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1. INTRODUCTION

It is a great pleasure for me to open this Workshop on 'The usage of
Multiprocessors to integrate atmospheric models'. As most of you know, the
meteorological forecasting problem was identified already by von Neumann as an
ideal application for computers. Under his guidance and supervision a special
group was set up at the Institute for Advanced Studies in Princeton in 1984
under J. Charney éo undertake an integration of the vorticity equation using
real atmospheric observations. The result was successful and was one of the
very first attempts to use electronic computers to solve non-linear equations by
numerical methods. Since then, the meteorologists have stayed in the forefront
in applying the fastest available computers to solve the forecasting problem
usipg increasingly more realistic models of the atmosphere. The meteorological
community is an active user and a very substantial user for supercomputers and

discussions between the meteorological modellers and the experts within the

computing industry are important and I am sure mutually beneficial.

What makes the problem of weather prediction so intruiging is the fact that the
atmqspheric system is essentially non-linear and cannot be decomposed into
independently acting modes. The inevitable error in observing the smallest
scales of motion must then contaminate larger scales and finally destroy the

accuracy of any predicition. The weather prediction can therefore be seen as an




unstable problem in the sense that small initial differences have large final

effects. Although the problem as such is deterministic, it is, for practical

reasons non-deterministic since the initial state can never be perfectly known.

Theoretically, the weather prediction has therefore much in common with more
general non-deterministic problems, such as economical and social systems.
Atmospheric prediction models may, therefore, also serve as a useful prototype
for better understaﬁding of a more general class of problems, where the
dynamical laws are not yet too well understood. Although the basic physical
laws governing the atmosphere have been known since the last century, no real
progress took place before the advent of computers. The first integration of a
simple two-dimensional atmospheric model was done by Cha;ney, Fjortoft and von
Neumann (19250). Since then there has been a rapid development of successively
more realistic models following the very fast development of computers. These
models have been used for a large range of atmospheric problems from short range

weather prediction to the simulation of the climate of the earth.

The problem of predicting the atmosphere from time scales from a few days to a
few wéeks is particularly challenging and important. It is regarded as perhaps
the most difficult prediction problem because we have to rely on accurate
treatment of the atmospheric observations és well as on accurate modelling. In
the appreciation of the importance of this problem, the Western European
countries decided to jointly set up and finance a special European Centre
dedicated to medium range prediction, the European Centre for Medium Range
Weather Forecasts (ECMWF). ECMWF was established in 1975. It started to make
daily 7-day forecasts from August 1979. The Centre's medium range forecasts are

now the best available.



2. THE PHYSICAL AND MATHEMATICAL BASIS FOR NUMERICAL MODELS

The behaviour of the atmosphere is governed by fundamental physical laws and
their boundary conditions. The macrostructure of these laws has been known for
over a century. What has been lacking and to some extent is still lacking, is
the understanding of the interaction of the macroscales (greater than a few
hundred kilometers) with processes of much smaller dimensions such as radiative

transfer, turbulence fluxes, cloud and precipitation processes.

The physical laws governing the atmosphere are:

The gas law p = PRT (1)

The continuity equation 'dpd (2)
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for moist air ey P VY (3)
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thermodynamics p dt dt
The equation of
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For a definition of symbols and expressions see Table I. The physical
parameters entering these laws are: v, the three-dimensional velocity vector
relative to the earth; T, the temperature; p, the pressure; pgr the density of
air; the p,, the density of water vapour. Some atmospheric models have

additional conservation laws for liquid water (cloud water) and for ozone.



The equations (1) to (5) constitute a closed system which can be solved at all
future times from a given initial state and with the necessary prescribed
boundary conditions. However, the equations still contain some unspecified
source and sink terms and it is necessary to provide a second set of expressions
where we can specify‘these in terms of known physical quantities and/or in the

basic parameters v, T, p, pg and py.

In the case where the source and sink terms, F, Q and S are zero the system is
energetically closed and can only describe adiabatic processes. It is also
reversible and can be integrated backward in time as well as forward. The
diabatic term, F represents dissipation of momentum and Q and S represent

sources and sinks for heat and water vapour.

The complete atmospheric equations in (1) to (5) have not so far been used for
operational forecasting. They are very general and represent in principle all

scales of motion from the microscale to the largest planetary scale.

For practical purposes, we can only resolve the scale of motion which can be
analysed by standard data and it has therefore become common practise to
simplify the equations by omitting smali terms and filtering out unwanted
motion. The approximate equations are derived by considering the temporal and
spatial scales of interest which are from about 1 hour and 100 km

respectively.



