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1. INTRODUCT ION

I want to talk about a way of thinking about dynamical processes that is
useful both in synoptic and in theoretical meteorology, and that greatly
illuminates the connection between the two. It has given theoreticians
like myself an enormously sharpened appreciation of insights traditionally
reserved for synopticians; and it gives the synoptician and the forecaster
direct access to concepts traditionally reserved for those more inclined to
abstract mathematical thought. It applies to almost all large-scale
dynamical processes of meteorological interest, and to some mesoscale
processes as well. More precisely, it applies to any -dynamical process
that can be considered to be balanced in the sense that inertio-—gravity
oscillations are absent, or balanced after averaging out any
distinguishable such oscillations. This means for instance that it applies
to every dynamical process describable by filtered equations such as the
quasigeostrophic and semigeostrophic equations, and all their higher-order
elaborations. It is an excellent way of looking at symoptic-scale
processes such as cyclogenesis and blocking, and it promises to make a
contribution to practically important problems such as the quality control
of numerical weather analysis and prediction, and the operational, real-

time assessment of forecast uncertainty.

The key idea, which goes back to Charney (1948) and Kleinschmidt
(1950a,b, 1951), is to recognize that certain aspects of the fields of
Rossby-Ertel potential vorticity (PV) and potential temperature (PT) can be

regarded as controlling the dynamical evolution. There is an
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"invertibility principle" -- so familiar to theoreticians that it is not
always mentioned explicitly —-— that says that a certain subset of the
information in the PV/PT fields can be used to diagnose everything about
the other dynamical fields, apart from any inertio-gravity oscillations
(including Kelvin waves) that may be present. A precise statement will be
given in §3 below. The resulting viewpoint has advantages that become
particularly clear at the interface between the observation-analysis-

prediction system and the human brain.

For practical purposes, that interface is our visual system; and it is a
very remarkable interface. The visual cortex and its peripherals deploy
prodigious computational power on data transfer and processing, estimated
to be many thousands of Crays' worth even for the earliest stages of the
data processing. Keeping in mind the biological purposes for which the
system came into being, we might expect it to be particularly powerful when
used on suitable visualizations of the temporally evolving PV/PT fields.
Why is this? Many significant weather developments depend on fast upper-—
air motions that are to .a first approximation adiabatic and "frictionless",
implying that both PV and PT are materially conserved. Features in the
PV/PT fields therefore tend to be carried along with the air motion, and
often become sharp-edged and front-like because of the strong deformation
rates in the large-scale wind field, with their well known tendency to
create steep gradients in the distributions of materially conserved
‘quantities. Synopticians have long been familiar with the associated
structures: jets, shear lines, and so on (e.g. Palmén and Newton 1969).

One of the functions to which the eye-brain system is exquisitely well
adapted is the near—instantaneous recognition of moving, sharp-edged
features. When helped by suitable graphical techniques, it can lock on to,
and follow, several such features at once. It can perform this
computational feat far better than any artificial intelligence system yet
in prospect, and can do it to a remarkable extent even when the data are

noisy or gappy.

Practical ways of viewing the moving features in the PV/PT fields, and
relating them to material air motiomns, include the time-honoured method of
looking at the evolution of PV distributions on constant-PT, i.e.
isentropic, surfaces. Some historical notes are given in the recent review

paper by Hoskins et al. (1985, hereafter HMR). Isentropic distributioms,

maps, etc., of PV will sometimes be referred to for brevity as "IPV"
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distributions, maps, etc. The "I" is intended to emphasize the importance
of viewing the PV on an isentropic surface, this being a natural way of
visualizing material conservation. Most isentropic surfaces are mappable,
because most of the atmosphere is stably stratified; moreover IPV maps
provide a useful way of formulating the invertibility principle (§4). A
complementary approach is to use isostrophic maps of PT, i.e. maps of PT on
constant-PV surfaces. These will be referred to for brevity as "IPT" maps.
They have less general utility since the atmosphere is not -monotonically
stratified in PV, but recent work at Reading has shown that they can be
extremely useful when the PV surface is taken at a PV value characteristic
of the tropopause (B.J. Hoskins, personal communication). The typical
structure of the upper troposphere, lower stratosphere system —- our
knowledge of which goes back to the pioneering work of Danielsen,
Kleinschmidt, Platzman, Reed, and Sanders —— gives rise to the fortunate
circumstance that a single tropopause IPT map can convey nearly as much
upper-air dynamical information as a whole stack of IPV maps. The only
difficulty is the graphical difficulty of depicting tropopause folds.

