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Abstract
Finite element schemes with second and third order basis functions are
introduced for a O-coordinate version of the ECMWF spectral model. The basis
functions are required to be continuous for the second order case, and have

continuous first and second derivatives for the third order splines.

The performance of these schemes was investigated by a series of test
forecasts, which resulted in an improved forecast skill for the finite element
schemes. 50 day integrations showed a substantial impact of the

discretization on the model climate, in accordance with Burridge et al. (1985)

A data assimilation experiment showed that after only 12 hours there was a

reduction of the first guess error with the cubic spline scheme.
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1. INTRODUCTION

The numerical accuracy of horizontal approximations in numerical weather
prediction models has improved noticeably due to the development of the
spectral method. In comparison, vertical discretization techniques are much
less developed. Most models in use today are based on centred differences,

which are second order accurate only on regular grids.

The models developed by Staniforth et al. (1977) and Burridge et al. (1985)
use linear finite element basis functions for vertical discretization. For
regular grids these methods have an accuracy comparable to that of the fourth

order Kreiss—-Oliger (1972) method.

This investigation goes a step further by introducing into a sigma coordinate
version of the ECMWF spectral model basis functions of order 2 and 3 for the
Galerkin finite element (FE) treatment of the vertical discretisation. Such
schemes have a numerical accuracy which approximately matches that of the
spectral method, evaluated for the linear advection equation (Gallagher, 1978;
Steppeler, 1976b). Furthermore, the cubic spline elements are expected to
have a high numerical accuracy for all scales even on irregular grids. Even

if no superconvergence occurs, the scheme will be at least third order.

A potential problem with finite elements is the existence of computational
modes; they were encountered by Staniforth et al. (1977). 1In particular the
high accuracy of the second order elements is achieved at the cost of a rather
poor representation of the smallest scales (Steppeler, 1976a), which might
increase the problems with the computational modes. This problem can also
exist for the spectral method when dealing with non-linear terms. In this

case, the problem is overcome by filtering a part of the spectrum.



Successful implementation of second and third order FE-schemes for horizontal
discretization has been achieved by introducing a selective damping of the

computational modes (Steppeler, 1976a).

The use of a numerical method for vértical discretization is quite a distinct
problem from that for horizontal discretization. Vertical diffusion is
usually included in models to represent the corresponding physical effect, but
it is not a numerical necessity. Therefore it is desirable that the FE-scheme
works without filtering. For the methods described here this was investigated
by examining vertical cross-sections of the temperature field. The second
and third order method did not suffer any apparent problems with computational

modes.

For horizontal resolution, it is appropriate to introduce approximations in
addition to the Galerkin approximation to obtain a scheme which is
computationally cheap. For example, Steppeler (1976b) neglected terms of hiéh
order in Ax and a simplified Galerkin procedure was used. In contrast, for
vertical discretization we use only the Galerkin procedure because in this way
we can obtain the following: energy conservation, a higher accuracy than with
additional approximations, and for one space-dimension the straightforward

Galerkin procedure is reasonably cheap computationally.

The technical aspects of implementing the scheme differ substantially
according to the continuity requirements imposed on the basis functions.
Requiring just continuity for second order elements, as in Steppeler (1976b),
results in a relatively simple scheme, which will be approximately as
expensive as the first order elements. This simplicity is achieved because
the second order field representation is obtained by adding to a first order

scheme one basis function which has support in only one grid interval



(ov’ 0v+1)' Since the expense of a scheme depends very much on the degree of
overlapping of the basis functions, this advantage partly offsets the

complications caused by the increased order.,

In this study we assume that the second order element-functions are
continuous. Computational efficiency is obtained by applying transformations

to appropriate basis-functions, as will be described in Section 3. 1.

The cubic splines are assumed to be continuous, and have continuous first and
second derivatives. Therefore each basic spline overlaps four intervals. One
way of obtaining computational efficiency with this scheme is to transform to

a collocation grid as described in Section 3.2.

Previous experience with linear finite elements indicated that some care in
approximating the top boundary element is essential. In this study a
relatively sophisticated boundary treatment, the B4-treatment of

Burridge et al. (1985), is only used with the quadratic elements. The cubic
spline scheme uses a simplified treatment obtained by extending the least

square approximation integrals only to 0=0 A more appropriate treatment of

1.
this boundary is left until the development of a hybrid coordinate version of

this model.

Section 4.1 reports the result of a data assimilation experiment and
Section 4.2 gives the result of a series of 10 day forecasts. Section 4.3

describes the longer range behaviour of FE-models using 50 day integrations.



2. GALERKIN PROCEDURE

Calerkin discretizations for a O-coordinate model are based on functional

representations for a field ¢(0) of the form:

NLEV A .
¢(o) =} ¢y b (0) (1)
v=1

The basis functions bV(G) which determine the method are defined in
vSection 3. Other than for the linear splines used by Burridge et al. (1985),
the amplitudes ¢§ are no longer node point values of the field ¢(0), since
when the order is greater than one, the bv are different from 0 at more than

one node point.

When computing the right hand side of the dynamic equations with functions of
the form (1), the result cannot be represented by (1). Such functions are
mapped to fields representable by (1) by Galerkin operations G, as pointed out
in more detail by Burridge et al. (1985). Different Galerkin operations G1,
G2 are possible for different sets of basis functions bv in (1). For example,
in Burridge et al. (1985) two sets of basis functions with respect to boundary
elements are used. The first interpolates to 0 in the top and bottom
intervals, whereas the second has piecewise constant elements there. The
Galerkin method is only used for the adiabatic part of the model; the physical

parameterisation is done in node point space, as in the operational ECMWF

model.