With these assumptions, which are not only dictated by the data distribution but
also by computational considerations, the basic equations (1) to (5) can be
simplified. It is found for instance that the vertical equation of motion can
be reduced to a diagnostic relation where the vertical pressure force is

balanced by the gravitational force:

g

+g=20 (6)
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The hydrostatic equation (6) leaves us without a prognostic equation for the
vertical motion, w, but the adoption of (6) will ﬁake it possible to determine w
diagnostically from the remaining equations. B2An additional consequence of (6)
is that other approximations must be made to guarantee that the resulting
system, in the absence of sources and sinks, conserves energy and momentum.
These approximations lead to that w is eliminated from the expression of kinetic

energy and the radial distance is replaced by the average radius of the earth.

The resulting equations are generally called the "primitive equations" by the

meteorological community. An interesting consequence arising from the adoption

of the hydrostatic relation is the removal of vertical travelling sound waves.

Observational and computation restrictions have made it necessary to confine the
atmospheric model to the description of phenomena larger than a certain given
scale. Present computers put this limit around 100 km in the horizontal and
around one kilometre in the vertical. The dimension of such a volume is a

measure of the computational resolution. What happens on scales smaller than

that of the volume is known as subgrid scale processes and the simplified

prescription of how they are related to the macroscale is known as

parameterization. Finally, the empirical constants as well as the dependent

variables of the macroscale that enter these relations are known as Earameters.
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The physical processes which go into the description of F, Q and S consist of a
manifold of subgrid processes which must be parameterized. These processes do
represent a considerable fraction of the numerical calculation to be carried out

in each grid point.

3. NUMERICAL ASPECTS

We will next considér the numerical and computational aspects of atmospheric
modelling. If A is the integration domain then the number of grid points in a
horizontal area is A/(As)? where As is the average horizontal grid size. For K
vertical levels the total number of grid points is KA/As)?. If there are n
variables per point, then the total number of variables at any oné time is
nKA/(As)2 which is a measure of the number of degrees of freedom in the model.
The maximum time increment At, to guarantee stability depends on the integration
scheme. If we, fo; instance, use an explicit integration scheme the condition

k for computational stability is given by an expression of the kind

At < As

(7)
V2 (c+U )
max

1

where ¢ ~ 300 m sec™ is the speed of the fastest gravity waves and Umax is the

maximum horizontal wind speed.



Since we have eliminated vertically propagating sound waves by using the
hydrostatic relation the vertical condition is less severe than the horizontal
one. However, with more economical integration techniques such as semi-implicit
Kwizak and Robert (1971) a longer time step can be used. Hereby gravity waves
are treated implicitly, while the slower Rossby waves are treated explicitly.

For a model using a semi-implicit scheme and a staggered grid a relation of the

kind
pt < —E5 (8)
U
max
will hold.

For a total integration time T at least the following number of time steps are

needed

T(U
As

Finally, if we need N number of operations per variable/time step the following
number of arithmetic operations are needed to make a forecast with the length of

time T for an area A:

AKnr (U )N (9)

(As)>



4. ATMOSPHERIC PREDICTABILITY AND PRESENT PREDICTIVE SKILL

Atmospheric models are used both for weather prediction and for climate
simulation. . One can, in principle, as for the ECMWF model, use the same model
for both these applications. Following the continuing improvements in
meteorological observations, computers and associated progress in modelling
technique, remarkable achievements have taken place during the last 20 years and
useful predictive skill has been extended from a few days in the 1960s to 5 to 7
days at present. 1In the short time scale detailed simulations of intense
vortices such as Genoa cyclogenesis, polar lows and tropical hurricanes have

been possible.

As mentioned previouély, numerical weather prediction can never be exact due to
the inevitable errors in the determination of the initial state coupled with an
inherent tendency for errors to grow. This error growth is not an artifact of a
numerical model, but a consequence of the non-linearity and instability of the
dynamics of the atmosphere. Considerable research is taking place to assess the
predictability of the atmosphere, both from data and by numerical experiments.
It has been found that the doubling timé for small errors is of the order of two
to three days and successively decreasing as the error is approaching some
asymptotic value. For practical purposes this growth seems to limit the
prediction of the day to day weather to something in the order of two to three
weeks.  However, the error growth is much lower for the largest scales of

motion and it may be possible to predict large scale anomalies well beyond this

time.



