THE MULTITASKING SPECTRAL MODEL AT ECMWF
David Dent
European Centre for Medium Range Weather Forecasts

Reading, UK

1. INTRODUCTION

ECMWF has 3 major applications which could benefit from multitasking because
they are both time critical and require a large proportion of main memory.

To date, only the forecast has been modified to make use of more than one
vprocéssor, although work is proceeding on the other applications. This paper

discusses the spectral model in its state of development at the end of 1984.

2. HISTORY

The original ECMWF production forecast was made using a grid point model.
Over a period of 2 years, a spectral model was developed to replace it. This
went into daily production in April 1983 executing on a CRAY-1A, with

spectral resolution T63.

The code is independent of resolution and can be run without recompilation

using any desired data. It consists of:

'~ 96000 source lines

26000 Fortran statements

Since the resolution T63 was chosen as appropriate for a CRAY-1, a
computationally more demanding resolution is possible on a CRAY-XMP. Given
the available configuration, a resolution of T106 has been chosen for a
comprehensive set of meteorological experiments with the target of making

this model available for production use by April 1985,

26

To achieve an acceptable wall clock execution time, it is obviously essential
to make efficient use of both central processors of the CRAY-XMP from within
the application code. Hence, a multitasking version of the spectral model
has been developed over a period of about 1 year. The first working version
went into reqular experimental use in July 1984. Since then, efforts have
been made to reduce the execution time by identifying and removing

inefficiencies.

3. USE OF MAIN MEMORY

The model is unusual in that it makes extensive use of a locally designed
memory manager to provide easy and safe organisation of main memory for the

various sub-processes within the code.

Since the model was developed and will continue to be developed by a team of
scientists, it is extremely.useful and productive for any member of the team
to be able to allocate a portion of memory for his own particular needs, safe
in the knowledge that his allocated space will not be used by any other

member of the team.

Use of the manager depends on the POINTER statement, which is an extension to
Fortran 77 supported by the Cray Fortran compiler. It allows an array to be
dynamically dimensioned, since the array dimension may be a variable in
COMMON storage and hence known only at run time. Memory is allocated from a
block obtained at initialisation time from the Cray heap manager. An
allocated array is identified uniquely by a character name and an integer
code. TIts base address may subsequently be obtained by another subroutine
through use of a LOCATE routine. An UNLOC routine is available to return the

space when no longer required.

27

POINTER (IPT , DIV(ND))

CALL ALLOCA(IPT , LENGTH , NAME , KODE)
CALL LOCATE(IPT , NAME , KODE)

CALL UNLOC (NAME , KODE)

where: DIV is the name of the array of length ND addressed through
the pointer IPT
NAME is the character name) which together identify

KODE is the integer code) the allocated space

In multitasking mode, a subroutine commonly executes in both‘grocessors
simultaneously. Since the subroutine often requires array space to hold the
results of calculations, this output space must be unique for each subtask.
This can be achieved by using a locally dimensioned array in the usual way,
but this space is obtained from the Fortran controlled stack and is released
at the end of the subroutine. By using a different integer code value when
allocating an array, the memory manager creates a unique space for each
execution of the routine and this space remains available for other

subsequent routines to locate until explicitly released.

Such a convenience to the programmer of course costs some execution time
which must be weighed against the scientists productivity and the ease of
code maintenance and development. The overhead in the spectral model is

approximately 5% of execution time.

28

4. ECMWF CRAY XMP CONFIGURATION

From the point of view of the spectral model, the principal characteristics

of the Cray-X2200 installed at ECMWF are-

2 Central Processors

2 Mwords of central memory

16 banks of memory

16 Mwords of Solid State storage device (SSD)

80 Mwords/sec memory to SSD transfer rate

5. COMPUTER RESOURCES USED BY THE SPECTRAL MODEL

At resolution T106, the single-tasking model requires:
1.5 Mwords of central memory

15.3 Mwords of SSD

There are 3 major work files:
Legendre coefficients - 950 KW - read twice each step
grid point data - 8.7 MW - read and written each step

fourier coefficients - 5.7 MW - read and written each step

total 15.3 MW - 30 MW I/0 per step
Putting files on a device with such a high transfer rate to/from central
memory allows I/0 to be carried out synchronously without much overhead.
This reduces the central memory requirements for buffer space and costs less

than 4% of the elapsed time for a 10 day forecast.

29

6. MULTI-TASKING INTERFACE

The following facilities available in the Cray multi-tasking library are used

in the model:

CALL TSKSTART(ctltab,routine)
CALL TSKWAIT (ctltab)
CALL LOCKON (lock)

CALL LOCKOFF {lock)

where- 'ctltab' is a task control block
'lock! is a unique lock identifier

'routine' is the name of a subroutine to be executed

These tools enable tasks to be started and synchronised, and critical areas
of code to be protected against simultaneous execution. Event setting is

also supported in the library but the current version of the model does not
use this technique. It is possible to pass parameters to 'routine' but this

facility is also not used.

