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I - INTROBUCTION

In this study we look at the diabatic forcing in the french large
scale hemispheric operational forecasting model "Emeraude" by trying to
identify some "chains" of influence between individual atmospheric diabatic
processes. We concentrate on a single forecast (87/04/01, 00Z), we choose
the range 72 to 96 hours for our study - beyond the "spin-up" period and
before climate drift starts to be significant -, and we limit ourselves to
zonal mean tendencies, a tool very suitable for the diagnostic of diabatic
forcing but incomplete with regards to the energetics of the general
circulation.

Despite all these limitations, some of our results are rather
clear-cut and we go as far as inferring from them a strategy of design and
tuning for "physical parametrization packages" based on a flow-diagram of
the major feed-back effects. The zonally averaged thermodynamic/dynamic
interaction appears to be the least diabatically controlled aspect in our
results and this is independently confirmed by a comparison of operatio-
nally averaged zonal mean absolute tendencies between the ECMWF model and
"Emeraude".

We shall briefly describe the relevant characteristics of the
"Emeraude" model in section II ; the design of the experiment will be
presented in section III and its results in section IV ; section V deals
with the basic conclusions of the study that are complemented by the
ECMWF/"Emeraude" comparison in section VI. Finally section VII indicates
potential extensions and further applications of this type of diagnostics.

IT - A RAPID SURVEY OF THE FRENCH OPERATIONAL LARGE SCALE FORECASTING
MODEL WITH EMPHASIS ON ITS DIABATIC PART

The model is hemispheric, spectral with a triangular truncation at
wave number 79 (the associated Gaussian grid on which diabatic processes
are calculated has 60 rows of 240 points in the Northern hemisphere). The
vertical coordinate is hybrid (Simmons and Burridge, 1981) with 15 levels
which are given in Table 1. For more details see Coiffier et al. (1987).

The physical parametrization package consists of the following
items :

- a simple radiation scheme is called at every time step ; all
effects are taken as zonal means but for clouds, black body functions,
solar flux at the top of the atmosphere and surface albedo + emissivity ;
only one spectral interval for solar radiation and also only one for
thermal radiation ; "two stream" - type calculations, the gaseous optical
depths being precomputed in clear sky conditions ; in the thermal case the
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Table 1 : Boundary values for the "A" and "B" functions in the
"Emeraude” 15 Tayers hybrid vertical coordinate :
P=Apg+ B ps (pp= 1000 hPa ; pg surface pressure)

A B

o 0 | 0

1 { 0.0500 } 0.

2 1 0.0857 % 0.0271
3 ; 0.1088 1 0.0773
4 % 0.1209 } 0.1465
5 i 0.1236 1 0.2307
b % 0.1187 = 0.3257
7 ; 0.1077 i 0.4275
8 } 0.0923 { 0.5321
9 ; 0.0742 } 0.6354
10 ; 0.0549 { 0.7333
11 { 0.0363 % 0.8218
12 ; 0.0198 } 0.8967
13 % 0.0071 % 0.9541
14 } 0. ; 0.9899
15 E 0. E 1.
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cooling to space term is computed without approximation and the optical
depths for the "monochromatic" approximation to the exchange terms are
chosen in order not to overestimate any of these terms,

- the vertical turbulent fluxes are parametrized following the
1983 version of the ECMWF scheme, as described by Louis et al. (1982) :
Monin-Obukov type computation for the surface fluxes and mixing length
approach for the PBL (and free atmosphere) fluxes ; the influence of
stability on the strength of the exchange is parametrized in terms of
analytical functions of the bulk Richardson-number,

- the effects of shallow convection are parametrized through a
modification of this Richardson number in case of strong humidity gradients
(Geleyn, 1987) ; the scheme is self-regulating and requires no additional
tuning,