5. CONCLUSIONS

It is obvious that the improvement of supercomputers is crucial for a further
development of the meteorological models and hence our ability to make better
weather forecasts. The speed of computers has approximately increased by a
factor of 10 every five to seven years and we may therefore expect computers in
the Giga flops range towards the end of this decade if we are bold enough to

extrapolate.

It appears that in order to achieve performances of several Giga flops and
beyond, we may have to turn to miltiprocessing systems. The meteorological>
forecasting problem has a simple logical structure and it is straightforward, at
least in principle, to program an atmospheric model for a multi-process;ng
system, due to the fact that we are essentially carrying out the same kind of
calculations in each grid point. The Centre's new prediction model is
simultaneously being executed on two processors of the Cray X-MP and, as will be
described in following lectures, the code for the ECMWF model has been designed
in such a way that the calculation can be executed simultaneously on an even
number of processors. This is not the first time this has happened in
meteorology. The US Navy Weather Service in Monterey uses a CDC Multiprocessor
system more than 15 years ago. However, it did not start there. Lewis F.
Richardson, who was the first to integrate a numerical model more than 60 years
ago and long before the existence of any computers, outlined in his absolutely
amazing book 'Weather Prediction by Numerical Processes' (Richardson 1922), a
futuristic idea of a "weather forecasting factory" consisting of 64000 human
“multiprocessorsf. Fig. 1. Perhaps therefore one day when we can build the

64000 multiprocessing system, we may solve the weather forecasting problem.
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TABLE I Symbols and expressions used in the article

(u,v,w) - 3-dimensional velocity vector relative to the earth
temperature
pressure

density of dry air

dénsity of water wvapour

density of moist air. p = pg + py
dissipation of momentum

water vapour source/sink term

diabatic heating

gas constant for moist air

specific heat at constant pressure
acceleration due to gravity

earth angular velocity

radial co-ordinate measure from the centre of the earth
ga — RxQxR (local gravity acceleration)
spatial co-ordinate

time

individual derivative = §E + v.V

horizontal gradient operator
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Table II

Estimated computational requirements for some numerical models. The independent
parameters can be reduced to 4/level plus surface pressure by a combination of
the continuity equation (2) and the hydrostatic equation (6). Version I is an
estimate of the present situation. Version II is a projection of the
requirements around 1990.

A = 5.10l% 2 (area of the globe)

K = 20 number of vertical levels

n = 4. number of independent parameters
nax = 150 mg ~! estimated maximum wind speed

N = number of operations/gridpoints/parameters

As = horizontal grid length

= Total integration time

M = Total number of operations

(a) Short-range forecast, limited area model (1/20 globe)

I I1
N ~ 250 400
As = 50 km 25 km
= 2 days 2 days
M = 1ol =- 1012

(b) Medium-range forecast, global

I II
N ~ 1000 ‘ 1500
As = 150 km 75 km

= 10 days 1 month
M = 5.10!2 = 2,10l

(c) Climate prediction/simulation, global

I II
N ~ 2000 3000
As = 300 km 150 km

= 10 years 100 years
M =

= 5.10t% = 6.1016

-1



Fig.

1 Weather Forecasting by Numerical methods
as envisaged in 1922 by L.F. Richardson

"Imagine a large hall like a theatre, except that the circles and
galleries go right round through the space usually occupied by the
stage. The walls of this chamber are painted to form a map of the
globe. The ceiling represents the north polar regions, the tropics in
the upper circle, and the antarctic in the pit. A myriad computers are
at work upon the weather of the part of the map where each sits, but
each computer attends only to one equation or part of an equation. The
work of each region is co-ordinated by an official of higher rank.
Numerous little "night signs" display the instantaneous values so that
neighbouring computers can read them. From the floor of the pit a tall
pillar rises to half the height of the hall. It carries a large pulpit
on its top. 1In this sits the man in charge of the whole theatre. One
of his duties is to maintain a uniform speed of progress in all parts
of the globe. In this respect he is like the conductor of an orchestra
in which the instruments are slide-rules and calculating machines. But
instead of waving a baton he turns a beam of rosy light upon any

region that is running ahead of the rest, and a beam of blue light upon
those who are behindhand.

Four senior clerks in the central pulpit are collecting the future
weather as fast as it is being computed, and despatching it by
pneumatic carrier to a quiet room. There it will be coded and
telephoned to the radio transmitting station".

Picture credit: A. Lannerback, Dagens Nyheter, Stockholm.
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