GKS PROGRAMS - ARE THEY PORTABLE?

K.W. Brodlie
Department of Computer Studies
University of Leeds

Leeds, UK

L INTRODUCTION

GKS (ISO, 1985) was established in 1985 as the first international standard for computer graphics. It
has gained widespread acceptance by the graphics community: both DEC and IBM provide a GKS imple-
mentation on their principal machine ranges; graphics terminal manufacturers now provide GKS firmware;
a number of software houses distribute GKS implementations; and (slowly) graphical applications software

is being developed on top of GKS.

Yet GKS is not without its detractors. For example, there is a challenging article by Sanders (1987)
from the leading US graphics software house Precision Visuals, that seeks to explode some myths about
graphics standards: one myth is that ’writing applications on standards-based software will provide the
best insurance that an application runs on all CPUs and devices’. Sanders claims that in reality GKS pro-

grams are not portable.

Standards are reviewed every five years, and so thought is now being given to a revision of GKS.
This too has resulted in much criticism, with some of it again being directed at the lack of portability. For
example, Pfaff (1987) argues that there is a lack of uniformity among different, standard-conforming

implementations of GKS - there are too many *implementation- and workstation-dependencies’.

In the meteorology community GKS has been used for some time at the UK Met Office. But again
acceptance has been mixed with criticism. Little (1987) summarises the situation as follows: *GKS is an
appropriate standard for the UK Met Office. However, too many 'implementation dependent variations

exist in implementations to enable portable software to be produced very easily.’

368



These comments are serious. The whole point of having a graphics standard is to provide a unique

base on top of which portable graphical applications software can be written. Has the standard failed?

This paper takes an optimistic view. It begins by describing those features of the GKS standard
which were included with portability in mind, and then with hindsight, it judges whether they do provide
the guarantees that were hoped for. Two case studies are examined: both are examples of large GKS appli-
cation programs with which the author has been involved and for which portability is a crucial factor. The
GKS validation suite was developed as a means of testing GKS implementations for conformance to the
standard; by its very nature, it is an excellent test of whether GKS programs are portable: it has to run with
any (valid) GKS implementation on any host system and with any graphical device. The NAG Graphics
Library is a set of high-level graphical routines that can be used, through an interface, with a variety of
underlying graphics systems. The GKS version, like the validation software, has to run with different GKS

implementations, on different hosts and different devices.

The conclusion, in both cases, is that GKS programs can be ported between different GKS imple-
mentations. However, it is firmly believed that the key to portability lies in the use of a good style of pro-
gramming. Thus the paper finishes by describing a model for GKS programming - a model that gives a

proper basis for writing portable GKS programs.

2. GKS PORTABILITY - THEORY AND PRACTICE

The second sentence of the GKS standard reads as follows:
The main reasons for standardizing basic computer graphics are:

a) to allow application programs involving graphics to be easily portable
between different installations;

b) to aid the understanding and use of graphics methods by application
programmers;

So GKS nails its colours firmly to the mast right at the start: portability is the aim. Reason (a) can be
thought of as ’portability of programs’; reason (b) as ’portability of programmers’. Programmer portability
has certainly been achieved. GKS has given the graphics community a common terminology for computer
graphics: two experts can speak to each other without fear of misunderstanding through confusion of termi-

nology. This benefit is easy to underestimate.

369



The designers of GKS went to some trouble to encourage program portability too. For example,
GKS is divided into a set of levels, with three levels of increasing output capability (0,1,2) and three levels
of incfeasing input capability (a,b,c) -giving a matrix of nine levels. The conformance rules of GKS state
that an implementation shall support exactly the functions of one level. This was in spite of strong calls for
a more relaxed view, namely that implementations shall support at least the functions of one level. Had
this latter view been upheld, then implementations would have competed with each other to add extra

features, programmers would have used these features, and the resulting programs would not be portable.