An energy conserving Galerkin procedure for the adiabatic part of the dynamic
equations was formulated by Burridge et al. (1985) for a rather wide class of
basis functions. The equations are stated here in a slightly different form
(see Louis, 1984), but for.an appropriate horizontal spectral truncation they

are equivalent.
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In (2), no approximating operators appear in the diagnostic equations for

~ 1

¢, &, w, and wz, so these equations have to be evaluated ekactly. T and T

1
can be interpolated from T in a rather arbitrary way, not necessarily by a

~ ~
Galerkin operation. Here we define T and T to be the virtual temperature for

o £ (o )e Only for the top and bottom intervals do we use different

1" “NLEV
choices for 5, which define various options for the boundary treatment. Since
we use always linear interpolation for the top and bottom intervals, and high
order interpolation only for the middle intervals, we can imme&iately take
over the boundary options BO...B4 from Burridge et al. (1985). The results
obtained indicate that the development of appropriate approximations near the
top boundary can be very effective in increasing the forecast skill. However,
most of the experiments reported here use a boundary treatment in which the
dynamic equations in the top interval (0, 01) are not approximated. This

simplified model is obtained by extending the integral in (3) only from 01

to 1.

For the moist equations, T will be the virtual température which is computed
at node points, and the appropriate interpolation assumption according to (1)
is made. Furthermore X in the thermodynamic equation is moisture dependent;

this is also evaluated in node point space.
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3. FIELD REPRESENTATIONS, BASIS-FUNCTIONS AND
TRANSFORMATIONS

The basis representation of the field ¢ is by node point-values
¢yr V E {1, ...,NLEV}. This representation is necessary so as to have an
interface to the physics routines. The transformation to the amplitudes ¢§ of

(1) will be given in this section. Note that there is a one to one

A
correspondence between ¢v and ¢v.

Since the finite element method is Galerkin based, it has many features in
; A
common with the spectral method. Both the representations ¢v and ¢v

are analogous to the representations in spectral space.

The Galerkin operation G applied to some function ¢{(0), is defined to be a
. function $(0) of the form given by (1). The coefficients $V' belonging to

$(0) according to (1), are defined by

1 NLEV
[ 1l ¢, b,(0)) = ¢(a)]b (0)do=0 H=1, .. NLEV (3)
0 v=1 "

An important step for the implementation of a Galerkin method is the
computation of the Galerkin integrals f bu(o)f(c)dc, with £ being the
right-hand side of the equations. This is explained in more detail in

Section 2 of Burridge et al. (1985).

For the spectral method, an efficient method of computing the Galerkin
integrals is by the introduction of a collocation grid ¢3, Vv E {1, ooy NCOL}.
The same is also possible with finite elements. However there is no one to
one correspondence between ¢v and ¢3, the collocation grid having much more

resolution than the node point grid.



Various technical aspects associated with the collocation grid will be

discussed in this section.

Unlike the spectral method, the finite element scheme uses localised basis
functions. This allows as an alternative the direct computation of the
Galerkin integrals. In fact, so far this has been the most common method
used, and was employed by Burridge et al. (1985). For higher order basis
functions, it is desirable to find the most efficient direct method. A tool
to achieve efficiency is the use of different basis function representations,
alternative to that given in (1). 1In this section, transformations to such

representations will be given.

We confine this presentation to the O-system in which all fields are
represented on levels

., VE {1,....;,NLEV} (4)

vl
In order to avoid additional complications, this presentation excludes

staggered grids.

3.1 Second order elements

(a) Regresentation of fields as_linear splines

We allow the possibility of representing only the middle atmosphere by second
order elements, keeping a first order representation for the rest of the
atmosphere. Let VB, vT be the levels between which the fields are to be
represented by second order elements. It is required that

V=V =2r re{1,2..00.} (5)



There will be r-1 nodepoints for the linear spline between vB and VT’ and

r points to define a quadratic correction (see Fig. 1).

It is evident from.Fig. 1 that the introduction of a guadratic spline is
appropriate for models requiring very good resolution in the middle

atmosphere.

Basis functions hv for the quadratic correction are associated with odd values
of v-vB, AV (vB,vT). For the other Vv linear basis functions ev are defined.
The range of V to define hv will be called H, and the range of Vv for the

definition of e, will be called F.

The basis functions for the linear part of the field are the same as used with

a linear FE-method (see Fig. 1).

(oT -c)/(oT _Uv) for ¢ € (cv,cT )
Y v Y
e~ (o-oB )/(ov-oB ) for o € (cB ,ov)
v Y Y
0 otherwise (6)
with 0v-2 if v=2 > vB
UB - g otherwise
v V-1
. - Gv+2 if v+2 < vT
Tv 0v+1 otherwise
VvV EF

The basis functions for the quadratic correction are:

-+(0=-0 (o, . ,=0) for 0 € (o o )

z V- v+ -1

= 1 1 v=1""v+1 1
0 otherwise



=0
v=1
v=3
v=b
V=7t ;
C:’: 39
o hg
y=9—p+
=10
o=1
olly
Fige 1 Representation of the field ¢(c) by quadratic elements for NLEV = 10,
Vg = 3, Vp = 9, and basis functions e_ and hg.
o quadratic-correction nodepoints
® - nodepoints of the linear spline



The representation of the field is then given by

$(0)=] dyey () + ] b 5 h () (8)
VEF VEH

A

¢v, vV € F, and ¢ Vv € H, are the dynamical variables and provide an

gov’

equivalent field representation to nodepoint values ¢v' v € (1, NLEV).

(b) Transformation to gridpoint values

This transformation has to be done only for the points Vv € H determining the
quadratic correction, since for the other points v € F, ¢v already appears as

the amplitude.

Let ¢v £ (GV—1'UV+1) with v € H. Then using (8) with 0=6v' and (6) we
obtain
¢ (0. -0 ) + ¢ (o -0 )
V+1' TV V=1 v=1""v+1 "V
b, = ——— + ¢ . b0 (9)
- ago vV
v+1 v-1 Y]

(9) is also easily solved for ¢oc « For the formulation of the initial state
v
and to obtain a good interface with the physics routines, it is probably best

to choose dv=%(c 1) in (9). However, the method will be presented for a

v1 %
general choice of the parameter Uv in (9), and the resulting FE-method for the
adiabatic part of the model is independent of the choice of Gv for v € H. The

test forecasts will be done using the Ov values shown in Fig. 2 (see

Section 3.2).

(c) Part orthogonalization

It is appropriate to represent the left-hand sides of the dynamic equations in
partly orthogonalized form, because with this basis the matrix inversion in
the FE-scheme becomes very simple. We obtain a matrix with two side diagonals
for the points V € F. This is solved in the same way as for first order
elements. For the levels V € H we get an independent set of equations which

are diagonal.