Still other important aspects of the PV/PT fields are those depicted by
low-level maps of PT, particularly just above the plametary boundary layer.
We shall see that such low-level PT maps can actually be regarded, in a
certain sense, as another special case of IPT maps. Together with
tropopause IPT maps they contain information of crucial importénce to many

cases of cyclogenesis.

The fact that the evolution of the PV/PT fields is well suited to viewing
by the human eye, in various ways, would have only limited significance
were it not for the invertibility principle. The latter therefore needs to
be stated more precisely, and its theoretical status and régime of
applicability discussed —-— a matter of some mathematical subtlety being
actively researched today. Before getting into such questions, therefore,
I should like to talk about a simpler dynamical system that has a
surprising amount in common with the real atmosphere and that illustrates,

in a relatively straightforward way, much of what is involved.

2. THE SIMPLEST PARADIGM: NONDIVERGENT BAROTROPIC VORTICITY DYNAMICS

Despite their simplicity, the equations of nondivergent barotropic dynamics
exhibit a number of counterparts to real-atmospheric phenomena, including

several already mentioned, as we shall see in the next section. This is
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understandable from the viewpoint of '"PV thinking", since from that
viewpoint the system has the same two basic characteristics - a dynamical
variable, the absolute vorticity q , that is materially conserved in the
absence of friction, and an invertibility principle saying that all the
other dynamical variables can be diagnosed from a knowledge of q . The
system is of course a very well understood one, long studied in the context
of classical aerodynamics as well as that of classical dynamical
meteorology; and indeed ome of the advantages of PV thinking is that it
enables us to make use of many well developed and well understood ideas
such as, for instance, "vortex rollup" (to be illustrated below). The

equations may be written as follows:
Dqg/Dt = frictional terms, (2.1a)
¥ = Vi-0), (2.1b)

where q = Vz¢d-f, the absolute vorticity, f is the Coriolis
parameter, ¥ the streamfunction, and D/Dt the two-dimensional material

derivative. The latter is defined by

D/Dt = 3/3t + ud/dx + va/dy (2.2)
where

u=-0¥/dy, v =0¥/0x; (2.3)

(x,y) are eastward and northward coordinates and (u, v) the

corresponding eastward and northward components of the wind vector v.

If friction is neglected in equation (2.1a), the equation states that ¢

is materially conserved. And if we were to watch a moving picture of the

q field we would be following everything else about the dynamics since,

by (2.1b), knowledge of q implies knowledge of ¥~ and hence, by (2.3),

of the wind field. This is the relevant invertibility principle, and three

points about it should be noted for later reference:

1. Local knowledge of q does not imply local knowledge of v,
the inversion is very much a global process. In particular, the
principle depends on specifying suitable boundary conditions to
make (2.1b) unambiguous.

2. The notion of balance, on which the inversion depends,

corresponds in this system to the absence of sound or external
gravity waves. These have been filtered out simply by the assumption
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of incompressible, nondivergent motion.

3. There is a scale effect, whereby small-scale features in the

q field have a relatively weak effect on the % and v fields
whereas large-scale features have a relatively strong effect. In
particular, ¥ and v are to varying degrees insensitive to
fine-grain structure in the q field. The inverse Laplacian

operator in (2.1b) is a smoothing operator, and some of the smoothing
survives even when followed by the single differentiatioms in (2.3).

The non-localness of the inversion operator and the implied "action at a
distance' emphasized in point 1 may seem strange at first sight. The
apparent "actiom at a distance' summarizes, with remarkable succinctness,
the peculiar way in which fluid elements push each other around. The
resulting gain in economy of thinking has long been made use of by
aerodynamicists as well as by theoretical meteorologists. Indeed it is
built into classical aerodynamical language, in such phrases as the
velocity field "induced by" the vorticity field, and the idea that a vortex
can roll "itself" up. It may be useful to note from (2.1b) that diagnosing
the ¥ field from the q field is more or less the same thing,
mathematically, as calculating the electrostatic potential from the charge
distribution, or the static displacement of a stretched membrane from the

pressure distribution on it.

Point 2 prompts a question that is both theoretically intriguing and, it
will appear, practically relevant. To what extent can more refined
versions of (2.1) can be comstructed in which slight compressibility is
taken into account? We know that (2.1a) remains exactly valid, provided
that q 1is replaced by the relevant potential vorticity Q=g/p or

q/h , where p is the relevant density or h the relevant layer depth;

but what happens to the inversion (2.1b)? One can imagine correcting
(2.1b) iteratively, thus modelling the balanced motion more accurately.
One might even wonder whether such a process can converge, i.e. whether it
is dynamically possible for the motion of a slightly compressible fluid to
be exactly free of sound waves, and to have an exact invertibility
principle, to which (2.1b) is merely a first approximation. Essentially
the same questions arise for a baroclinic atmosphere, regarding acoustic-
inertio=-gravity waves; and they have been much discussed in the recent
literature under the heading of the existence or nonexistence of a "slow
manifold". It may be of interest to note that there is one case, namely
the present case with £=0, in which the answer is well established and