30

7. GENERAL STRUCTURE

The model is organised into 2 scans over the data as shown in figure 1.
Within each scan, there is a loop over all latitude rows (160 for the T106
resolution). Between scans is a smaller area of computation associated with
diffusion and semi-implicit calculations. The loop over time steps is
repeated 1200 times for a 10 day forecast. However, every 16 steps,

significant additional computation is performed by radiation calculations.

Within Scan 1, the following are the principal components of work-

I/0: read Fourier coefficients

I/0: read legendre coefficients
I/0: read and write grid point data
computations in Fourier space

FFT - grid point computations - FFT
semi-implicit computations
computations in Fourier space

compute direct legendre transforms

Within Scan 2, the main items are-

I1/0: read legendre coefficients
I/0: write Fourier coefficients

compute inverse legendre transforms

A multi-tasking version of an application requires more main memory than its
single-tasking equivalent. Given (a) the desire to maximise the resolution
and (b) the shortage of main memory, it is important to select a multitasking
strategy which has low memory requirements.

31

It turns out to be convenient and efficient in memory to split Scan 1 and
perform it in 2 pairs of subtasks with a synchronising point in between.
This is because each Northern row generates the symmetric part of a Fourier
component while the equivalent antisymmetric part is generated by the
appropriate Southern row. Both components are combined in different ways to
provide contributions to the legendre transform. By computing one Northern
row and one Southern row simultaneously, not only is the memory requirement

minimised, but also the legendre computation is performed efficiently.

Part of the diffusion calculation is also multi-tasked and Scan 2 can be

computed 2 rows at a time (see figure 2).

There remain some relatively small parts of the code which are computed in

single-tasking mode.

The memory requirements for this multi-tasking strategy are 1.8 Mwords. Note
that alternative strategies are of course possible. However, subtask
structures which may be preferred for optimising reasons require either more

central memory or additional SSD.

8. OVERALL TIMINGS

All the timings reported here are elapsed times corresponding either to a

single time step or to a complete 10 day forecast.

For a normal timestep:

single tasking : 25.36 seconds/step
multi tasking : 14.28 seconds/step

speedup ratio : 1.78

32

For a radiation timestep:

single tasking : 75.0 seconds/step
multi tasking : 39.4 seconds/step

speedup ratio : 1.9

These times correspond to a total time of 6 hours for a 10 day forecast,

including the creation and post-processing of history data.

The Cray-XMP has the capability of simultaneously reading and writing to
memory from the vector registers. This feature may be switched on or off by
means of a simple control statement. The above times were measured with
bidirectional transfer enabled. The following times were measured when

bidirectional transfer was disabled:

single tasking : 26.71 seconds/step
multi tasking : 14.21 seconds/step

speedup ratio : 1.88

Thus, for single tasking, switching on the bidirectional mode speeds up the
model execution by about 5%. However, when the model is multi-tasked, there
is no corresponding improvement. This is easily explained since a 16 bank
‘memory can at best reference only 4 words per clock period. With both
central processors referencing memory at the maximum rate of 2 vector reads
and one vector write, the code is trying to reference a maximum of 6 words
every clock period and is therefore slowed down. If the same multi-tasked
model were to be run on a Cray-X2200 with 32 banks of memory, an estimated

saving of 15 minutes for a 10 day forecast would be achieved.

33

9. MORE DETAILED TIMINGS

Since the above timings are very simple and made at the very highest level
they tell nothing about the behaviour of individual tasks within the model.
Currently, there is no support within the Cray multi-tasking library for
obtaining detailed timings. Consequently, all the following timings were
obtained by inserting code into the model at strategic places in order to
record times as reported by the real time clock. The measurements were done
in such a way as to disturb the model as little as possible. The model was
run in a dedicated environment with no disturbances other than ‘any caused by
the operating system (COS X.13). BAnalysis of the measurements was done

subsequently in a normal batch environment.

The average times taken by each of the tasks as identified in the previous

section are shown in Fig. 3.

By measuring the time taken by the Cray multi-tasking library routines, it is

possible to obtain estimates of the cost of starting tasks etc.
‘For TSKSTART , three distinctly different times are observed as follows:

40 milliseconds for one case only

0.4 milliseconds for 96% of all TSKSTARTs

0.04 milliseconds for 4% of all TSKSTARTs
The expensive start corresponds to the very first TSKSTART in the complete
application, when additional memory has to be requested from the operating

system for table space.

34

The intermediate time corresponds to the case when a 'logical CPU' has to be

established (table creation etc).

