CANADIAN METEOROLOGICAL SERVICES' PLANS FOR
USING MULTI-PROCESSOR SYSTEMS

Andrew Staniforth
Atmospheric Environment Service, Environment Canada
Dorval, Québec, Canada

1. INTRODUCTION

-The Atmospheric Environment Service (AES) of Environment Canada has a
mandate to provide comprehensive information to Canadians concerning
pasf, present, future and possible conditions of the atmosphere. To ful-
fil this mandate AES has developed, and is continuing to develop, numeri-
cal models of the atmosphere for both research and real-time operational
applications in the broad areas of

(i) weather prediction,

(ii) climate, and

(iii) air quality.

A powerful computer is evidently required for this kind of numerical
modelling, and late in 1983 a Cray 1-S computer was installed at AES's
facility in Dorval, Montreal, to replace a Control Data Cyber 176. An
upgrade to a Cray XMP-22 (two-processors, two million words of memory) is
scheduled for the Fall of 1986, and AES is currently examining how best

to convert model codes from the 1-S5 and optimize them for the XMP.

Weather prediction codes that need to be run on the XMP include those for
objective analysis and regional and global forecasting. The objective
analysis code uses optimal interpolation techniques, the global codes use
the spectral technique, the regional codes use finite-element and semi-
Lagrangian techniques, and the global and regional forecast models have

comprehensive parameterizations of sub-grid-scale physical processes.

258

The general circulation model code used for climate simulations is very
similar to the global spectral weather prediction code. Model codes used
for air quality studies and the long-range transport of pollutants in-
clude transport modules based on Eulerian and semi-Lagrangian techniques,
as well as modules for the chemical dinteraction of many chemical

species.

AES has an agreement with the National Sciences and Engineering Research
Council of Canada to make 10%Z of the Cray computer's capacity available
to researchers in many disciplines in Canadian universities. As a conse-
quence many other codes are also run on AES's Cray in addition to those
previously mentioned. They include, for examplé, diverse codes in ocean-—

ography, astrophysics, nuclear physics and engineering,‘

In this paper we mostly restrict our attention to coding considerations
for global and regional forecast models, since these form the bulk of the
computational load on AES's vector computer. Lacking any concrete expe-
rience of our own with a Cray XMP, an analysis (summarized in the fol-
lowing sections) was performed about a year ago with a view to anticipa-
ting (and avoiding) some of the difficulties likely to be encountered due
to the architectural differences between the Cray XMP and the Créy 1-8.
Now that the Cray XMP has been available to users at various sites for a
year or so, we are very interested to hear their experiences (both good
and bad), and the present workshop provides an ideal opportunity to do
so. In this way we hope to be able to avoid some of the problems encoun-
tered by the first users. As can be seen from the content of the paper,
an adequate amount of memory (both main and SSD) has been identified as a

major concern.

259

2. MEMORY CHARACTERISTICS OF WEATHER PREDICTION MODELS

For a given level of accuracy spectral models require fewer degrees of
freedom (i.e. less memory) than competing methods, but at the expense of
more CPU time/degree of freedom, and their use of orthogonal basis func-
tions permits a natural "slicing"” of model computations such that I/0
overhead is minimized. On the other hand, regional models trade-off
accuracy at later time-frames for increased accuracy in the short time-
frame (up to 2 days) by a redistribution of the degrees of freedom and.
computing effort. Such models use techn_iques that inherently require
more memory than global or hemispheric spectral models, but this is
generally compensated for by the fact they use less CPU time/degree of

fredom.

In order to improve the accuracy of weather element forecasts at all time
ranges, more sophisticated parameterizations of the unresolved physical
processes are being incorporated into atmospheric models. To make the
parameterizations more complete additional prognostic and diagnostic
fields must be introduced. For example, a parameterization of turbulent
fluxes presently being implemented requires two further 3-D prognostic
variables, viz the turbulent kinetic energy and the turbulent mixing
length, while a more accurate treatment of clouds requires prognostic
cloud variables. All these extra variables improve the accuracy of the
models, but they make it increasingly difficult to overlap 1/0 operations
with CPU calculations for a given memory configuration. One of the
current research thrusts in AES is to increase the efficiency of the
timestepping algorithm, with the expectation of being able to reinvest
the computational time saved in increased resolution. Thus it appears

that pressure on the amount of available memory will further increase.