- sub-grid-scale vertical momentum transport has also a
gravity wave drag component (Rochas and Geleyn, 1987) : the surface
extraction is proportional to the standard deviation of the sub-grid-scale
orography (no anisotropic effets yet) and the vertical deposition rate is
computed with a continuous version of Lindzen's saturation hypothesis,

- the parametrization of deep convection is based on a mass-flux
type scheme controlled by a Kuo-type closure assumption (Bougeault, 1985) ;
entrainment and liquid water sustentation are considered in the modelled
cloud ascent ; the interaction with PBL fluxes of heat and moisture is
total and convective redistribution of horizontal momentum is considered
with the mass flux type equations ; the vertical profile of the mass flux
is proportional to the square root of the "cloud minus environment” moist
static energy excess,

- stratiform precipitations are parametrized using a slightly
modified version of the Kessler scheme : no supersaturation is allowed
and the sub-cloud evaporation in unsaturated layers is linear in the
inverse of pressure for the square root of the precipitation flux,

- the soil treatment follows Deardorff's (19/78) force-restore
proposals for the temperatures and water amounts. The following constants
are used : 1.1 107> °K/(J/m3) for the soil surface layer's inertia, 5 for
the ratijo of the depths of the two layers, 20 and 100 Kg/mé for their
maximum water contents ; the evapotranspiration is obtained by a linear
combination of the relative humidity and Hallstead-Budyko methods, the
second weight corresponding to the vegetation covered portion of the grid
area (Royer et al. 1981).

The whole of the parametrization ensemble is written in such a way
that full consistency between all parametrizations is ensured and that
conservation of enthalpy and moisture is total even with the specific heat
of the air varying with its moisture content (Geleyn, 1986).

IIT -~ DESCRIPTION OF OUR EXPERIMENTS ABOUT FEED-BACK PROCESSES

We consider only the effects of atmospheric parametrizations
(radiation, vertical eddy fluxes, shallow convection, gravity wave drag,
deep convection and stratiform precipitation ) and do not go into the
problem of surface fluxes. We are aware that this brings some Timitations
to our demonstration but, in our mind, there exists no clean way of
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separating the diverse land surface reponses to atmospheric forcing and
the opposition between Tand and sea effects would anyhow make the use of
zonal mean averages very risky in such a case.

The idea behind the study is simple. We run seven forecasts from
the operational initialized analysis : a reference run with the complete
configuration and six runs, each time with one of the parametrizations
switched off. In fact, to comply with our previous remarks, full radiation
computations are performed but the resulting surface fluxes are kept
constant through the atmosphere, ensuring no heating or cooling of
atmospheric Tayers ; in the case of vertical diffusion we keep the basic
computation of surface fluxes and the dry convective adjustment aspect by
simply putting the asymptotic mixing length to a small value, rather than
switching off the parametrization. Nevertheless one can say that the
effects of each of the six parametrizations on the atmospheric layers are
taken out successively. .

We then study the zonal mean impact of each parametrization by
subtracting, in our diagnostics, the results of the perturbed run from that
of the reference one. In each case and, when applicable, for each of the
four basic variables (temperature, specific humidity, zonal and meridional
wind) we Took first at the direct effect (in most cases equal to the
contribution of the parametrized process in the reference run). We then try
to identify the mean compensating process among the five other ones and we
estimate the degree of compensation (i.e. minor, partial or nearly full).
We then look at the impact on the total diabatic forcing and the total
impact (the previous one plus the impact on the adiabatic response). In the
case of temperature we also consider the impact on the energy conversion
term that gives an idea of the response of the meridional circulation.

Before going further we want to stress that the results that will
be presented now may be quite model-dependent and in particular that the
hemispheric character of our model casts some uncertainty on our conclu-
sions near the equator.