Still, the number of levels (nine in all) is quite large and has given rise to some criticism. Sanders
(1987) argues that portability is ensured only if one uses the lowest level of GKS (level Oa). Certainly this
is true in theory, but at worst a piece of applications software can be tagged with the lowest of the nine lev-
els that will support the application. In practice the situation is far better: the great majority of implementa-
tions have homed in on leyel 2b and today software can happily be written under the assumption that level
2b support will be available. The only facility omitted from this level is asynchronous input (SAMPLE and
EVENT modes) which requires concurrent processing. A few full (ie level 2¢) implementations do exist,
but these tend to be host-specific and are not widely available. Thus any application using asynchronous

input should be regarded as special.

Natural forces have therefore concentrated GKS implementations at one level - level 2b - and it can-

not be claimed that the level structure of GKS is a barrier to portability.

In defining GKS there was pressure to allow scope to ’go outside the standard’. For example, there
is no circle drawing primitive in GKS, yet some graphics devices include firmware for circle generation. A
programmer may reasonably wish to access such a facility for efficiency reasons... but how can this be
achieved without jeopardising portability? GKS solves the dilemma in the form of the GENERALISED
DRAWING PRIMITIVE or GDP. The GDP function has an identifier as one of its parameters, this
identifier selecting from a set of implementation-dependent ’special’ drawing facilities. Implementors can
provide as many GDPs as they wish - or none at all. The ESCAPE function provides a similar mechanism
for non-geometric facilities. Programmers can use these functions if provided, but they do so in the
knowledge that the facilities may not be supported in another implementation. Likewise anyoné receiving

a GKS program knows that they must check whether GDPs or ESCAPESs have been used. Thus the scope

370



for going outside the standard is carefully controlled.

However, despite the controls, it has to be admitted that GDPs and ESCAPEs are a danger to porta-
bility. It was intended that a registration process would be set up, whereby commonly used GDP and
ESCAPE functions would be assigned a unique identifier - so that, for example, a circle GDP if imple-
mented would always have identifier 1, say. The National Bureau of Standards in the United States is
ready to act as the registration authority, but in practice it has taken ah exceedingly long time to get the
registration procedures approved by ISO and the scheme is not yet in operation. Thus the advice at present

has to be: for portable programs, avoid GDPs and ESCAPEs.

It is often said that GKS is a standard for ’device-independent’ graphics. That is one myth that cer-
tainly ought to be exploded. Devices themselves are different: this is not something to be disguised, but
rather something to be exploited. What is needed is not a device-independent graphics standard, but a stan-
dard that allows one to properly adapt programs to different environments. GKS does exactly that. A large
number of inquiry functions are provided (nearly 50% of the total number of functions in fact), and these
return a description of the graphics environment: properties of the implementation and the workstations it

supports. Programs can be portable, yet produce output that is tailored to the device being used.

There is a strong suspicion that GKS inquiry functions are underused. It has been noticeable in run-
ning the GKS validation software, which makes considerable use of inquiry functions to configure itself,
that errors are rarely found in the drawing parts of GKS, but quite regularly inquiry functions will fail. For
example, an early version of DEC’s VAX GKS (otherwise a reasonable implementation) contained errors
in the language binding of a number of inquiry functions. Similarly Tektronix GKS (now corrected) omit-
ted two inquiry functions completely. This suggests that inquiry functions are rarely being used - else

surely the errors would have been discovered much sooner.

3. GKS VALIDATION SOFTWARE

It was recognised at an early stage in the deveiopment of GKS that the portability aim would only be
achieved if all implementations adhered strictly to the standard. Thus the validation of GKS implementa-

tions is a crucial issue.

371




Work began in 1981 on the development of a large suite of test programs for GKS. These are writ-
ten in Fortran and aim to check as many features of GKS as possible. The work was done mainly at the
Universities of Leicester and Darmstadt, with financial support from the CEC. The software now forms the
basis of a European-wide GKS validation service, run jointly by GMD in West Germany and NCC in the

UK.

The GKS validation software must be able to run with different GKS implementations - that is its
very purpose. It must also be easily transported between different host systems, and it should be able to
produce output on different graphics devices. Thus it is an excellent measure of the portability of GKS

applications software.