260

3. SOME MEMORY CONSIDERATIONS WHEN CONVERTING CODES FROM A CRAY 1-§ TO
A CRAY XMP

At any given instant in time a two-processor Cray XMP will hopefully be
working on twice the number of operands as a single processor Cray 1-S.
Furthermore, because they have multiple paths to memory (compared to the
single path on the Cray 1-S) they complete their calculations in fewer
clock cycles and are thus ready sooner to operate on the next set of
operands. If these operands are unavailable then the CPU will be idle.
This problem would never arise if the main memory were sufficiently large
to store all the fields required for subsequent caléulations. However in
the real‘world, main memories are both limited in size and costly and we .
have to use a backing store, which on a well-configured Créy XMP is a

SSD.

Some coding considerations that arise because of the architectural dif-
ferences between the Cray 1-S and the Cray XMP are (and these are par-
ticularly important for the coding of regional models):

(i) the high overhead incurred to obtain the first word in a main
memory/SSD transfer makes it advantageous to transfer data in large
chunks (of the order of a hundred thousand words or more); the
relative overhead is much higher than that of main memory/IOP
transfers on a Cray 1-S because the first word still takes as many
clock cycles to arrive on a Cray—-XMP as on a Cray 1-S, even though
subsequent words arrive 10 times as fast because of the increased
channel speed;

(ii) transferring in large chunks means we must have large chunks of
main memory available to accept them while the CPU is busy opera-—

ting on other large chunks;

261

(iii) because there is a 6—-fold increase in memory bandwidth (from memory
to CPU) for a 2-processor Cray XMP compared to a Cray 1-S, the
CPU's are ready for new operands much sooner and it is therefore
more difficult to ensure all operands are available (after transfer
from the SSD) when required by the CPU:

(iv) performing calculations in large chunks increases vector Ilengths
which further enhances CPU performance and increases the chances
that the CPU will be waiting for main memory/SSD transfers to

complete.

We conclude from the above that for a given code having I/0 overlapped
with CPU execution (as is generally the case with weather prediction
codes) that substantially larger amounts of main memory will need to be
made available to a given code, otherwise the code is 1likely to become

I/0 bound.

4. MULTI-PROGRAMMING CONSIDERATIONS

If a computer system permits multi-programming, there will in general be
an increase in the total amount of useful work performed during a given
time period when compared to the same machine executing the same jobs
sequentially; it also permits improved turmaround for short jobs. This
is achieved by an increased parallelism and a more sustained usage of the
various computer components (CPU, channels, memory etc), and is of
particular importance in an environment that must process a large number
of jobs having significantly different memory and CPU requirements, which

is the case in AES.

Most centers that use a super—computer for atmospheric modeling fall into

one of two classes. The first is characterised by being a real-time

262

operational environment serving a relatively limited number of users run-—
ning a limited number of specialized programs (e.g. NMC, ECMWF), while
the second is characterized by being research oriented with few, if any,
real-time constraints (e.g. NCAR, GFDL). 1In either case it is acceptable
(and current practice) to permit individual jobs to operate fairly close
to the limits of memory. For the first class there are a limited number
of users who tune. their models to simultaneously use as many of the re-
sources of the machine as possible and only a limited multi-programming
capability is required. For the second class it is of paramount impor-
tance to get the result at the resolution required and, because it is not
a real-time environment, such centers also have the luxury of permitting
jobs to operate close to the limits of memory and accepting limited
multi-programming. However, AES falls into neither of these two

categories.