A11 results will be presented in the classical zonal mean dia-
grams : isolines in a rectangular regular grid representing the averages
along the model latitude circles for each hybrid level. Thus the represen-
tation is neither "true" in the vertical (the thin PBL layers get an
exaggerated representation) nor in the North-South direction (we do not have
an area weighted representation but something very close to the deve-
Topment of one meridian). The Equator is on the left, the North Pole on the
right, the zero isoline is always thickened, positive isolines are conti-
nuous, negative ones are dotted, the contouring intervals are the fol-
lowing :

0.5 °K/day for temperature

0.0002 kg/kg/day for specific humidity ( the former x Cp/L)

1 m/s/day for wind

roughly the equivalent of the one of temperature for the con-
version term.

(No Tine quotes are given in this representation).
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IV - RESULTS
a) the reference run

To get an idea of the parametrized forcings, we first
present the absolute results of the reference run. Figure 1 shows
several diabatic contributions to the temperature budget, Figure 2 does
the same for moisture, Figures 3 and 4 for the two wind components. We
thereby note that all subgridscale vertical transports {turbulent fluxes,
shallow convection and, for the wind, gravity wave drag) are put together
in one single diagram. The first two could anyhow not be separated and for
the Tatter the important effects separate from themselves (in altitude).

A full description of the results of Figures 1 to 4 will not be
presented since it is beyond the object of this paper and, further it would
not add much on top of several other papers dealing with the same subject.
We shall only comment briefly on the total diabatic effects and on the
conversion term, all in Figure 5.

The temperature effects (Fig.5a) Took very realistic (compare them
for instance to the right hand part of Figure 3 from Holopainen, (1988
-same Volume)) and one can easily show that heating areas correspond either
to PBL fluxes of sensible heat or to deep convection (in the ITCZ) or to
stratiform precipitation (both around 40° N and 75° N). The moisture
budget (Fig.bb) is more difficult to assess, owing to uncertainties in the
reference measurements and to the fact that it represents a residual
between two stronger effects (turbulent moistening and convective drying) ;
we can simply say that the picture is coherent with the temperature one,
the drying area being connected to condensational heating and the only
place of simultaneous heating and moistening being the PBL from 10° N to
75° N. The wind diabatic tendencies (Fig.5c and 5d) give a good indication
of the height of the PBL while the meridional stratospheric forcing shows
the regions of activity for the gravity wave drag {the uncorrelated effects
on the zonal wind in the subtropical upper troposphere correspond to turbu-
Tent shear stress around the jet). As one can judge our parametrized
convective friction is negligible in that zonal mean context.

Finally the conversion term (Fig.5e) shows well the Hadley and
Ferrell cells but also indicates that north of 60° N the circulation is far
from text-book-Tike, this being no surprise for a single case averaged only
over 24 hours. This is also the reason why we do not show here the zonally
averaged total (diabatic plus adiabatic) tendencies ; while reasonably
balanced in the tropics they exhibit patterns that are purely circumstan-
tial from 20 N onwards and it could be misleading to interpret them or to
compare them with the impact patterns later on. We simply hope that the
impact patterns are more robust and less situation dependent than the
absolute tendencies, as it should be, at Teast in principle.

b) The impact of vertical edqy Fluxes

The impacts of strongly reducing the asymptotic mixing length
(therefore also reducing shallow convective effects) are shown on
Figures 6,7,8 and 9.