10



The transformations of the basis functions are given by

ev=ev+Athv+1+kahve1 (10)

A =0 if v#1 g H
v (11)

A_ =0 if v=-1 g H

For the cases not covered by (11), the AT and XB are determined by e,

v v
(eyrhyyq)
L S NN (12)
Vv v+1" v+
A _ (e\) 'h\)" 1 )
By (hv—1'hv-1)
1
with (£f,q9) = [ £(o)g(o)do.
0
For (8) the transformation gives (13)
¢(o)= 2 ¢vev + Z ¢vhv
VEF VEF
with
N I T L (14)
Vv v+1 V-1
Since ¢v+1 and ¢v-1 in (14) are not transformed, (14) can easily be solved
for ¢Uo .
v
(d) Transformation_to_an intermediate basis

In this section we consider transformations concerning a grid interval

(

0v—1'°v+1)’ v € H, rather than a nodepoint V.
For the formation of products it may be convenient to transform to the

function system

4

X,(0) = (0=0,) z e {0,1,2} and v e =H (15)

11



The reason for this is that the intervals (cv_1,0 ); V € H,are those with

v+1
the minimum overlap of basis functions (i.e. the ones that can represent
functions by the least number of basis functions). Therefore it is

advantageous to form products first in each interval and then form the scalar

products in a second step.

Some of the simplifications achievable in this way are often observed in a
more straightforward approach by arithmetic manipulation of the resulting

equations.

(e) Transformation to functions with zero main-nodes

Substantial simplifications can be achieved for the formation of products by

subtracting a spline which is mapped identically by the Galerkin operation.

For example, the basis function e, of (6) normally overlaps 5 other basis
functions. The formation of the scalar product of a function eu with a
product of two functions will in standard form result in 2x5x5 = 50
multiplications. The corresponding operation for a grid-method needs one

multiplication.

Let V € H and consider the case when v+1 and v-1 € F. Let a product of g(o)

and £(0) be formed. For the interval (o, ,, 0, ,) we then form according to
Section 3.1(d) the representation:
g(o)=gv—1+gccvhv(o) + gv-1'(0_°v-1) (16)
~ Ty+179y-
wen g, o
V+1 V-l
f(0)=fv+1+fcovhv(°) T Eqe (070, ) (17
. ~ Fo—17fueq
R Y
V=1 "V+1

12



We can write the product in the form:

ge£=a ' (0)+a? (o) (18)
“1(°)=gv—1fv+1+gv-15v+1(°'°v+1)
+5\)—1"(0—0\>-1)f\:+1-i'§\)-1%‘\)+1(0—0\)-1)(0“0\&1)
*9yoqfgg Ry Oy 1966 By (O)
v v
az(0)=gccvhv(0).foovhv(o) (19)

+gcc hv(g)fv+1(0_0 )

v

v+1 V=1

)+foc hv(o)gv_1(d-c
v
al(o) is a quadratic spline and is therefore transformed identically by the

Galerkin projection. Using (8) we can obtain al(o) by the difference formula

a1 = £
v=1 Jv=1"v-1 (20)

1 _ ~ ~
%55 ~29v-1Fv+11Iv-1% 00 v+ 1900
v Y v
The corresponding spline is given by (8). On average this involves two
multiplications per gridpoint. Since (19) involves three linear independent

functions per interval, a substantial saving of multiplications is achieved.

Another application is the transformation of a spline to another function
system which differs only in the form of the boundary-elements. The formation
of the scalar products for this transformation, as done in Burridge et al.
(1985), has three multiplications per gridpoint and would require four
operations for the quadratic elements. After subtracting the appropriate
function, the scalar products are non-zero only for the two boundary elements,

so that most of the multiplications can be eliminated.
A special case of function multiplication is that involving the w-term of the

thermodynamic equation. Here it may be particularly useful to transform to

zero-node functions because the straightforward formation of scalar products

13



involves weights which are mostly different from each other. Consequently the
possibilities of simplifications by algebraic manipulation are less obvious

than for the other products.

3.2 Cubic splines

We use here piece-wise cubic polynomials to interpolate between nodepoints.
At nodepoints, continuity of the fields and of their first and second
derivatives is required. Fig. 2 gives an example of the cubic spline
interpolation on the grid used for the model integrations reported here, and
Fig. 3 shows a basis function for the corresponding FE-scheme, overlapping

four model intervals.

The idea of using linear interpolation for the top and bottom ¢-intervals,
which we used with the quadratic splines, is not feasible if we require
continuous first and second derivatives also for levels 1 and NLEV. We will
therefore not require the continuity of the second derivative for these
levels. Another possibility would be to provide four boundary conditions for
0=0 and 0=1, which would best be used to define at least two additional

boundary related dynamical variables per field.

(a) Interpolation formula

In this section we obtain the polynomial representation of a field defined by
its gridpoint values. This can either be used directly to compute the scalar-
products of the FE-method or to create fine-mesh data for the collocation

approach.

According to Ahlberg (1967) the spline interpolation can be based on the

computation of either moments (second derivatives) or first derivatives at

14
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Fig. 2 Example of representation of a field by cubic splines in the vertical
grid used with the ECMWF model.
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Fig. 3 Basis spline in the model grid.
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nodepoints. For our purpose, it seems more appropriate to use the computation

of first derivatives.

Let a field ¢(0) be given by its nodal values ¢v' and define m,, by

(3%
m, =(55),, V€ {1,... ,NLEV} (21)

For every interval (Uv Gv), Vv E {2, ceey NLEV}, we have thetfollowing

-17
representation of ¢ and its derivatives:

(6.~0)2 (o-0 .)