The shortest time corresponds to the case when a logical CPU already exists.
In this execution, the Cray multi-tasking scheduler has released the logical
CPU in nearly all cases before the next task is created. The small percentage
of fast TSKSTART times were all observed for TASK 2 where there is a very
small time gap after completion of TASK 1. In the future it will be possible
to tune the scheduler to retain the logical CPU in all cases. -

The measured minimum times for other multi-tasking calls are:

TSKWAIT 0.007 milliseconds

LOCKON/LOCKOFF 0.001 milliseconds

Hence it is clear that the TSKSTART times dominate the task overheads.

The approximate total overhead cost in a 10 day forecast is:

3 * 80 * 1200 * 0.4 milliseconds

which is about 2 minutes or 0.7% of the total time

With scheduler tuning, this is likely to be reduced to 0.1%.

An obvious conclusion is that task overheads are small compared to the size

of tasks which exist in the spectral model.

35

10. INEFFICIENCIES

By measuring the amount of time spent outside of the tasks, it can be seen
how much of the code has been multi-tasked and therefore what additional

improvements might be made in the future (see Fig. 4).

The TSKWAIT time reported in the previous section was the minimum observed
i.e. for the case where the master task completed after the started task and
was therefore not held up in the synchroni;ing process. By examining average
TSKWAIT times, it is possible to obtain estimates of how imbalanced the pairs
of tasks are. Figure 4 shows that these imbalances account for about 4% of
the overall model time. Most of the imbalance was observed in TASK1. TASK 2

and TASK 3 imbalances were smaller by a factor of 9.

There are at least 2 reasons fof this imbalance. One concerns LOCKS and will
be discussed below. The other concerns the nature of the computation in
grid-point space (part of TASK 1). Although the amount of work done for each
latitude line is exactly equal for the dynamics part of the code, this is not
always true in parts of the physical parameterisation. Convéction and
condensation calculations are affected by synoptic conditions and will
therefore vary in space and time. The magnitude of these variations in terms

of computing expense has not yet been measured.

LOCKS are used to protect critical regions of code in some 20 places, mostly
for statistic gathering purposes. These locks all occur in TASK 1 and are
mostly insignificant in time. However some random I/0 is carried out to a

single dataset which is common to both tasks. In the current Cray software,

36

a lock is applied whenever I/O is initiated to any dataset, so that the
strategy of splitting this dataset into 2 will not be useful until this high
level lock is moved to the level of the dataset. Indications are that this

causes most of the imbalance observed in TASK 1.

11. FUTURE IMPROVEMENTS

Since the target time for a 10 day forecast is approximately 5 hours, there
remains substantial optimising to be done before the spectral model is fast
enough for operational use. However, significant improvements have already
been made (see Fig. 5). By reducing the single-tasking time and by attacking
the out of balance inefficiency, it should be possible to improve the
multi-tasking performance. It may be possible to bypass the I/0 lock and
hence substantially reduce the imbalance due to locking. There is also some

scope for optimising at the loop level (loop unrolling etc).

Alternative multi-tasking trategies can be tried in order to reduce the
number of synchronising points and hence the imbalance time. Unfortunately
there is little scope for this effort given the constraints of central memory
and SSD space. EVENT synchronising is known to be more efficient than
TSKSTART-TSKWAIT and this could be implimented easily in at least part of the
application. However, since the task overhead is relatively small, this is

unlikely to be useful.

It is interesting to speculate on the model's performance when executed on
future hardware with additional processors. Code already exists in the model
for N processors but it is largely untested to date. It is based on the
current multi-tasking strategy and therefore performance estimates may be

made based on the measurements reported earlier in this paper. Fig. 6

37

indicates that a multi-tasking efficiency of about 3.2 could be achieved with
4 processors, but with 16 processors a speedup of only 8.2 would be achieved

over the single-~tasked model.

12. SUMMARY

The ECMWF spectral model is a large application which has been successfully
adapted to a multi-tasking environment. The task overheads are small
compared to the task sizes. Improvements must be made in the elapsed time

before the model can be used operationally, but these appear to be achievable

in the time frame required.

The code provides the basis for execution on future machines but in order to
make good use of increased number of processors some refinement of the

multi-tasking strategy is necessary.

38

GENERAL STRUCTURE

(start)
»
<
loop
SCAN 1 over
rows
loop
over
time | D
steps <
loop
SCAN 2 over
| YOWS

(finish)

MULTI-TASKING STRUCTURE

TASK TIMES

1 7
o
2

TASK 1 TASK 2 TASK 3

41

13N
z© n~ D
o<t .MO z™
v
2 »\

N

FORECAST OVERALL TIME

HOURS

6 ACHIEVED

5 — TARGET

4] | ! ! | |

JUL AUG SEP OCT NOV DEC JAN FEB MAR APR
1984 1985

43

EFFICIENCY WITH MORE PROCESSORS

ST/MT ratio
10

0 T { !
0 4 8 12 16

Number of processors

a4