well known. It is a clear "mo". Unsteady, vortical motions in a slightly
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compressible fluid always emit some sound or external gravity waves, albeit
very weak omes if the Mach or Froude number F is small. The acoustic or
external gravity wave power propagating to the far field scales as a high

power of F (7’ in two dimensions and 8

in three, the latter being

the celebrated Lighthill eighth-power law -- for relevant review material
see Crighton 1975, 1981, and Lighthill 1973, pp. 21, 64). One consequence
is that any process of iteratively refining (2.1) can have at best
asymptotic, not convergent, behaviour. But for moderate values of F the
refinements may still lead to balance conditions and inversion operators
that are far more accurate than those expressed by (2.1), even though not
exact in principle. I shall present some specific evidence for this in §6,

in the rotating case £¥$0.

On point 3, the classic illustration is simple Rossby wave propagation and
its scale dependence. Indeed the Rossby wave propagation mechanism nicely
illustrates all the foregoing ideas, including the idea of the "induced"
velocity field. Imagine a basic state of relative rest (¥=0
everywhere) in which f and therefore gq has a large-scale y—gradient
p=df/dy >0 . If friction is neglected in (2.1a), the contours of
constant q are also material contours. If.a disturbance makes these

contours undulate as shown in Fig. 1, the right hand side of (2.1b) will be
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Fig. 1 Sketch of the g or Q contours and anomaly

pattern, and the induced velocity field, in a simple Rossby

wave .
alternately positive and negative as shown by the plus and minus signs. To
see what the induced % field must look like, one can solve (2.1b), or
simply picture the contours of ¥ as the equipotentials of the
electrostatic field due to a pattern of alternating positive and negative
charges, or as the topographical contours giving the diplacement of a
stretched elastic membrane that is pushed and pulled altermately in the
same pattern. It can be seen that % will have hills and valleys centred

respectively on the minus and the plus signs, and that the strongest
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north—south winds will therefore occur at intermediate positions, a quarter
wavelength out of phase with the displacement, and in the sense shown by
the heavy, dashed arrows in the figure. If you now make a moving picture
in your mind's eye of what this induced velocity field will do to the
contours, you can see that the undulations will propagate westward. This
is the celebrated Rossby-wave probagation mechanism: whenever material
parcels get displaced back and forth across a large-scale northward q
gradient, the resulting q anomalies immediately induce a velocity field
that, for small displacements (more precisely, small sideways contour
slopes), always tends to make the undulations propagate westward --

relative, of course, to any mean flow that may be present.

The scale effect, point 3 above, implies that the westward phase speed c
increases with wavelength. This is another celebrated property of Rossby
waves. It is easy to check explicitly in the textbook case where [ is
constant. We then have simple solutions of the type V¥ o

cos fy cos {k(x - ct)} , which can be seen to satisfy (2.la,b) (in this

case without linearization, as it happens) provided that the phase speed

¢ and the wavenumbers k , { satisfy the Rossby dispersion relation
c = -/ &2+ . (2.4)

The scale-dependent factor - (k2 +4%)7" comes from the inverse Laplacian
operator, explicitly showing the scale effect upon phase speed. Further
discussion of Rossby-wave propagation (elucidating the mechanisms of

lateral and vertical group propagation and of Rossby-wave critical-layer

absorption and reflection) may be found in §6c of HMR (q.v., Fig. 19).

3. A NONLINEAR BAROTROPIC THOUGHT~EXPERIMENT

When nonlinearity becomes important, simple Rossby-wave undulations tend to
break down in interesting, and synoptically recognizable, ways. Figs. 2-4
show a sequence of daily q and y fields for a very high resolutién,

T159, nearly frictionless integration of (2.1) on a hemisphere, recently
carried out by Martin Juckes at Cambridge. For full details, see the
recent paper by Juckes and McIntyre (1987). The q fields are depicted in
monotonic grayscale shading, with light shades denoting low q values, and
dark shades high. The original motivation was to do a thought-experiment

to model certain aspects of the wintertime middle and upper stratosphere,
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Fig. 2 High resolution (T159, Reading spectral code), nearly-frictionless
simulation of a breaking Rossby wave in a barotropic, hemispheric model

stratosphere having a strong polar-night vortex, from Juckes and McIntyre
(1987). Grayscale shading denotes the q field, shown monotonically over

nine intervals from zero (lightest) to 1.36 f _  (darkest), where f

is the maximum planetary vorticity, 1.458 %10 %s™!.  About half the
initial q range is concentrated into a fairly steep gradient near the
edge (jet-core) of the model's polar vortex, just inside the two material
contours initially marking the fourth interval. Arrows show the wind
field. Maps are polar stereographic and show the whole hemisphere.