V=1
¢(0)=m  _
V=1 A2
v
- 2 -
. (o 6v-1) (g, g)
Y
(0.-0)2 (2(0=0,, ,)+A.) ,
v V=1 v
+ 4y 3 (22)
A .
v
- 2 -
‘o (o Uv—1) (2(0, c)+Av)
v A3
v
(cv-o) (ZGv_1+0v—30) (23)
o5l0)=my 4 A2
v
o (o=0,,.¢) (2°v+°v-1'3°)
v A2
v
Py=Py-1
+6 ——:;;——— (cv-c) (G_Gv-1) (24)
Y
20_+0 =30
v Tv=-1
¢oc(d)— - 2mv_1-————X5————— (25)
v
20, ,+0 =30 ¢,,=¢.,_
- va __l)_lz_\)—. + 6 _Y._%_l (o—\)+0'\)—1-;20‘)
A A
v Y

where Av=cv—0v_1. For v=1 and V=NLEV we have to specify two boundary
conditions derived from the continuity of the first derivative. As pointed
out above, we do not make a requirement concerning ¢00 at these nodepoints.
The spline boundary conditions to be imposed will depend on the boundary

treatment chosen for the linear part of the splines in the intervals (0,01)

and (GNLEV’1)'

16



In order to describe the cubic spline method for a rather general boundary
treatment, we formulate the different boundary options by introducing field-

values at 0=0 and o0=1, called ¢, and ¢ For example, the temperature
0

NLEV+1.

field treated by boundary B2 from Burridge et al. (1985) is given by

To= T4 v TxpEv+1” TNLEV

For ease of notation, we also introduce

6.=0,

0 1 (26)

ONLEV+1™

Then the cubic spline boundary conditions are

ne ot Ca
1 01-00 2

n _ dxrEV+ 1 PNLEY _ CNLEV (27)
NLEV O

-0
NLEV+1 NLEV

By (22) and (24), ¢ and ¢0 are continuous. The continuity of ¢oo will

determine the m/  for v € {2,...,NLEV-1}. From (25) we derive

Avmv_1+2mv+uvmv+1=c (28)
A\)+1
with Xv=-z—;x——- uv=1-lv
vV V+1
N By =0
-1 v+1 "V
i W N (29)
- v V+1

Combining (27) and (28) we obtain the following set of equations for

m1,...,_mNLEV
2 0 0 0 seee m1 .C1 T
12 2 M, 0 veve m, c2
0 A3 2 Ugeees m, = c3 (30)
oot MaEv-1 2 MNLEV-1 | | PNLEV-1 CNLEV-1
ceee O 0 2 MLEV CxLEV

17



(b) Minimum overlap sgline basis

A spline basis e of minimum overlap will probably be used only on the left-

B\)
hand sides of the equations. Normally the representation as gridpoint values
will be more convenient. Therefore only the transformations from b-spline to

grid-representation need to be done. Away from the boundary, g will be

v
different from zero at three nodepoints. Therefore the amplitudes of this
representation will not be gridpoint values of the fields. The basis spline
will have the support of 4 grid intervals, so that the mass matrix of the

FE-scheme will have 3 side-diagonals. A basis spline function is shown in

Fig. 3.

The interpolation formula given in the previous section provides the
polynomial representation of the spline, provided that node values and values
of the derivatives at nodepoints are given. Scalar products and field values
at intermediate points can be formed using this polynomial representation.
Therefore we must determine the gridpoint values and node derivatives of the

b-splines.

We associate a b-spline with every model level and distinguish between three
kinds of b-spline definition according to their vicinity to the boundary v=1
and V=NLEV. Here the definition of the boundary splines only for the case of

the upper boundary V=1 will be given.

18



The definition of the splines is given by the following conditions:

for u # 1, 2, NLEV, NLEV-1

X'(0,4,) =0 (a)
X'(o)) =1 (b) (31)
Xg(0s,) = 0 (e)
Xzo<cviz) =0 (a)

The spline for 1 2 is defined by:

2

X (02+2) =0 (a)
2 -

X (02) = 1 (b)
2 _

Xo(0,,,) =0 () (32)
2 _ .

xcc(02+2) =0 (d)
2 x2(01)

Xg (940 = =5 — (e)
2 -

X2, (6) =0 (£)

For 4 = 1 we have the definition:

X1(U1+2) = 0 (a)
x1(c1) =1 (b)
x;(on) =0 (c) (33)
X3o) = 2 (@)
1
X} (o, ) =0 | (e)
ag 142

According to Section 3.2(a) the spline is known if in (31) the conditions on

Y vt
Xco are expressed by computing the nodepoint-values of ¥ 1. It is sufficient

to describe this procedure for the spline not adjacent to the boundary,

defined in (31).

19



v \Y :
This spline is composed of three auxiliary splines 1x ' 2xv, 3x defined

according to Section 3.2(a) by the conditions

2.V

X (Gvi1) =0 and (31) a,b,c (34)
1. v 1V 3

X () = 'x (o, ) =0 (35)
TW( ) =1 and (31) a,c

X 2% !

3 v 3w _

x"(a) = *x"ta,_) = 0

330 ) = 1 and (31) a,c (36)
X %41 !

Y

\Y
Let ;mv be the nodal slopes belonging to the splines Cx , as computed

according to Section 3.2(a).

Y
Let us form ¥ as

=2 o) + a X (o8 %0

From (314, 24) we obtain two equations for a and B

3x3
1v 3 v 2V v+ 1
o m +Bm + m —_ =0
v+1 v+1 v+ 1 Av+2
3
3x
1V 3 v 2V V-1
- -+ =
@ my B,y t 0 (37)
v=1
1 v 3 v 3 v 1 v
for = My g Myoq F Myyq Py F O

{(37) can be solved for a and B, which are the required nodepoint values.

(c) Transformations to intermediate bases

We will use two kinds of intermediate representations: the interpolation to a
finer grid and the representation by Taylor coefficients. In both cases we

will first have to compute the m, according to Section 3.2(a).

For the transformation to a finer grid, let 01,...,0 e (g

T =1 cv) be given.

From (22) and (24) we get the transformation by using o = EC'

20



For the computation of Taylor coefficients assume a point o€ (Gv_1, v
about which the development is taken:

¢(c)=¢0+¢1(c-E)+¢2(o-5)2+¢3(o-5)3 for o € (0,_,,0,) (38)

with ¢0=¢(E)

$,=6 (3 | (39)
_1 ~
9, 3 LI
_ 1 ~
¢3_ 6 ¢oco(c)
We have
3 - 89 _ 20,
¥505l9) = A2 (m,,_ y*my) A3 (0y=¢y_y) (40)
v v

and the other derivatives of ¢ can be taken from (22)-(25).