The fact that we do not fully switch off the parametrization
(especially for the lowest layers) is refiected in the differences between
Figures 6a, 7a, 8a, 9a and 1lc, 2c, 3c and 4c respectively. But the
interesting point is that vertical eddy transfer is taken over by deep
convection (the main compensating mechanism in all cases) nearly fully for
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moisture as one could have expected (Fig.7b) but also partially for
temperature (Fig.6b) and even locally for wind in mid Tatitudes (Fig.8b and
9b). A very clear convective signature (deep + shallow) also appears in the
thermodynamical net diabatic impact south of 30°N (Fig.6¢ and 7c), and this
independently of the above-mentioned compensating effects : convection
needs vertical eddy fluxes of moisture to be efficient. However this
convective Tink is completely absent from the total effect for temperature
and nearly so for moisture (Fig.6d and 7d), the adiabatic tendency working
exactly in the opposite way (we shall come back to that point later). The
situation is quite different north of 35° N where both temperature and
zonal wind. (Fig.6d and 8d) exhibit impact patterns in the free atmosphere
that have 1ittle to do with the direct diabatic effets of Figures 6¢c and
8¢c. The clue to this surprising behaviour can be found in Figure 6e
concerning the conversion term : a rapid comparison with Figure 5e shows a
striking similitude between both patterns of ascending and descending
motions above 800 hPa. Thus the main role of eddy fluxes appears to be the
control of the meridional circulation above the PBL, that is where their
magnitude is small and unfortunatly very difficult to correctly assess. In
the tropics convective control by eddy moisture feeding compensates the
forcing of the meridional circulation by the same eddy fluxes, but this
obviously cannot be the case in mid-Tatitude and polar regions.

These remarks about the importance of small residual turbulent
eddy fluxes in the mid-Tatitude free atmosphere must be put together with
the findings of Holopainen (1988, same Volume) and Klinker and Sardeshmukh
(1988, same Volume) about the difficulty to verify and tune the free
atmospheric momentum diabatic forcing ; they are also probably related to
Machenhauer's (1988) experiments on the sensitivity of baroclinic processes
to the specification of the asymptotic mixing length in the ECMWF - type
PBL parametrization.

c) The radiative impact

Here the picture is very simple : we have only temperature effects
to consider ; there is no significant compensating effect (Fig.10b has thus
been omitted altogether), the net diabatic effect is indeed very close to
the radiative forcing (Fig.10¢) and much of it remains in the total impact
(Fig. 10d). Finally the dynamical consequences on the meridional circu-
lation are 1imited to the upper part of the Hadley cell. Radiation rein-
forces the cell through enhanced sinking in the subtropics and some addi-
tional rising effect in clouds at the top of the ITCZ (Fig.10e).

The main interesting result remains however that of Fig.10d : the
radiative forcing is neither compensated by other diabatic forcings nor by
any adiabatic counter-effect. It goes straight into the thermodynamic
structure of the atmosphere but without apparent influence on its dynamics.
One can conjecture that the first fact happens because the troposphere is
never in radiative equilibrium (while being nearly in convective equili-
brium, this explaining the different behaviours with respect to the
corresponding forcings) and that the second one simply reflects the
relatively small magnitude of the radiative forcing and, more important, of
its horizontal and vertical gradients.

This does not mean that radiative forcing is unimportant. In fact
the cumulative uncompensated temperature impact will start to play a more
and more important role as the forecasting range increases and, on the
other hand, our remark about horizontal gradients does not apply when
leaving the zonal mean framework,on the contrary (see e.g. Slingo, 1984).
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If the compensating mechanisms are also ineffecient in the "eddy-sense"
there is a strong case for getting the radiative parametrization right for
itself.

A word of caution seems appropriate to conclude this sub-section :
our "parametrization package", 1ike all other ones used in NWP (at least to
our knowledge) does not have a real interaction between the precipitation
and turbulence aspects of cloudiness and cloud-radiative forcing. Whether a
future scheme having this new feature would stil]l show the same
"independent" behaviour of radiative forcing remains to be seen.

a) The impact of stratiform precipitations

There again the situation is simple, although slightly unexpected.
The compensating role is taken by convective rainfall (Fig.11b). In the
case of moisture this compensation is so good that we decided to omit the
picture of humidity impacts. For temperature the surprise comes from Figure
11lc. The total diabatic effect has nothing to do with the direct forcing or
its compensation by convective precipitation . Its cirrus-like pattern
suggests that it has to do with radiation and Figure 12 (the radiative
impact of large scale precipitation , shown as an exception to our rule of
presentation) confirms it. Condensation prevents radiatively active high
clouds from appearing or growing. If they exist, these clouds will have a
net heating effect in the tropics (solar absorption plus thermal exchange
with surface) and a top cooling and bottom heating effect (cooling to space
gaining more importance) in mid-and polar latitudes. Given what was said in
the previous sub-section it is not surprising to find this effect still
very apparent in the total temperature impact (remember that there is
hardly any moisture total impact !) but the previous remarks about
cloud/radiative parametrization are even more meaningful here than before.
There is surely an impact via radiation, but whether what we show here is
realistic or not in its details is a matter of discussion.