max
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Fig. 3 Continuation of Fig. 2. The q gradients at the edge of the
model's polar vortex are rapidly steepening to values limited by the
model's hyperdiffusion.
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Fig. 4 Continuation of Fig. 3. Day 17 is shown twice, the second time
with a different grayscale sequence, white—gray-black, white-gray-black,
white to cover the range of increasing q values. Notice how two of the
cutoff cyclones, those at top right in (a), can be traced back to
identifiable barotropic shear instabilities (visible in Fig. 3e,f), while
the others cannot.
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starting from a hypothetical, zonally symmétric state on day zero that is
subsequently disturbed in high latitudes by a wave-one planetary-scale
Rossby wave arriving from below. This disturbance was modelled in the
simplest possible way that preserves the basic mathematical structure of
(2.1), by redefining q as qu%+-f plus a prescribed, smooth function

of space and time having the planetary-scale structure of the incident
disturbance. This function peaks at about 65°N, is relatively small in the
tropics, and its zonal dependence contains wave 1 only. Its time
dependence was taken as a smooth buildup from zero during days 0-4, then
constant to day 12, then a smooth decrease to zero by day 16. Two material
contours (heavy circles in Fig. 2a) were independently followed up to day
10, as a check both on the numerical accuracy and on the smallness of the
right-hand side of (2.1a). The latter was taken to be a triharmonic
hyperdiffusion whose effects were, indeed, mostly insignificant for present

purposes except as noted in the caption to Fig. 3.

Linear Rossby-wave theory breaks down between days 3 and 4 (Figs. 2c,d),
when material and q contours begin to deform irreversibly (in striking
contrast to the simple undulations shown in Fig. 1), leading subsequently
to a variety of sizes and shapes of small-scale features in the q field,
most of them far smaller in scale than the incident planetary-scale
disturbance. This is an inherently nonlinear, adveétive process to which
Rossby waves are often subject, and which is fundamentally analogous to the
breaking of other kinds of waves such as gravity waves; and it has
significance for questions about tropospheric as well as stratospheric
dynamics that range from matters of synoptic detail to the shaping of the
entire general circulation. Four points will be singled out for explicit

mention here:

1. Note the general tendency to form sharp gradients in the q field,
which is particularly evident in Figs. 3 and 4 and which occurs for the
reasons mentioned in §1. One example is the long, dark (cyclonic) strip
that is comspicuous in the top half of Fig. 3e, day 11. This is the
model's analogue of an upper-tropospheric shear line, albeit on a rather
larger scale. Another is the dramatic steepening of the gradient at the
edge of the model's main, cyclonic polar-night vortex (the large, central
dark region), the edge corresponding more or less to the location of the
main polar-night jet core. This tendency for the q field to develop

sharp gradients is a characteristic feature that occurs again and again in
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this and in many other, similar numerical experiments that have been

carried out.

2. Also of interest, in the context of these lectures, are the synoptic-
scale cutoff cyclones (dark) and anticyclones (light) that appear during
the later stages shown in Fig. 4. Two of the cyclones, namely the pair at
top right in Fig. 4a, day 13, have their origins in a recognizable
barotropic shear instability. Inspection of the two previous frames shows
very clearly that they originate from an instability of the abovementioned
shear line. The later stages also provide a good example of the
previously-mentioned mechanism of 'vortex rollup", which is germane to the
cutting—-off process. Because of the existence of a small-amplitude
instability stage, their genesis could be said to be a barotropic
counterpart to Petterssen's "type A cyciogenesis". Others, like the two in
the top right quadrant of Fig. 4d, never go through any recognisable
linear~instability phase. They arise directly as finite amplitude
disturbances ("Petterssen type B"), and indeed from the other experiments
this seems to be the commonest way in which cyclones and anticyclones arise
in the model —— and possibly, also, dare I say it, in the real stratosphere

and troposphere. I shall return to this point in the second lecture.