3.3 Operation counts

As an illustration consider the representation of fields ¢1 and ¢2 by the b-
splines of Section 3.2(b).

¢C(o)=2asxv(c) ze{1,2] (41)
Vv

A b-spline xu overlaps 7 other b-splines. Therefore by programming the scalar
product of xu with the product of ¢1 and ¢2 in the straightforward way

1,2 Vi,V 1 .2
oo =1 T w2 .¢) (42)
V,EM V_EM 1 "2
1 2
with W 1r¥2 = (x"1,4V2)
and M being the set of indices V whose xv overlap with xu, we obtain 2x49

multiplications for an operation whose gridpoint equivalent cost is one

multiplication.
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This example shows that even for a research model it is necessary to consider
the organisation of the model in order not to incur an excessive computational

coste.

‘Basically, the discretization given in (42) is the same as used in

Burridge et al. (1985).

For the linear FE-scheme, the operation count is 18; by algebraic
manipulation, using the fact that many of the weights are equal, this is

reduced to 11.

In this study, the intention is not to go into detail concerning optimization.
Therefore we will consider only the discretization of the product of two
different fields ¢1 and ¢2. This term is probably not responsible for the
advantages of the FE-scheme; energy transformation terms and the vertical
advection terms are the more likely cause of these. However, as discretized
in the ECMWF linear FE-models, it is responsible for a lot of the
computational expense of the schemes since many products of fields have to be

taken.

For simplicity we count only multiplications and consider the number of

intervals (cv Gv) as equal to the number of model levels, ignoring

-1/
overheads associated with boundary elements. We also do not consider the
computational overheads incurred in transforming the fields; for example the

transformation to a finer grid for the collocation method, and the Gaussian

inversion leading from scalar products to the amplitude space.
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We consider only computations using grid interval. associated qualities,

meaning that a set of numbers is computed associated with each (Gv_1, Gv)

which will be used for the computation of several amplitudes. The method

indicated in (42) will not be considered. For comparison, we consider also

the linear elements.

For the gquadratic spline, half wvalues may appear as operation counts since

there are two kinds of amplitudes for which the average has to be taken.

For the collocation method, we use Lobatto's integration, which is the
equivalent of a Gaussian integration with the additional requirement that the

end—~points of the integration interval are nodepoints for the integration.

Let Uv' Vv € {0""n}’°0=cv—1’ on=°v be the collocation points associated with

the interval (Ov_1,0v).

The integration formula is

O'\) n ~
/ £(0)do=) f£(0

Gv-1 £=0

W (43)

€8

Let 4 be the maximum degree of the polynomials which are to be computed

exactly. We then obtain the condition

n > g-+1 (44)

where n is the number of collocation points necessary per grid point.

The resulting number of collocation points is listed in Table 1.
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Method 1st order FE 2nd order FE cubic spline FE

Number of .
of collocation points 3 5 6
Table 1 Number of collocation points necessary

for different methods

The interval basis is assumed to be
g

£(0)=) cv(o-co)v for ¢ € (0 _
v=0

179, (44)

with 0=2 for second order and 0=3 for cubic spline elements.

The transformation to zero-node splines is described in Section 3. 1(e).

For example consider the second order FE-method. The spline P to be

subtracted for the product £l (o) £2(a) is, according to (8) given by
1.2

Pv=fva for v € F
and Py, = Elf260v+fgdvfi (45)
+uy (€1 €L )(EL, L) for v e
with?f'p = % (f\p)_1 +f3+1), 35%(0v+ov+1) and v, being a weight factor.

To derive (45), represent fp for 0 € (ov e +1) in the form

-1""v
Cf L L ~Ed
v+ V- —
fp=Ep + ——-1—0—1' (g-0g) +

— pd hv(o)
v+1 v-1

g
AY
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17 Typqlr

V € H, we have to-compute three linearly independent amplitudes, f;c fic '
' v v

From (45) we need 1+4 multiplications. For every interval (cv_

1 2 2 1 1 2 . s a4 .
focv (f\)+1 fv-1)’ (f\)+1 fv—1)foocv needing three multiplications. The three

o ) have to be multiplied

amplitudes associated with an interval (Gv—1’ V1

with weights in order to get the scalar product with the basis functions.
Since the basis function e, of (8) overlaps two intervals, and hv overlaps one

interval, we need 6 and 3 multiplications for this.

A factor % has to be applied because for second order elements one grid

interval (o ) supports two amplitudes. So we arrive at an operation

' v=-17 o\)+1

count of 8.5 multiplications.

The other computation methods have also an expense associated with each
interval and another one associated with the formation of the scalar products.
In all cases, the second part of the computation is more expensive than the
first because the basis functions overlap many intervals. This is mainly the
reason for the relative economy of the second order FE-method and the high

expense of the cubic spline method.
Table 2 gives the operation count for the methods mentioned.

The higher order FE-methods proposed can be considered as further developments
of the linear FE-method in Burridge et al. (1985). The computational costs of

the implementation of this method in the spectral model was 5 to 6%.

When choosing a method of computation, it should be noted that the methods of
interval-bases and transformation to 0-node splines can be applied also to the
product involving the w-term and the grad ¢ term. The operation count will
then change slightly compared with Table 2. The direct application of the
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collocation method is not possible for these terms. Therefore it will be
necessary to use interval bases for this term or to do algebraic

transformations on these terms to separate a part which can be computed by

collocation.
as implemented |collocation interval transformation to
with 1st order method bases 0-node spline
ECMWF-FE method

grid model 1 - - -

1st order FE 11 3+2x3 = 9 4+2x3 = 10 1+1+2 = 4

2nd order FE - 3.5+3(2x5+5) | $.9+3(2x5+5) |4 (1+4+3)+1(6+3)

= 10 = 12 = 8,5
Cubic spline FE - 6+4x6 = 30 16+4x7 = 44 -

Table 2 Operation counts for different methods

Table 2 is intended to give only a rough estimate of the expense of the

FE-methods. We may draw the following conclusions.

a) For first and second order finite elements, the transformation to
0=-node splines seems most appropriate. For the cubic splines, the

collocation method will be the most economic.

b) The cost of the second order elements is not excessively above that of
the first order elements. It should be possible to implement the
second order elements within the time used by the linear FE methods

presently implemented at ECMWF.

c) The cubic spline FE method is quite expensive, but its expense remains
reasonable for a research version of the model. If instead of using
the full Galerkin procedure one introduces simplifications like the
employment of fewer collocation points, there is some scope for making
it computationally less expensive.
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3.4 Gaussian inversion

For second order splines we need to solve only equations involving a one sided
diagonal matrix. These are treated in the same way as for the linear
elements. For the cubic spline-elements, we need the Gaussian inversion

procedure with three side diagonal matrices, which will now be discussed.