AES's Cray must support a vigorous research environment and a heavy
operational one. Unlike ECMWF, the Canadian operational runs are spread
fairly uniformly over 24 hours, including a heavy use of prime time, and
account for approximately half of the total computer time; all other
(research) jobs must be run either in parallel with the operational jobs
or in the remaining time which is extremely fragmented. Furthermore the
Cray computer configuration has to support university researchers as well
as an ever—expanding number of AES users. There is clearly a need for
multi-programming to increase machine throughput, in an environment that

is both operationally and research oriented.

But multi-programming requires lots of memory, both main memory and
backing-store memory (SSD). If we wish to simultaneously execute jobs in

parallel, additional main memory is required otherwise we are unable to

263

simultaneously (for example) perform I/0 for one job while the CPU is

busy with another.

Let us examine the situation where an operational model is in execution
during prime time (consuming large amounts of both main and SSD memory)
and we wish to run jobs which have large memory requirements but small
execution times (of the order of seconds compared to an hour or so for an
operational model). If there is a suff;ciently large amount of SSD
memory available, then a copy of the contents of main memory associated
with the operational model can be "rolled out" to SSD memory and another
similar-size (but short execution) job "rolled in"; it is imperative that
these transfers be effected extremely fast to miﬁimizé overhead (CPU idle
time) and this requires the use of SSD memory rather than buffer<memory.
By proceeding in this fashion the R&D community can still continue to use
the machine in prime time for "large-memory-but—short-execution” jobs
while operational jobs are being processed (which is an almost continuous
phenomenon during prime time, given that the operational run consumes
approximately one half of the computer resources spread fairly uniformly
throughout the day). Several-times—a-day turnaround during primé time
for such "large-memory-but-short—execution" jobs is vital for a viable
atmospheric R&D program. Each such job requires an image of main memory
contents to be stored on the SSD as well as the usual amount of 8SD
memory associated with the job. Since several of these jobs need to be
SSD resident it is clear that an adequate amount of SSD memory is
necessary, otherwise the potential throughput of a Cray XMP in our

environment wil not be realized.

264

5. MULTI-TASKING CONSIDERATIONS

A multi-processor machine can potentially improve the total throughput of
the machine for many users, or reduce the real-time execution of a job
for a single user, or do both but to a lesser degree, and the optimum mix
will depend on the goals of an organization. For the reasons mentioned
in the previous section we anticipate that we will find ourselves
comfortably (or perhaps uncomfortably) between the two extremes. We need
adequate throughput to satisfy high demand, buf at the same time
operational results must not be unduly delayed, and these considerations

have an impact on program design.

The fundamental question that needs to be addressed in designing programs

for multi—p;ocessor execution 1s at what hierarchy level should the

user(s) multi-task, that is partition the work-load into a set of more-

or-less independent tasks for independent execution. Should it be at the

level of

(1) the job (different jobs executing on different processors),

(ii) the job-step (different programs of a single job executing on
different processors),

(iii) the program (different subroutines of a single program executing on
different processors),

(iv) the subroutine (different loops of a subroutine executing on
different processors), or

(v) the loop (different parts of a loop executing on different
processors)?

At one extreme (i.e. level (i) of the above hierarchy) the user relies on

the operating system to optimize throughput and helps the system by mini-

mizing resource requirements, such as memory: this extreme would perhaps

be appropriate in an environment where turnaround is not an issue.

265

At the other extreme (i.e. level (v) of the above hierarchy) a single
user tries to squeeze the maximum real-time juice out of the proverbial

lemon.

The following factors are also important when adopting a multi-tasking

strategy:

(ij the (scratch) memory overhead associated with splitting a job into
a large number of small tasks rather than a proportionally smaller
number of large tasks;

(ii) the flexibility of the strategy (e.g. how easily can the program be
adapted to other multi-processor machines having a larger number of
processors);

(iii) the balancing of the computational load across processors;

(iv) the synchronization of tasks‘that depend on the completion of other
tasks;

(v) the possible use of an alternative algorithm more suited to a
multi-processor environment; and

(vi) the programming effort required to achieve the desired result.