3. Another point of great interest, both synoptically and also from the
viewpoint of two-dimensional turbulence theory, is the: way in which the
smaller—-scale q anomalies exhibit a mixture of dynamically active and
passive—tracer behaviour. Their induced velocity fields are locally
significant in the former case, and relatively insignificant in the latter:
some anomalies roll themselves up, and some do not. In particular, many of
the long, thin q filaments or shear lines that appear in Fig. 4 —— and in
many similar experiments mnot shown here -— do not go locally unstable,
despite the fact that like the shear line in Fig. 3e their ¢

distributions locally satisfy the usual Fjdrtoft—-Arnol'd conditions for
shear instability. It now seems likely from recent work at Cambridge (D.
Dritschel, M.N. Juckes, P.H. Haynes, T.G. Shepherd, personal communication)
that a sufficient reason is the stabilizing effect of larger-scale strain
and shear fields induced from some distance away, which are the reason why
the anomalies got long and thin in the first place and to which local shear
instabilities appear to be quite sensitive. Such a stabilizing effect may
help us understand not only the common occurrence of passive-tracer-like,

filamental features such as those evident in Fig. 4, but also the
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occurrence of shear lines in the real atmosphere (C. Thorncroft, personal

communication).

4. These nearly frictionless numerical experiments proVide particularly
clear illustrations of the way in which a breaking Rossby wave can
irreversibly transfer negative angular momentum, into the tropics in this
case. The effect of the transfer appears simply as a permanent change in
the tropical zonally averaged zonal flow, which becomes more easterly by,
typically, several tens of metres per second. The theofy of wave, mean-
flow interaction implies that this phenomenon is closely analogous to the
way in which breaking ocean waves induce longshore currents on beaches.

The process appears to be fundamental to understahding certain tropical,
extratropical interactions both in the stratosphere and in the troposphere,
particularly the '"negative viscosity' effect in the angular momentum budget
of the general circulation and its relation to large-scale tracer
transport. Full and careful discussions of these points have been given
elsewhere (McIntyre and Palmer 1984,5; Haymes and McIntyre
1987a,b, & refs.).

5. On the question of graphical technique, note that it would be
difficult, if not impossible, to plot contour maps of the last few q
fields in Fig. 4 that would make much sense to the eye. For viewing
materially advected fields like q , with their tendency to develop fine
structure and sharp-edged features, "photographic" techniques like the
grayscale shading used here are more suitable. Animated versions making
the continuity of evolution visible can be especially powerful; and
demonstrations of this have recently been given by John Marshall (personal

_ communication) using the image-processing facility at Imperial College.

4. THE PV AND THE INVERTIBILITY PRINCIPLE FOR A BAROCLINIC ATMOSPHERE

The standard meteorological definition of PV for a three-dimensional,
baroclinic, hydrostatic atmosphere is essentially that proposed by Rossby

in 1940:
Q= (f + g.venul)(—gde/c)p) , (4.1)

where % is a unit vertical vector, © is the PT, subscript © indicates

differentiation along an isentropic surface, y is the horizontal wind
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vector as before, and p is hydrostatic pressure. Ertel's independently
discovered and more general formula reduces to (4.1) in the hydrostatic
case. A convenient SI unit for Q is 10_6mzs_H{kg_1; it could perhaps be
called the pR (microrossby), but since Ertel has an independent claim I
shall settle for calling it the PV unit or PVU, as was dome in HMR. It is
a convenient unit since values < 1 usually imply that we are looking at
tropospheric air, and > 2, stratospheric air except near the eduator. Most
other units in common use are numerically more or less the same thing times
some power of ten, depending on whether SI.or cgs is used and on whether

the factor g is dropped.

One way of stating the ihvertibility principle for the Q and © fields

is that proposed by HMR. It begins by assuming that the mass under each
isentropic surface is specified, or some eduivalent information giving the
static stability of a suitable reference state, just as is donme in the
theory of available potential energy. The principle asserts that given
this information, together with the global distribution of Q on each
isentropic surface, and of © at the lower boundary, ome can deduce,
diagnostically, all the other dynamical fields such as winds, temperatures,
geopotential heights, local static stabilities, and vertical motion, to the
extent that, and to the accuracy with which, the motion can be regarded as

balanced.
The following points may be noted:

1. Just as in the simpler case of §2, we must solve the diagnostic problem
globally, with proper attention to boundary conditions; the same remarks

about the apparent '"action at a distance" apply.

2. The principle, in the form just stated, helps to explain why IPV
gradients and surface PT gradients keep on turning up as key factors in
theoretical studies of barotropic and baroclinic instabilities, large-scale
waves, vortices, and other phenomena involving balanced motion. Some

examples will be given later.
3. TFor practical purposes the phrases "surface'" and "at the lower

boundary", in connection with PT distributions and gradients, will usually

mean just above the planetary boundary layer, as already hinted in §1.
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4. The invertibility principle, as stated here, carefully avoids any prior
commitment as to the best balance condition under which to carry out the
inversion. Indeed a strong reason for elevating it to the status of a
"principle'" is to focus attention on the idea, already hinted at in §2,
that the balance and invertibility concepts need not be tied to any
particular set of approximations, filtered equations, or explicit formulae,
and to leave open the possibility that more accurate ways of quantifying
balance and invertibility may yet be found. Such ways, in fact, do now
seem to be in prospect; some preliminary evidence will be presented in §6.
The ultimate limitations are as yet unknown, although it is obvious enough
that limitations must exist, within known requirements such as those of
static and inertial stability, Froude and Rossby numbers not being large,

and so on.