Let the matrix equation be given as

I Bigr Bogr Bugr Bgr 0, 0f eennnens [ X, c,
Bygr By A23; Bogr Bogr Of eeeennnns X, c,
Byqr Byyr Bagr By Boy Bygenneenes X, c,
Baqr Bagr Byge Byyr Bygr Bygr 5|7 | Ca (46)
0+ Bgyr Bgzr Bgyr Bggr Aggs Xg Cs
0+ 0 v Aggr Bour Bggr Bggr X %

The side diagonals are _#0 for p £ {0,1,2,3
ViU

The solution is achieved by the following set of substitutions:

for 4y = 1, +e., NLEV-1 successively

A
— _ K.
AK,u+V h AK,u+U a Au’u+v
H/U
A (47)
K
c == c -—Hc
K K A 0
H/U

The solution is then obtained by

C

- NLEV
NLEV - Agrev,NLEV
a
c. - ) A X
) K7 e KrVR,V ,
X, = - (48)

K, K

a=min (K+3,NLEV)
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4. NUMERICAL EXPERIMENTS

The second order elements were implemented using the transformation to
zero-node splines and the interval basis method. The cubic spline elements
were implemented by the collocation method. According to Section 3.3 these
are the most efficient approaches. Since the top model interval uses linear
interpolation of the fields, the formulations of boundary eleﬁents given in
Section 2.4 of Burridge et al. (1985) can immediately be applied. The
quadratic splines were formulated using boundary treatment B4 of Burridge
et al. (1985). The cubic splines use a simplified treatment of the boundary
obtained by extending the Galerkin integrals from 01 to 1 instead of from 0
to 1. According to calculations with horizontal resolution T21 and linear
elements, this is not a very good formulation and the results are likely to
suffer from it. However, a more sophisticated boundary formulation with the

third order scheme was left until a formulation of the scheme in the hybrid

coordinate used operationally at ECMWF is available.

4.1 Data assimilation

Experiments were performed from 12Z, 20.1.85 usingva g-coordinate version of
the ECMWF operational model and the cubic spline finite eleﬁent model to
produce the first guess. The oy values can be seen in Fig. 2. The first
guess error was evaluated directly against measurements. The cubic spline
finite element model reduced this error already after the first 6 hour cycle.
Figs. 4 and 5 show the first gquess errors after 12 hours of assimilation for
the northern and southern hemispheres. The assimilation cycle was continued

for 3 days. The reduction of error by the cubic spline method, as shown in

Figs. 4 and 5, was typical of the whole cycle.
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Figs. © and 7 show the comparison of first guess errors for Ffirst and third
order elements. The treatment of the first order elements at the top of the
atmosphere was simplified in the same way as described for the third order
elements. 1In the_upper part of the atmosphere, the third order elements give

better results than the first order ones.

Forecasts were run from these analyses with the cubic spline model, and the
O-coordinate version of the operational model. After 3-5 days, the FE-model
became unstable due to small scale features being present in the top level of
the analysis. The investigation of this problem was postponed until the
development of a hybrid-coordinate FE-scheme. Up to day 3.5 the anomaly
correlations are shown in Fig. 8. There is some advantage of the FE-scheme
for wavenumbers 10-20 and to a lesser extent for wavenumbers 4-9. However,
with the total scores being very little improved, the difference in the

forecasts is not of great relevance up to day 3.5.

4,2 10 day forecasts

(a) Objective verification

Ten day integrations were performed for two sets of 6 initial dates, given in
Table 3. Set 1 consists of the same dates used by Burridge et al. (1985) for
test runs. Model runs were performed with quadratic elements for both sets
(12 cases) whilst the cubic spline scheme was tested for Set 2 (6 cases). For
a subset of Set 2 (cases 2,3,6) computations were carried out with linear
elements, using the same simplifications at the top boundary as employed with
the cubic spline elements. Set 2 results in very good forecasts, with the
height-anomaly correlation staying above 60% for the whole 10 day period in

most of the cases.
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N. Hemisphere

10 - 69
20 | 223
30 281
50 356
70 375
100+ 460
150 431
200 |- 445
250 461
300 473
400 | 486
500 - 498
700 484
850 423
1000 L 1 244 L l ! 1 |
0 2 10 -6 -4 =2 0 2 4 6
RMS(U-COMP) BIAS(U-COMP)

Fig. 4 First guess rms error and bias in the northern hemisphere for the
u~-velocity component after 12 héurs of assimilation. Solid = control,
dashed = cubic spline finite element model.

S. Hemisphere

10 - 5
20L 8
30k 14
50 |- 17
70 - 16
100 | 23
150 23
200+ 23
250 24
300 25
400 25
500+ 25
700 24 _
850 - 20 <;;
| 12 L | 1 N 1 1 !
100Oo 2 -6 -4 -2 0 2 4 6
RMS(U-COMP) BIAS(U-COMP)

Fig. 5 As Fig. 4, for the southern hemisphere
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N. Hemisphere

10 - | 69
20 L 223
30 281
50 L 356
70 L 375
100 459
150 432
200 445
250 461
400 L 486 -
500 498
850 423 )_
L I 244 l ! i 1 I
1OOOO 2 10 -6 —4 =2 0 2 4 6
RMS(U-COMP) BIAS(U-COMP)

Fig. 6 First guess rms error and bias in the northern hemispheré for the
u-velocity component after 12 hours of assimilation. Solid = linear
finite elements, dashed = cubic spline finite elements.