Indeed Figures 11 and 12 show the urgent need for a better link
between rainfall parametrizations and cloud radiative forcing in future NWP
models. Another point that will Tlater be reinforced by the study of the
deep convective impact and that is obvious in Figure 11 is the arbitra-
riness of the distinction between convective and. Targe scale rainfall in
to-day's models.

e) The gravity wave drag impact

No surprise this time : the direct effect on the wind field exists
but does not appear in the total impact on momentum (Fig.14 and 15). In
fact the Jatter exists for the zonal flow only, but it is a consequence of
a mass field Tink (Fig.13d) via a reorganisation of the zonal circulation
(Fig.13e). The whole process is apparently confined North of 60°N in our
case and shows no apparent interaction with the rest of the diabatic
forcing. For a complete discussion of this rather isolated process the
reader is referred to Palmer et al (1986).

f) 7The deep convective impact

The wind effects being small and anyhow questionable (what is
really cumulus friction ?) we shall show only the thermodynamic effects in
Figures 16 and 17. As one could expect the reciprocal of the stratiform
case happens. Large scale precipitations are playing the compensating role
for any missing deep convective activity (Fig.16b and 17b). But they do it
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with a rather different vertical structure and, as already noticed by many,
they tend to over-do it both from the point of view of heating (Fig.16c)
than from that of vertical moisture transport and drying (Fig.17c).

But the most striking result Ties in Figure 16d (and to a lesser
extent 17d).As was already hinted at in the case of convection driven by
turbulent fluxes, the thermodynamic diahatic and adiabatic impacts of the

deep convection compensate nearly exactly especially for temperature.

One can view that result from at least two different points of
view. Either following Bougeault (1985) we state that the whole of the
so-called large scale forced ascent in the ITCZ happens only inside
convective towers of negligible horizontal extension, the environment
remaining basically undisturbed ; or following Emmanuel (1988, same Volume)
de say that, like the resl atmosphere, our modelled atmosphere is neutral
Lo conveotion and that only an external Torcing can change its thermody-
namical vertical structure. The interesting point in this discussion is
that, contrary to the case of an adjustment scheme, there is nothing built
in the convection scheme used in "Emeraude" that would a priori ensure such
a behaviour. In fact our result first seems at odd with Emmanuel's reser-
vation about the Kuo closure assumption. We can explain this paradox in the
following way : provided that differential surface evaporation and hori-
zontal ron-divergent advective effects tend to get an horizontally homo-
geneous distribution of specific humidity in the PBL, the moisture conver-
gerice by dynamical processes will simply he proportional to the mass
convergence ; then the Kuo closure will merely ensure that, in the absence
of surface evaporation, convective heating will exactly compensate adia-
batic cooling in the areas of dynamical convergence.

One might now ask why we parametrize deep convection at all. The
answer lies in Figure 16e. The dynamical impact of convection on the
strength of the Hadley cell is everything but negligible. One sees indeed
that deep convection tends to slow down the tropical meridional circu-
Tation ! This is linked to the potential overshooting effect of the
alternative stratiform solution.

Combining our interpretations of Figures 16d and 16e we can give
the following image of the tropical/subtropical zonal mean circulation :
the tropical free atmosphere behaves 1ike a "porous stone", the moist PBL
air that is converged at its basis rises through the thin holes and does
not affect its thermodynamical properties, since condensational heating
compensates adiabatic cooling 3 but this forced channelisation puts a 1imit
on the strength of the circulation and the driving force needed to overcome
this breaking effect is provided by local evaporation at the surface and
subsequent condensation of that additional moisture in the same towers.
Finally the dry air at the top of the "stone" is recycled and rehumidified
by high Tevel poleward motion, subtropical dry sinking and PBL convergence
towards the [TCZ.