The validation suite has already been run successfully against a number of GKS implementations.
Much use is made of GKS inquiry functions to determine the facilities available in an implementation, and

hence to check them. Thus the software adapts itself to the surroundings it finds itself in.

Some manual configuration is required, chiefly to tailor the software to the operating system. It may
be of interest to describe this, since it could act as a useful model for othef large GKS applications. First of
all, the validator is asked to supply the parameters of the OPEN GKS function (error file and buffer size).
Next a table is constructed, in which the validator enters the different graphical devices or workstations to
be included in the tests: for each workstation, the validator supplies the name by which he wishes to refer
to the workstation, the connection identifier and workstation type. Workstation identifiers are allocated to

each workstation giving a table of the form:

Device Work’n Identifier Connection Id Work'n Type
Tektronix 4010 1 0 201
Sigmex 6130 2 0 121
CalComp 1012 3 0 710

When a test program is run, this table is used to present the tester with a menu of available devices;

when one is selected, the workstation identifier, connection identifier and workstation type are taken from

372



the table.

4. NAG GRAPHICAL LIBRARY

The NAG Graphical Library (NAG, 1985) is a collection of graphical routines intended as a compan-
ion to the NAG Library of numerical and statistical routines. The software is written in Fortran, and
includes routines for curve and function drawing, contouring, surface views and data presentation in the
form of histograms, bar charts and pie charts. The Graphics Library is not a self-contained graphics sys-
tem, but sits on top of different underlying graphics packages. The NAG routines are written in terms of a
small set of interface routines (to draw a line, draw a character, etc), and these interface routines are imple-
mented in terms of the graphics package available at each particular site. The Library is widely used in the

UK and indeed throughout the world, with some 300 sites.

A fair number of these sites now use the software in conjunction with GKS. Only level Oa of GKS is
required. The Graphics Library runs successfully with a variety of GKS implementations - indeed any
difficulties have been traced to errors in the GKS implementations rather than any fundamental problems in

writing portable GKS applications software. Again much use is made of inquiry functions.

5. AMODEL FOR GKS PROGRAMS

The two previous sections have shown that GKS programs can be ported between different imple-
mentations. However, the ease of portability can be increased significantly by writing GKS programs in a

clear, structured manner. Some recommendations on how this can be done are given in this section.

GKS itself says little about the style in which programs should be written. This is a pity, because it is
very easy to write bad GKS programs! Consider this very simple example. A couple of graphs are to be
drawn, side by side on the display surface. The left-hand graph is to be drawn in the default colour, the

right-hand graph is to be drawn in a different colour.

The following sequence of GKS functions will achieve this:

373



OPEN GKS (error _file, buffer)

OPEN WORKSTATION (1, con_id, wktype)
ACTIVATE WORKSTATION (1)

SELECT NORMALISATION TRANSFORMATION (1)
SET VIEWPORT (1, 0.0, 0.5, 0.0, 1.0)

POLYLINE (npts_1, pts_1)

SET VIEWPORT (1, 0.5, 1.0, 0.0, 1.0)

SET POLYLINE REPRESENTATION (1, 1, 1, 1.0, 2)
POLYLINE (npts_2, pts_2)

DEACTIVATE WORKSTATION (1)

CLOSE WORKSTATION (1)

CLOSE GKS

The above program has been written with no thought to structure, and no thought to portability. It is
short and therefore it is possible to understand it by working through it line-by-line. Any larger program

written to this style would be very hard to follow.

Consider some of the problems. Suppose a change to a different workstation is required, one without
colour. The graphs could now be distinguished by linetype, but the programmer has to search for the SET
POLYLINE REPRESENTATION function in the middle of the program, which will have to be altered.
Imagine the difficulty if an application contained several thousand lines of code. Again suppose the layout
is to be rearranged so that the graphs lie one on top of each other rather than side-by-side. The program-
mer has to search through the program for the SET VIEWPORT functions. More seriously, there are errors
lurking even in this simple program. The SET POLYLINE REPRESENTATION function redefines the
representation of index 1 - but index 1 (the default) has already been used to draw the first graph. This can
have various effects in GKS depending on the properties of the workstation: it could well be that the left-
hand graph will change to have the new representation as well - certainly not what is intended. The scatter-
ing of representation functions throughout a program makes it very hard to spot possible errors like this.
Finally, there are two fundamental modes of attribute setting in GKS - bundled and individual. Bundled
mode tends to be the default in Europe, individual in the US. This program assumes bundied mode as
default, but any portable program must explicitly select the mode required by calling SET ASPECT
SOURCE FLAGS.