S. Hemisphere

10 5
20[ 8
30 14
50 | 17
70 - 16
100 23
150 23
200+ 23
250 24
300 24
400+ 25
500 25
700 L 24 -
850 | 122 <—
i L | 1 i i ]
10005 2 -6 —4 -2 0 2 4 &
RMS(U-COMP) BIAS(U-COMP)

Fig. 7 " As Fig. 6, for the southern hémisphere
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Case No. Set 1 Set 2
1 16.8.83 1.1.85
2 25.12.83 10. 1.85
3 1. 1.84 20.1.85
4 10. 1.84 30.1.85
5 23.8.83 10. 1.84
6 7.4.83 20.1.84

Table 3 The initial date for 10-day test integrations

The experiments were compared for a range of days where nearly all
correlations remained above 40%; days 5 to 8 were used for Set 1. Since Set 2
was a set of extremely good forecasts, days 5 to 10 were used with this set.
The model used for the control was a O-coordinate version of the ECMWF
operational model. Fig. 9 shows the scatter diagram comparing the control
runs with the corresponding experiments using second order finite elements for
days 5,6,7,8; total anomaly correlations of height, averaged for 1000 to

200 mb, are compared. For Set 2, the corresponding diagram is given in Fig.
10, whilst Fig. 11 gives the results for the cubic spline elements. It
appears that all methods produce an almost systematic improvement compared
with the control runs, with nearly all points being on one side of the
diagonal. There is no systematic relationship between second and third order
or second and first order elements; different methods give the best
improvement on different dates. This may partly be due to the fact that the
boundary treatment for the second order elements is different from that of the
other finite element methods: the second order elements use the Bd-boundary of
Burridge et al. (1985), first order element runs are available for B1 and B2

boundaries, and the cubic spline method uses a simplified boundary treatment.
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Fige. 9 Total anomaly correlations of height, 1000-200 mb, scatter diagram
comparing control run and second order finite elements for set 1, days
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Fig. 10 As Fig. 9, for set 2, days 5,6,7,8,9,10.
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Fige 11 As Fig. 9, for cubic spline elements, set 2, days 5,6,7,8,9,10.
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Furthermore, the linear analysis given in Steppeler (1975) indicates that
quadratic splines improve the accuracy of difference models only for
wavelength greater than 4Ax. There may well be a range of wavenumbers smaller
than 4Ax for which linear elements have a better accuracy. For the
investigation of a possible difference in performance of high and low order
elements a comparison of order 1 and order 3 elements seems thérefore most

appropriate.

The differences between finite element and control runs are smaller than those
encountered between the spectral method and a second order finite differencing
in the horizontal as described in Girard and Jarraud (1982). Typically, the
finite element scheme encounters the same differences at day 7 which the
spectral method had after 4 days. However, the present results indicate a

rather systematic increase of forecast skill.

For the finite element schemes, the average increase of the height anomaly
correlation of the different forecast days are given in Fig. 12. The increase
of forecast skill for both methods reaches the same order of magnitude as for
the comparison of spectral and grid point methods (Girard and Jarraud, 1982).
However, some sampling error may be present since the present study uses a

rather limited set of cases, with only 2 summer cases being present.

Fige. 13 gives the standard deviation of temperature for the ensemble average
of Set 2. Again a small improvement of the‘cubic spline elements over the
control run is apparent, however comparison of second and first order elements
does not give a clear indication of which one of them is best. The detection
of small differences in forecast skill is difficult because they do not
improve systematically. Compared with the control run, the cases which show

the best improvement are different for linear and quadratic elements.
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Fig. 12 Average increase of anomaly correlation of height, 1000-200 mb (a),
. second order elements, combined sets 1,2; (b) second order elements,
set 2: (c) cubic spline elements, set 2.
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Fig. 13 Ensemble average standard deviation of temperature, set 2
solid = control, dashed = cubic spline finite elements.
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Computational modes were a problem with some of the first applications of
linear finite elements for vertical discretization. One might expect such
problems to become worse with higher order element functions, but no such
problems were encountered with either second or third order elements. Fig. 14
gives the example of a vertical cross-section for a day 10 forecast obtained
with cubic spline elements. No small scale noise is apparent.‘ However, the
problem remains that some of the cases required a reduced timestep, and the
data assimilation run had a noisy top level. Hopefully, these problems will
disappear with the introduction of a finite-element semi-implicit scheme and

hybrid coordinates. Work on this is in progress.

(b) Synoptic_assessment

Between days 5 and 10, significant differences between control and finite
element runs develop. The synoptic examples given here are intended to

indicate the sensitivity of the forecast to finite element discretization.

Fig. 15 shows 1000 mb height fields for the forecast with the gquadratic finite
element scheme and the control run from 10.10.84 at day 8. The main
difference between the forecasts is a more realistic position of the high
between 150°W and 180° with the finite element scheme. The low over the
Pacific has a better amplitude in the control run, but the complex low over
Europe and the Atlantic has a different structure in each forecast. Both
models predict too low a pressure near 30°W. The finite element scheme

produces a better representation of the trough extending along latitude 60°.
Fig. 16 shows the 500 mb field of the forecasts from 30.1.85. The main

deficiency of the forecasts is the development of an artificial high near the

north pole. Consequently the adjacent low fails to extend far enough north.
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Fige 15 D+8, 1000 wb height field for forecast from 10. 1.84.
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Fig. 16 Forecast from 30. 1085,' 500 mb.
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This low is nearly identical in the forecasts using cubic spline finite
elements and finite differences at day 6. At day 8, the position of this low
differs by 30° of longitude in the two forecasts. In reality, the low centre

lies between the two forecast positions.

Fig. 17 shows the 1000 mb forecast from 10.1.84. In this example, the models
represent some of the newly developing lows, though sometimes with
considerable phase and amplitude error. In comparison with the analysis, the
models tend to connect the different lows, producing too few centres and
making such ceﬁtres not distinct enough. The cubic spline scheme somewhat
?educes this error, reaching at day 9 a state with more distinct lows and
producing a new low at 0°E, though misplacing this low over Italy instead of

over northern France.

Fige 18 shows the 1000 mb fields of day 5 forecasts from 20.1.85; the
forecasts are still very similar. For the complex low between 60°W and 60°E a
tendency of the finite element schemes to produce slightly more pronounced

separate lows can already be seen.