If this is right, the main bslance, that a goad convective
parametrization scheme should correctly ensure in the tropics, is hetween
the moisture Toading of the converging circulation (through a surface
evaporation increasing with a stronger surface windjand the "breaking
effect” of convection on the same circulation. To our knowledge this test
has yet 1o be done for any parametrization scheme currently used or
proposed for NWP.
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g) The impact of shallow convection

There again the wind effects, despite being less arbitrarily
parametrized, are negligible. The compensating effect of shallow convection
is partly ensured by deep convection (Fig. 18b and 19b) ; that means that
shallow convection is an efficient mean of increasing the deep convection's
feeding by local surface evaporation. Thus, according to our previous
discussions, shallow convection enhances the strength of the Hadley cell
(Fig.18e). In the subtropics some part of the moisture effect is Jeft
uncompensated ensuring that the PBL does not get exaggeratedly moist to the
expense of the free atmosphere (Geleyn, 1987) (Figures 19¢c and 19d) while
the cgup1ed diabatic temperature effect is dynamically compensated (Fig.18¢
and 18d).

V - SUMMARY OF THE FEED-BACK STUDY

The flow diagram of Figure 20 sums up the previous findings :
Targe scale rain has a strong two way compensation with deep convection but
mainly influences the thermodynamic state of the atmosphere via radiative
effects, radiation being the only process to have a direct thermodynamical
impact. Vertical diffusion and shallow convection can feed deep convection
that has no direct influence on the thermodynamical structure of the
atmosphere but has, on the contrary, a very direct link with its dynamics.
Finally vertical diffusion and gravity wave drag act on the thermodynamic
state of the atmosphere via a modification of the wind tendencies.

One can also mention that the moisture structure is relatively
insensitive to all diabatic forcings and that some of these conclusions
might be more dependent on the design of the parametrization schemes as one
would wish, (convective closure assumption, cloud/radiative forcing and
free atmospheric turbulent fluxes in particular). Finally one point where
our study quickly reached its 1imits is the 1ink between thermodynamic and
dynamic forcing and reversely. We see some Tinks but we cannot explain them
with the relatively simple diagnostic tools used here.

At that point we shall go into a more controversial subject and
try to draw conclusions from this study on how one should ideally go about
the business of either designing or retuning an ensemble of parametrization
schemes. Our choice will obviously be subjective and thus questionable, but
we believe that it will at least stimulate a reflection on an area where
empiricism is today the only rule.

We suggest the following order of work (independently of any scale
of values) ; we don't want to do things in increasing or decreasing order
of importance but in a "Jogical way" according to Figure 20.

1) Vertical diffusion : because it has a strong overall effect,
that, 1f wrongly handed, couTd mask everything else.

2) Radiation : because its "robust" effect can be viewed as a kind
of external constraint and should thus be fixed prior to more sensitive
tunings.

3) Gravity wave drag : rather independent but has mostly to
balance for the two previous effects in the polar regions.

4) Large scale rain : has to be studied close to deep convection
(is there a real threshold between the two ?) but is less crucial.
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5) Shallow convection : as a specific feeder of the next and last
process.

6) Deep convection : because of its special direct 1ink with the
dynamical forcing.

This rank of order calls for at least two questions. How much is
this choice dependent on the chosen convective closure assumption (the
Kuo-one in our case) ? And where would one like to introduce the land
surface processes in that picture ? We shall leave them unanswered.

As indicaded in section I we shall now use a different approach
(the comparison of total ECMWF and "Emeraude" tendencfes) in order to get a
second look at the question marks about the humidity control and the Tink
between dynamical and thermodynamical forcings.

