described
problem was essential in order to get the Level 2.5 model working. Moreover,
with the time differencing technique (3.1), the turbulent kinetic energy
adjusts quickly to the forcing irrespectively of the initial conditions, and
behaves well, staying within the bounds expected from physical
considerations.

e. Efficiency

with about 83500 grid points in the horizontal, 15 layers in the
vertical, and the horizontal resolution of about 80 km, the model requires
about 500 CPU seconds per day on the CYBER 205. Out of these, the
dynamical part takes about 180 CPU seconds, the physical package excluding
radiation about 120 CPU seconds, and the radiation takes about 200 seconds.
It is interesting to note that the Level 2.5 turbulence closure model is
computationally remarkably inexpensive. It required less CPU time than the
previously used dry convective adjustment procedure and a very simple
turbulent momentum transport scheme.

IH.2 The experiments

A sequence of 48 hour real data forecasts were run by Black (Black
and Janji¢, 1988) both in the m and in the o mode starting from 13
consecutive observational times in late August this year. The integration
domain covered Eastern Pacific, North American continent and Western
Atlantic. The vertical and the horizontal resolutions were as described
before. The initial conditions were interpolated to the model grid using the
archived NMC data on standard pressure levels. The NMC global aviation
forecasts were used to specify the boundary conditions.

a. Noise

As already reported at the ECMWF seminars by Mesinger and Janjic
(1987) (see also Mesinger, 1985), in the early experiments with the
"minimum - physics” version of the m coordinate model, it was noticed that

when the model was run in the ¢ mode, a much higher level of noise was
produced than in the 1 mode. This remained generally true as the new
physical parameterization schemes were being incorporated in the model.
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b. Precipitation

Special attention was paiﬁd to precipitation which was believed to be
most sensitive and difficult to predict. The precipitation forecasts were
verified using threat and bias scores. The accumulated 24 hour precipitation
was used as the verification variable. The verification area extended over
larger part of the United States. The scores were calculated on the grid of
the NMC's so called Limited Area Fine Mesh model (LFM) with horizontal
resolution of 1905 km at 60 degrees north. The model produced
precipitation was interpolated from the model grid to the LFM grid using
bilinear interpolation. The actual precipitation data, in the original form
gridded on a finer grid, were averaged over LFM grid boxes to produce the
verification fields. The two procedures used to define the forecast and the
verification data on the LFM grid are obviously inconsistent and may have
affected the scores. However, the scores were calculated in exactly the
same way for both the m and the o forecasts, and therefore they could still

be considered as at least partly relevant in relative terms.

The scores were calculated separately for 0-24, 12-36 and 24-48 hr
forecasts. Average scores for all 13 cases and for all forecast times are
shown in Table 2.1. Winning scores are printed in boldface. As can be seen

Amounts Threat Bias
(inches)
) 1] ) -

0.01 0.364 0.412 0.712 0.802
0.25 0.139 0.197 0.869 0.950
050 - 0.080 0.156 1.213 1.374
0.75 0.060 0.131 1.374 1.679
1.00 0.049 0.121 1.491 1.821
1.25 0.036 0.110 1.515 2.265
1.50 0.038 0.114 1.422 2.467
1.75 0.031 0.122 1.750 2.833
2.00 0.0 0.095 1.476 2.286
2.50 0.0 0.0 2.167 2.833

Table 2.1 Average precipitation scores for all forecast times in 13 parallel
48 hour runs in the ¢ and the q mode. The winning scores are printed in
boldface.
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from the table, the model systematically produced significantly better
threat scores in the m mode. On the other hand, the bias scores were
generally closer to unity in the g runs. However, considering the

inconsistent interpolations involved, the significance of the latter in
absolute terms is not quite clear.

C. Mean height error

The mean height error was examined because of the radiation scheme
employed. Namely, the same radiation scheme is used in the NMC's Regional
Area Forecasting System (RAFS), and this scheme was believed to be
responsible for the cold bias present in this system.

The mean height error averaged over the sequence of 13 forecasts
showed that the m model was cooling as well. However, the absolute value

of the maximum error at the end of the 48 hr forecast period was about one
third of that of RAFS. Moreover, inspection of some individual cases showed
that the m model was occasionally producing positive mean height errors

which never occurred in the sample of RAFS forecasts.