In our environment we tentatively conclude from the above considerations

that it is appropriate to multi-task model codes at the highest possible

levels (consistent with acceptable real time performance) using a rela-

tively small number of tasks, and to rely on the system to optimize

throughput across user jobs. The advantages of such a strategy appear to

be:

(1) a small number of tasks will need less scratch memory (which is in
short supply);

(ii) the strategy is reasonably flexible inasmuch as it should be rela-
tively straightforward to adapt the code to multi-processor

266

machines having a larger number of processors, by either further
dividing the computational load between processors at the same
level of multi-tasking hierarchy (when possible), or by descending
one level in the hierarchy for critical portions of the code (when
necessary);

(iii) the balancing of the computational load between processors for a
given job need only be approximate (enough to give acceptable real-
time performance) without needing to be optimal (since it is highly
unlikély to be the only job in the machine and other jobs will
interfere with it to some extent anyway); and

(iv) the fewer the number of tasks, the easier it is to program and syn—
chronize them and the smaller the multi-tasking overhead.

The only real disavantages appear to be a degradation of real-time per-

formance if run in isolation, and a reliance on system software to opti-

mize machine throughput. This latter point brings us full circle back to
the need to have adequate main and SSD memory. We can only hope the cir-

cle isn't vicious...

As regards putting the above theory into practice in the context of our
weather prediction codes, a possible first attempt being considered for
the dynamical calculations is to define the calculation of the right-hand
sides of the momentum, thermodynamic, continuity equations, etc. as tasks
and send them to different processors. On the other hand, the majority
of the physical parameterization calculations are horizontally indepen—
dent and can be split up into sets of vertical columns, each set of which
defines an independent task. It seem prudent to try to restrict the
number of independent tasks between synchronization points to be less
than the total number of processors, and thus avoid initiating too many

tasks that generate scratch memory demands.

267

6. RESULTS
With respect to our actual experience with a "multi-processor”, it is
very limited. Two of our models (regional finite—element and spectral)

have been run by Robert Wellck of Cray Reasearch on a single-processor

Cray XMP and execution times compared to that given by identical codes
executing on a Cray 1-S; the results are summarized in Table 5.1.
Although these results do not téll us what speed-ups we can expect to
achieve witﬂ optimized codes on a multi (two) processor Cray XMP with

respect to a Cray 1-5, they do at least provide lower bounds.

Finite element Spectral

CPU wall-clock CPU wall-clock
Cray 1-§8 1002 1745 172 427
Cray XMP
(one-processor) ' 558 736 94 149
Speed up,
Cray 1-S/Cray XMP 1.8 2.4 1.8 2.9

Table 5.1 Execution times (in seconds)

7. SUMMARY

AES objectives are such as to require the modeling of a wide variety of
meteorological scales. It is argued that regional ("small-scale") models
achieve more accurate local forecasts (but valid for a more limited time
period) than spectral ("large-scale”) models, by using methods which
inherently require more memory but use less CPU time/degree ofvfreedom.
The need to simultaneously support real-time operational execution of
médels as well as government and university R&D is also such as to
require more memory (both main and SSD) than might otherwise be needed,

because of multi-programming considerations. Furthermore there are

268

also pressures on memory use due to multi-processor/multi-tasking
considerations, all of which leads us to identify the amount of available
memory as being a matter of concern, particularly for regional an:

mesoscale models.

In the context of our environment, it is further argued that it is appro—
priate to multi-~task model codes at the highest possible levels (consis-
tent with acceptable real time performgnce) using a relatively small
numbe; of tasks, and to let the operating system optimize machine
throughput across user jobs. A tentative strategy is also given iﬁ the .
context of applying thesé principles to our weather prediction codes. In
the longer term it is dimportant to develop new algorithms (or adapt
unused older ones) to take best advantage of tﬁe multi—proceséor

architectures.

ACKNOWLEDGEMENTS

Discussions with Michel Valin and the expert typing of Maryse Ferland are

gratefully acknowledged.

269