VI - A COMPARISON OF TWO NWP OPERATIONAL SETS OF MONTHLY ZONAL MEAN TOTAL
TENDENCIES.

Independently of the previously described study a comparison
between ECMWF and "Emeraude'" was organised for zonally averaged absolute
tendencies taken as a mean between all operational runs of a given month in
each model. The comparison has obviously to be 1imited to the Northern
hemisphere and we shall show here results for the month of January 87 only
(at a time when the gravity wave drag parametrization of "Eméraude" was not
correctly tuned and created stratospheric problems). It should also be men-
tioned that the ECMWF data were collected on p-surfaces while the
"Emeraude" ones were accumulated on hybrid model surfaces before being
interpolated to p levels for the sake of a clean comparison ; this explains
the noisy aspect of the "Emeraude" diagrams. We show the same type of zonal
mean representation as before, the two only changes being the use of a
regular pressure coordinate in the vertical and the different presentation
allowing for a side by side comparison : "Emeraude" on the left, ECMWF on
the right. Among several interesting features, two are worth mentioning in
relation to the previous sections :

- the spin-up manifestations are, for both systems, essentially
apparent in the moisture tendencies (Fig.21 : a) for O --> 24 hour ; b) for
24 --> 48 hour) and have very different "signatures" between the two
models ; the "Emeraude" spin-up is of the moistening type and lasts less
than the ECMWF one, which is rather on the "drying" side,

- despite the fact that the two structures of the 0 --> 96 hour
temperature error (in the monthly mean sense : tendency = error) are
radically different and even almost symmetrical (Fig.22 a) we get striking
similarities between the corresponding zonal wind errors, both Tinked to
the well known systematic Jet-shift and associated secondary effects
(Fig.22b). Therefore this error seems to be insensitive to the zonal mean
thermodynamical forcing, even if its magnitude in "Emeraude" is about 1.5
time that of the ECMWF model.

The second point reinforces our remarks in Section IV about the
quite independent character of the modification to the zonally averaged
thermodynamical and dynamical structures created by each parametrization
(with the exception of gravity wave drag) ; on the other hand, either the
spin-up problem has 1ittle to do with diabatic forcing, or our conclusions
about the relative "freedom" of the moisture structure are linked to our
own model, or more probably, to the considered time scaile.
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Figure 21 : Zonally averaged specific humidity total tendencies
(diabatic plus adiabatic) in operational forecasts during the
month of January 87 (ensemble values) : a) "Emeraude” 0 to 24 hour
on the 1left, ECMWF 0 to 24 hour on the right ; b) "Emeraude" 24 to
48 hour on the 1left, ECMWF 24 to 48 hour on the right. Vertical
scale linear in pressure. Horizontal scale 1linear in latitude.
Northern Hemisphere only. Same contouring conventions as
previously. For details see text.
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(contouring interval 0.125 °K/day) ; b) zonal wind in "Emeraude
left, zonal wind in ECMWF on the right. (contouring

interval 0.125 m/s/day ).
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VIT - SUMMARY AND OUTLOOK

We can draw three main conclusions from the combination of these
two studies :

- the way in which a given parametrized process creates "diabatic
forcing" (whatever this exactly means) is very different from one to the
next, radiation and deep convection being the extreme examples ;

- ideally this should have implications on the strategy for design
and tuning of "global parametrization packages" ;

- the relationship between thermodynamical and dynamical forcings
is surely the most difficult point to regulate even with the help of
dedicated diagnostic tools such as those described in this paper.

We would 1ike to add that these ideas ought to be retested in the
framework of a global model since the Southern hemisphere might behave
differently from the Northern one (hopefully we will be able to do it in
1988 at DMN },that the "switch-off" technique might be applied to study
either the spin-up problem or the model's climate drift but with a more
difficult interpretation problem than in our case, and that confirmation
{or infirmation) of the results presented here with other parametrization
packages would be a very valuable information for us. :
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