5. The statement that vertical motion can be deduced is related of course
to the omega-equation principle. A simple illustration, the 'vacuum-
cleaner effect", will be given in thé next lecture. The more accurate
inversions require the vertical motion to be found as part of the inversiom
procedure, and so the more accurate ideas of '"balance" have some dependence
on information about frictional and diabatic effects. Further discussion

is given in HMR (§4 and appendix), and below in §6.

6. 1IPV distributions and their possible evolution, and the associated
transports and budgets of PV, are constrained by two exact, general
theorems that hold even in the presence of diabatic heating and frictional
or external forces. Specifying an IPV distribution that violated the
associated constraints would presumably lead to failure of any attempt at
inversion (see also HMR §3, eq. 17b et seq.). The first is that PV,

considered as a convected and transported tracer, is indestructible, except

where isentropic surfaces intersect a boundary such as the earth's surface.
The second is that isentropic surfaces are impermeable to PV -- even in the
presence of diabatic heating. An isentropic surface in a stably stratified
atmosphere acts like a semi-permeable membrane, allowing mass to cross it

but not PV.

Thus although values of Q, which have the nature of tracer mixing ratios,
can change, they can change only by the tracer being transported, diluted,
or concentrated. Both theorems are direct consequences of the way in which

the PV is constructed mathematically. This, incidentally, has the
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significant further consequence that the theorems apply not only to the
exact PV constructed from exact v and © fields, but also, exactly, to
any "coarse-grain PV" constructed from coarse-grain observational

datasets.t

7. Recalling point 3 of §2, we might expect that the inversion operators
delivering geopotential heights and winds from PV distributions are broadly
speaking not too sensitive to fine-grain detail in the PV field. Eq. (4.1)
involves differentiation and so we might naively expect the inversion
operator to involve integration and to be a smoothing operator, somewhat
like the operator V™2 in (2.1b). This indeed is manifestly the case for
the crudest, quasigeostrophic inversions (e.g. HMR §5b). However, the
theory of semigeostrophic inversion (op. cit., §5c) indicates that the more
accurate forms of the imversion operator, which are nonlinear, may not be
QUite such good smoothers under some conditions, e.g. in certain locations

within strong fronts and jet streams.

8. PV inversion in the presence of topography ill-understood, but would
worth trying to understand better in connection with problems such as
Alpine lee cyclogenesis (e.g. Bleck and Mattocks 1984, 1986). In some
cases involving shallow, smooth topography, the invertibility principle
appears to hold exactly as stated above, although the precise nature of the
solution is known only within the context of quasigeostrophic theory. The
generalization beyond that theory presents conceptual as well as technical
difficulties, even for smoothed topography, as can be seen from the
subtleties encountered in the analysis of a related problem by Eliassen
(1980). There is also the obvious fact that real topography commonly
generates unbalanced motions in the form of mountain waves, signalling one

very definite limitation to the balance and invertibility concepts.

5. CYCLONIC PV ANOMALIES IN A BAROCLINIC ATMOSPHERE

It is one thing to say that, in principle, one can deduce everything from

IPV and surface PT distributionms (in a wide, albeit not yet precisely

tThe history of these theorems is somewhat unclear, to me at least. Some
aspects of the first theorem were noted by Truesdell (1951) for the adiabatic
case, and generalized by Thorpe and Emanuel (1985) to the (much more
interesting and significant) diabatic case. As far as I can tell from
extensive correspondence, the complete picture including the impermeability
theorem has apparently been noted only very recently, by Haynes & McIntyre
(1987).
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defined, set of circumstances). It is another to know what the answers
look like. A useful approach is to consider the structures induced by
isolated PV/PT anomalies. Not surprisingly, isolated cyclonic anomalies
tend to induce cyclonic wind structures, and anticyclonic anomalies
anticyclonic wind structures. Each exhibits characteristic features in the
associated fields of vorticity and static stability, the two factors
appearing in (4.1). These features and the physical and mathematical
reasons for them were discussed in some detail in HMR §3, following the
pioneering work of Kleinschmidt and drawing on some specific examples from

the work of Thorpe (1985, 1986).