The rainfall patterns are very similar for the finite element and control

runs. However, the amplitudes differ by up to 20%.

Fig. 19 shows the zonal kinetic energy for the control and cubic spline finite
element runs, averaged zonally and for days 5 to 10. The amplitude of the jet
stream is slightly underpredicted with the third order finite elements, but
the amplitude is better than in the control. For the other cases the
amplitudes of the jet stream are listed in Table 4. In most cases, the
amplitude of the jet in the control run is too small. Overall the third order

elements give a better amplitude.
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Fig. 18 D5 forecast from 20.1.85, 1000 mb.
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Fig. 19 Zonally averaged zonal kinetic energy for forecast from 10. 1.85.
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Amplitude of jet stream
[10 kJ/m2 bar]

Case No. Observed Control Cubic Splines

1 1347 1047 1105

2 1285 1315 1291

3 1248 1201 1232

4 1251 1088 1131

5 1085 907 897

6 1063 889 933
rms difference to 71 59
observation

Table 4 Amplitude of main maximum of normal kinetic energy

In order to compare the performance of models with high and low order element
functions, three forecasts were performed using linear elements and applying
the same simplification at the boundary as employed with the cubic spline
elements. Fig. 20a shows a comparison of these with the control runs. On
average, no improvement is encountered with the first order finite elements.
This is in contradiction with the results of Burridge et al. (1985), but may
be due to the simplified boundary treatment employed. Fige. 21 gives a further
indication of this, showing the forecast error of temperature. An increased
forecast error is encountered due to the simplified treatment of the top
boundary with linear elements. In comparison, there seems to be less

sensitivity to a bad treatment of the top boundary with cubic spline elements.
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Fig. 20 Total anomaly correlations of height, 1000-200 mb, scatter diagram (a)
comparing control run and first order finite element scheme with
simplified boundary treatment for cases 2,3,6 of set 2, and (b) the
corresponding results comparing the first and third order schemes.
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Fig. 21 Temperature errors for forecast from 10.1.85

r averaged zonally and in
time., (a) linear elements; (b) control;

(c) cubic spline elements.
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For cubic splines, the temperature error is comparable to that of the control
run. Fig. 20b shows the comparison of linear and cubic spline elements. 2An
advantage of the cubic elements over the linear ones can be seen. In view of
the small sample and the simplified boundary treatment, however, a final

decision between these two schemes cannot be made at this point.

4.3 50 day integrations

According to Burridge et al. (1985), the finite element discretization and the
treatment of the top boundary has a substantial influence on the climate

" properties of the model. Here, we investigated only the climate properties of
the quadratic elements, since the cubic elements are available only with a

simplified boundary treatment.

50 day integrations with resolution T42 and initial date 17.1.84 were done
using quadratic elements with boundary treatments B0 and B4 described in
Section 2.4 of Burridge et al. 1985. Fig. 22 shows time averaged 500 mb
fields (day 25 to 50) for analysis, control run, and quadratic finite elements

with the two boundary treatments.

As in the experiments with linear elements, reported in Burridge et al.
(1985), the form and position of the polar low is better for the finite
element runs. The ridge at 120°W and trough at 150°W are very weak with the
BO boundary, but these features are rather exaggerated with boundary B4.
However the phase of the ridge in both these cases is now nearly correct and
is also improved compared with the linear elements given in

Burridge et al. (1985).

A further improvement is a better position of the centre of the low near 60°W

which is also improved in comparison with the linear elements.
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Fig. 23 shows the =zonally averaged temperature errors. There is a strong
temperature error at the top of the atmosphere. The model with quadratic
elements and boundary B4 reduces this error and the gradient at the top model

level.

The kinetic energy of the zonal mean flow averaged over days 25 to 50 is shown
in Fig. 24. The finite elements with boundary B4 have an improved amplitude
of the subtropical jet stream, and the high velocities at the top of the
atmosphere are reduced; the position of the subtropical jet is also slightly
improved. However the strength of the stratopsheric jet can be very variable
because of sudden warmings and related events. Therefore a large sampling

error may be encountered in this respect.
Figs. 25 shows the spectrum of kinetic energy. For the shorter wavelengths,

the quadratic elements produce the more realistic spectrum, though it is worse

for wavenumbers 1 and 2.
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ig. 22 50 day runs, time averaged fields day 25 to 50
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c) FE02, BO

d) FEO2, B4

Fig. 22 Continued
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5. CONCLUSIONS

Verticai finite element schemes with basis functions of order 2 and 3 have
been implemented with the ECMWF spectral model. Different ways of
implementing the full Galerkin treatement were examined in order to find the
most efficient implementation. The second order elements are computationally
not more expensive than the linear elements, but the cubic spline elements are

more expensive.

In this study, no attempt is made to achieve more computational efficiency by
using simplifications of the Galerkin scheme, for example by using fewer
collocation points or treating some fields by linear, others by cubic spline
in an energy conserving way. For a possible operational implementation of the
cubic spline scheme, the investigation of such simplifications may be of

importance.

Even though the third order scheme was implemented only with a simplified top
boundary treatment, both the second and third order scheme resulted in a
systematic improvement over the control runs in 10-day forecasts. A
systematic relationship between second and first order elements or second and
third order elements was not found; these schemes improved different cases.
There is a tendency for the finite element models to increase the amplitude of
the shorter scales.

3

To investigate the relation between cubic spline and linear elements, three
forecasts were done with linear elements, using the same simplification at the
top, as employed with the cubic spline elements. For these cases, the cubic
spline elements performed better. However, to decide finally between these
methods a larger sample has to be used, and a proper boundary treatment has to

be employed.
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Starting from operational ECMWF analyses, relevant differences to the control
run appear near day 5. Using the finite element scheme in the analysis cycle,

however, results in a reduction of the first gquess error already after 12 h.

50 day integrations with the second order scheme confirmed that the finite
element schemes have some potential for improving the climate éroperties of
models., The climate properties of the model are also very much dependent on
the treatment of the top level, which according to Burridge et al. is also

very much the case for the gridpoint wversion of the model.
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