Perhaps the most surprising result was that the absolute value of the
mean height error increased about twice when the HIBU+ model was rerun in
the o mode. In some individual cases the mean height error patterns in the
¢ mode showed striking similarity to those of RAFS. Two such cases are
shown in Figs. 111.2 and 111.3. In the figures, the RAFS mean height error as a
function of pressure and forecast period is shown in the upper left panel.
The HIBU+ errors obtained in the o mode runs are shown in the lower left
panel. The errors of the HIBU+ runs in the m mode are shown in the lower
right panel.

Although the sample considered is relatively short, and the similarity
of the error patterns of the ¢ coordinate runs was not as pronounced in all

individual cases as in the two cases shown here, the sensitivity of the HIBU+
model to changing the vertical coordinate from m to o was strong and

systematic, resulting on the average in about twice larger absolute values of
the error at the end of the forecast period in the ¢ mode. This result was, in

a way, reconfirmed by comparison with the RAFS forecasts. However, the
exact mechanism of the error growth in the o coordinate remains unknown.
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Fig. III.Z. Mean height error of the 48 hour forecast starting from August

25, 1967, 122 obtained with RAFS {upper panel), the HIBU+ model run in

the o mode (Jower left panel), and, the HIBU+ model run in the n mode

~ {lower right panel). The area in which the error exceeds 40 metres is
shaded.
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Fig. III.3. Same as Fig. I11.2 but for August 26, 1987, 12Z.

V. Conclusions
V1. Small sacle forcing on the grids B/€ and the grid C

Experiments with small scale forcing have been performed on the
staggered grid C and on the semi-staggered grid E with a simple shallow-

water model. The resolution has been varied in order to examine the
convergence of the solutions, and, if the convergence were to be established,
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to assess the rate of convergence on the two grids.

With forcing by a source and by a sink at single grid points,
substantial difference between the solutions on the E and on the C grid has
been demonstrated. Considering the depth at the sink, however, the solutions
on the two grids have been found to converge toward the same value as the
resolution is increased.

With modest weight of the modification (Mesinger 1973; Janji¢
1979), the solution on the E grid approaches the true solution with about
equal rapidity as that on the C grid However, the C grid tends to
underestimate the amplitude of the disturbance, while the reverse is true on
the E grid. Thus, the solutions on the two grids converge from different
sides. This result is consistent with what should be expected from the
geostrophic adjustment theory applied to the spatially discretized systems.

A disturbing implication is that different intensity of forcing may be
required in order to produce the same effect depending on the grid choice.

It has been demonstrated that, in the set-up of the present
experiments, the convergence properties of the E grid can be considerably
improved by increasing the weight of the modification, with no penalty in
terms of the economy of the computation.

V2. forcing due to topography and the vertical coordinate

The choice of the vertical coordinate is relevant for the horizontal
discretization because of possible considerations concerning the treatment
of internal boundaries. An example requiring such considerations is the step-
mountain 1 coordinate (Mesinger, 1984; Mesinger et al., 1987).

The most popular o coordinate is a special case of the T coordinate.
Thus, @ model formulated in the m coordinate can be run in the o coordinate.
This feature of the m coordinate was used in a series of numerical

experiments with the HIBU model (Mesinger et al, 1987; Janji¢ and Black,
1987) in order to assess the relative advantages and disadvantages of the
two techniques for representation of mountains.

In the early experiments with the "minimum physics” version of the
model (Mesinger, 1985), it was noticed that when the model was run in the @

mode a much higher level of noise was produced than in the m mode. This
remained generally true as the new physical parameterization schemes were
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being incorporated in the model.

The HIBU+ model with a comprehensive physical package was used in a
recent series of 13 consecutive 48 hour forecasts (Black and Janjic¢, 1988).

Considerably better threat scores for precipitation were obtained in
the m mode. On the other hand, the bias scores were generally better in the
o mode. However, the representativeness of this result is not quite clear

having in mind the inconsistencies in the reinterpolations involved in the
verification procedure.

On the average, the mean height error in the o mode was considerable

at the end of the 48 hour forecast period, and generally about twice larger
than that of the m mode. The mean height error of another reference o
coordinate model, with resolution similar to that of the HiBU+ model, was
even larger than that of the HIBU+ model run in the o mode, and in some

individual cases the error patterns showed striking similarity to those of
the HIBU+ ¢ mode runs.

These results suggest that the o coordinate is responsible for the
large mean height errors. Although the sample considered is relatively
short, the sensitivity of the HIBU+ model to changing the vertical coordinate
from o to m was strong and systematic. This result was, in a way,
reconfirmed by comparison with another o coordinate model which was very
different from the HIBU+ model. The exact mechanism of the error growth in
the g coordinate remains unknown.
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