Figs. 5 and 6 reproduce two of Thorpe's examples. Both are structures
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Fig. 5 Cyclonic structure induced by a simple, circularly
symmetric, upper-air PV anomaly, from the work of Thorpe
(op. cit.). © surfaces are shown at 5K intervals, and

isotachs at 3ms~| intervals. The domain shown has a radius
of 2500km. The heavy curve represents the tropopause,
across which the PV jumps by a factor 6.

_ induced by single, isolated, circularly symmetric cyclonic anoﬁalies under
gradient-wind balance, the first by an upper-air IPV anomaly and the second
by a surface PT anomaly. The resemblance to cyclonic structures that have
often been observed in the real atmosphere (e.g. Palmén and Newton 1969) is
immediately striking. Indeed it is remarkable how much in the way of ‘
realistic—-looking features appear, illustrating the economy of description
that can result from "IPV thinking', which says that the whole structure,

in each of these cases, follows from the presence of a single IPV anomaly.

In the case of Fig. 5 the region containing the anomaly is shown stippled.
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Fig. 6 As in Fig. 5 except that the anomaly is located at
the surface.

Note that the phrase '"IPV anomaly" is intended to denote, as indicated by
the presence of the letter "I", values that are low or high relative to
surrounding values on a given isentropic surface. For instance the value
of Q is about 3PVU at the edge of Fig. 5 near 400mb, and if we follow an
isentrope inwards from that point, Q jumps to about 3 PVU upon crossing
the tropopause. On a tropopause IPT map, the amplitude of the © anomaly
would be -24K. The absolute vorticity at the tropopause reaches the very
large value 2.7f, implying that a quasigeostrophic inversion would be
exceedingly inaccurate. Down on the surface, the maximum wind speed is
just over 15 m/s and the surface pressure anomaly is -41mb. For more

detail see HMR §3, and Thorpe (op.cit.).

In Fig. 6 the surface PT anomaly has amplitude +10K. The inset suggests
how the warm surface PT anomaly can be thought of as a limiting case of a
cyclonic IPV anomaly. Alternatively, onme can think of a surface PT map as
a special case of an IPT map: the solid earth acts as a kind of nether-
region "stratosphere'" having infinite static stability and PV. 1In this
case the wind induced at the surface peaks at about 16 m/s and the surface

pressure anomaly is -31mb.

Upper—-air PV and surface PT anomalies of this magnitude occur in the real
atmosphere, and may on occasion be very rapidly advected into a given
location. This is one way of seeing why upper-air PV advection and surface
warm advection should be so important for cyclogenesis, as synopticians

have long known. The second lecture will indicate how these two basic
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advective processes can amplify each other, and how this coupling can be
enhanced and the whole process still further amplified, sometimes
explosively, by latent-heat release. It will be convenient to postpone

discussion of the associated vertical motion field until then.

An important practical point evident from Fig. 5 is that a tropopause IPT
map can be used to give a direct indication of the vertical extent of an
anomaly like the stippled region, or of its opposite-signed, anticyclonic
counterpart, which induces a raised tropopause. In both cases a single
such IPT map will show directly how deep and therefore how powerful a major
anomaly is, whereas a stack of several IPV maps would be required to make
the same thing clear. It should by now be evident why I suggested in §1
that IPT and surface PT maps together "contain information of crucial

importance to cyclogenesis'.

6. HOW ACCURATE 1S THE INVERTIBILITY PRINCIPLE IN GENERAL?

In examples like those given in Figs. 5 and 6, the balance condition is
simply gradient-wind balance; and balance and invertibility hold exactly
since the flows are circular; steady, frictionless, and adiabatic. Such
examples leave open the question of how accurately, or inaccurately, the
concepts of balance and invertibility might apply to more realistic

situations. This question lies at the research frontier today.

Point 2 of §2, together with the discussion below it, has already warned us
to expect an ultimate, bedrock limitation on the accuracy that can be
obtained, even if Froude and Rossby numbers are small. The same point has
been cogently argued for rotating, baroclinic atmospheres by Warn and
Ménard (1985), Vautard and Legras (1986), and Lorenz and Krishnamurthy
(1987). The implication is that "balance', "slow manifold", and
"invertibility'" are all inherently approximate concepts, although, it seems
likely, often far more accurate than one might think from experience with
the simpler systems of filtered equations. The success of initialized
numerical weather forecasts is one encouragement towards this latter
belief.

The question of how to define balance and PV inversion to the highest
possible accuracy involves, then, some mathematical subtlety. One

difficulty is that the nonexistence of a strictly defined slow manifold
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means that inversion operators are not only inherently approximate, but
also necessarily non-unique. The operators are nonlinear and can be
defined only iteratively (as far as I know); and for any given proposed

operator there is a very large function space to explore.