Consider now how the style of the above program could be improved. It is helpful to split the con-
struction of a picture into three separate stages. First, the picture definition stage, where the geometry of a

picture is defined in terms of output primitives. A picture definition may be divided into several parts if

374



different world coordinate systems are being used, one part for each coordinate system. The second stage
is picture composition, where the layout on the display surface is specified using different window-
viewpbrt transformations. The final phase is picture representation, where the ’abstract’ picture defined in
the first two stages is mapped to a particular workstation, or indeed workstations, using representation

functions.

The picture definition is placed at the heart of a GKS program: it should never need to change when
moving a GKS program from one environment to another. Indeed one can imagine libraries of picture
definition modules being developed. The picture composition stage forms an outer layer: this may occa-
sionally need to be changed, if a new layout of the pictﬁre elements is required. The picture representation
layer will need to change when a program is ported, and so that quite correctly forms the outer layer. This
change can be done manually, or inquiry functions can be used to do automatic tailoring to different

environments.

This gives the following model for GKS programs:

OPEN GKS
SET ASPECT SOURCE FLAGS (bundled)

OPEN WORKSTATION
Define Picture Representation

Define Layout
Define Drawing
CLOSE WORKSTATION

CLOSE GKS

The earlier example can now be rewritten, following the model that has just been developed:

375




OPEN GKS (error_file, buffer)
SET ASPECT SOURCE FLAGS (bundled)

OPEN WORKSTATION (1, con_id, wktype)
SET POLYLINE REPRESENTATION (1, 1, 1, 1.0, 1)
SET POLYLINE REPRESENTATION (1, 2, 1, 1.0, 2)

SET VIEWPORT (1, 0.0, 0.5, 0.0, 1.0)
SET VIEWPORT (2, 0.5, 1.0, 0.0, 1.0)

ACTIVATE WORKSTATION (1)
SELECT NORMALISATION TRANSFORMATION (1)
POLYLINE (npts_1, pts_1)
SELECT NORMALISATION TRANSFORMATION (2)
SET POLYLINE INDEX (2)
POLYLINE (npts_2, pts_2)
DEACTIVATE WORKSTATION (1)
CLOSE WORKSTATION (1)

CLOSE GKS

Notice that the program now has a clean structure, it is easy to change the layout (multiple normali-
sation transformations have been used) and it is easy to change the representation of the graphs for dif-

ferent workstations.

6. CONCLUSIONS

Experience with two major pieces of GKS application software has shown that GKS programs are
portable. Inquiry functions in GKS provide a powerful tool to enable application programs to adapt to the

environment they find themselves in - yet there are indications these functions are rarely used.

The importance of a good model for GKS programming has been stressed, and a model that will pro-

vide a good basis for portable GKS programs has been described.

GKS was designed to support the development of portable graphical software in application areas
such as meteorology. It is now well established as a standard, and it can be strongly recommended as a

support graphics system for European meteorological applications.

376



REFERENCES

ISO, 1985: Information processing systems - Computer graphics - Graphical Kernel System (GKS) func-

tional description. ISO 7942-1985(E).

Little, C., 1987: GKS at the UK Met Office. Proceedings of the GKS Review, Eurographics.
NAG, 1985: The NAG Graphical Supplement Manual - Mark 2. NAG Ltd, Oxford.

Pfaff, G.E., 1987: GKS Review position paper. Proceedings of the GKS Review, Eurographics.

Sanders, R., 1987: The myth of graphics standards. Systems International, October 1987, 92-94,

377