One can narrow down the possibilities by imposing some requifements on the
inversion operator that seem prima facie sensible. In order to do this,
and in any case to define the operator itself, it is convenient to consider
the associated balanced dynamical model, having a structure analogous to
(2.1). That is, the evolution of this notional model is defined by time-
stepping the exact eduations governing IPV distributions and surface PT
distributions [collectively analogous to (2.1a)], followed by inversion to
get the new wind field [analogous to (2.1b)], then another time step, and

so on, for sufficiently small time steps.

- It seems natural to reduire that this notional balanced model conserve mass
exactly. A model atmosphere in which mass can appear or disappear in an
arbitrary way is too unphysical for most of us. It follows in turn (since
the exact PV and PT evolution equations are used, implying material
conservation of PV and PT in frictionless, adiabatic conditioms) that the
vorticity equation is also satisfied exactly and that the only scope for
approximation is then in the divergence equation. We may also wish to
require that the inversion operator be Galilean invariant: the result of
applying it should be physically the same when computed in reference frames

rotating at different angular velocities.

I am not, however, going to suggest that the associated balanced model
should exactly conserve energy and momentum. Since this may seem heretical
at first sight it may be worth digressing briefly to explain why. We want
the balanced model to get as close to reality as it can. In the
corresponding real motion we expect that spontaneous emission of inertio-
gravity waves is likely to be going on nearly all the time, albeit usually
very weakly, just as with sound waves in §2 (and probably even weaker than
when f=0 because of the inertia-frequency cutoff). In reality, many of
these waves probably end up being dissipated in distant places, for example
the mesosphere, and this may change the energy and momentum of the region
from which they were emitted (albeit possibly by only tiny amounts). A

balanced model that underwent similar changes in energy and momentum, at

sites from which gravity would have been emitted in reality, might be more

256



realistic than one that conserved energy and momentum.

The foregoing considerations can be made the basis of various algorithms
for iteratively defining PV inversion, by successively reducing the error
in the divergence equation. Tests to date have been confined to the
shallow-water equations on a hemisphere, almost the simplest system for
which the questions involved are nontrivial, but already very nontrivial

since the tropics are included.

For this system a number of iterative definitions of PV inversion have been
devised and implemented, with considerable ingenuity, by Warwick Norton at
Cambridge. Some are Galilean-invariant and some are not (for example a
version using the techniques of nonlinear normal-mode initialization); in
practice the differences have so far been found to be small, consistent
with what we tﬁink is the likely degree of accuracy of the invertibility

concept itself. Figs. 7-9 show one example (Norton, personal

Fig.7 (a) PV distribution from a shallow-water, primitive-equation
integration on a hemisphere, originally intended as a quel stratosphere
along the lines of Figs. 2-4. Map is polar stereographic and ﬁhows the
whole hemisphere. Resolution T63, Reading spectral code; equivalent depth

is 8km. Contour interval is 0.2x1078s7'a™'; shading marks values from

0.8x10°8 Tm™! to 1.2x1078s7'n™!. Higher values are mainly confined to
the main polar vortex and the prominent secondary vortex on the right, deep

inside the tropics.
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Fig. 8 (a) height and wind, and (b) divergence, from the same shallow-
water, primitive-equation integration as in Fig. 7. Contour intervals 200m
and 0.8x10 /s~ respectively. Zero contour dotted, megative values
dashed, in (b).
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Fig. 9 Same fields as in Fig. 8, but recovered by a high-order inversion
from the data in Fig. 7 alone. (Calculation by W.A. Norton.)
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communication). Fig. 7 depicts the PV field from a shallow-water,
primitive—equation integration rather like that of Figs. 2-4. Fig. 8 shows
the corresponding height, wind and divergence fields from the same
primitive—equation integration. Fig. 9 shows the height, wind and
divergence fields recovered by one of Norton's inversion algorithms. You
have to look quite closely to see the differences, even in the tropics. A
difference map of the divergence fields using the same contour interval is
blank apart from the zero contour. The same thing happens for several

different inversion algorithms: all give almost exactly the same result.

The equivalent depth for this case is 8km. Other cases down to 0.5km have
been tried, some with Froude numbers well above unity in the circumpolar
"jet. This begins to show more differences between the inversion algorithms
-— for instance, there is a Galilean-invariant algorithm that does better
than the nonlinear-normal-mode one —- but it is a remarkable fact that
invertibility, at accuracies not far short of that shown in Fig. 9, still

holds.
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References and acknowledgements may be found at the end of the second
lecture, "The use of PV and low-level temperature/moisture to understand
extratropical cyclogenesis".
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