MIMD PROCESSING AND

THE DENELCOR HEP

By

David F. Snelling
And

Burton J. Smith

INTRODUCTION

The weather community has long provided the forefront of
computational science in that their peed for high-speed
computation tends to grow as order n” on the size of the
problem.

As a result the weather community first entered into the use
of vector processors and were shortly followed by the rest
of the scientific community. This has also been the case
with the multi-processor industry; the European Centre for
Medium Range Weather Forecasting has taken early membership
in the community of multi-processors with their Cray XMP dual
processor system.

With the increase in the number of multi-processors

available on the market and the fast-growing need for
high-speed computation in the MIMD industry, it is important
to consider the issues involved in multi-processing such as
synchronization, create processing, process termination,
control of large numbers of parallel processors and questions
as to the number of parallel streams versus size and
computational power of the processors executing these
streams. In view to addressing some of these issues this
paper will discuss briefly the Heterogeneous Element
Processor architecture from Denelcor as an example of a

very efficient high-performance MIMD architecture. Based

on the architecture of the HEP we will further discuss some
aspects of parallel computation and how they are particularly
related to the weather industry.

83



THE HEP ARCHITECTURE

The Denelcor HEP is a modular multi-processor mainframe with
3 types of modules: PEM (Process Execution Module) and

Data Memory Module, MSS (Mass Storage System). These are
connected to each other via ahigh-speed packet switching
network called, appropriate enough, the Switch.

A HEP system may have 1 to 16 PEMs each capable of running
at 10 million instructions per second. The PEM consists
of a self-contained program memory of 1 to 8 magabytes.

A 16 PEM HEP system therefore could have 128 megabytes

of program space (this is independent of the data memory).
Each PEM contains 2048 general purpose registers and 4096
system constants. Constant memories are used in the same
way as registers except that they are read only to user
programs. They contain frequently used values like the
small integers, pi and other math library constants.

Up to 128 data memory modules may be included in the

system allowing for a total memory of 1 Gigabyte. The
memory is organized into 64 bit words with 8 error correction
bits. The memory may be addressed as words (64 bits),
half-words (32 bits), quarter-words (16 bits), and bytes.
This memory is one continuous address space and may be
interleaved or blocked by module.

The MSS is a solid state buffer that is addressable as
part of the data memory and is used as a buffer for
disk transfers, a swap space for rolled out programs,
and/or a solid state disk. There may be up to four
MSSs in a HEP system each with a maximum space of 128
megabytes.

All the above modules are intercomnectedby the Switch.

The Switch is composed of nodes (the number of which
increases with the complexity of the system). Each node
has 3 bidirectional ports with a bandwidth of 80 mega-
bytes per second per port. To illustrate, when a load

data memory instruction is executed in the PEM, a request
message is inserted into the Switch; is passed from node

to node; has data added to it at the data memory; is

passed back node to node; and is returned to the PEM.

At each node along the way a preset routing map determines
which exit port will lead, with the shortest path, to the
data memory. The optimal routing from any module to another
is set at system initialization time, and hence a PEM may
be partitioned out of the network for routine maintenance
while other PEMs in the system continue to operate. The
same holds for other modules in the system.

Each PEM is itself a pipelined parallel processor. Each
operation is subdivided into 8 segments and separate

parts of the hardware handle each segment. With the
exception of divide and data memory accesses, all machine

84



instructions require eight stages. Unlike most pipelined
machines, the HEP need not be executing the same kind of
instruction in all segments of the pipeline as in SIMD
(Single Instruction Multiple Data stream) computer
architectures.

When an instruction stream or process is executing, an
instruction from it enters the pipeline, passes through
all the stages, and 8 cycles later the next instruction
from that process enters the pipeline. This leaves 7
pipeline stages unused. These 7 stages are available to
other processes which run in parallel with the original
process. Control of these parallel processes is achieved
by hardware queues. For each process in the machine there
is a PSW (Process Status Word). A PSW is comparable to
the program counter in a conventional Von-Neumann machine.
It contains the address of the next instruction to execute
and some other information pertaining to the process to
which it belongs. Each PEM in a HEP system has 128 PSWs
(processes). These PSWs are queued by the hardware for
execution.

The final topic in this basic architecture discussion is
that of process synchronization. 1If two processes are
acting as producer and consumer, some form of synchronization
is necessary to avoid one outrunning the other. 1In the HEP
every location in data memory has an access bit associated
with it. This bit tells whether the location is empty or
full. The access state of a memory location may be tested
and changed indivisibly by use of the special access modes
in the memory addressing scheme. In the example below
subroutine ABC is sending a stream of values to subroutine
XYZ. XYZ is consuming them and the transfer is protected
from either process overrunning the other. The example is
written in Fortran 77 with the parallel routines provided
with the HEP system.

program doitforever
external abc, xyz
call create (abc,x)
call xyz (x)

subroutine abec (x)

10 continue

t=bigfunction() generate the value t

call awrite (x,t) write x only if empty and set full
goto 10

end

subroutine xyz (x)
10 continue

t=aread (x) read x only if full and set empty
call uset (t) use the value t

goto 10

end

x, when used in this way, is called an asynchronous variable.

85




PARALLEL PROGRAMMING TECHNIQUES

In parallel processing there are two basic approaches to
handling parallel streams: The first is called the fork-join
in which parallel streams are created, perform their assigned
work, and then are joined back together to form a serial
stream of execution. The other alternative is up-front
creation of many parallel streams. Once the streams are
created work is passed around among the various executing
streams throughout the execution of the program.

Both the schemes have their advantages. Fork-join first

of all provides very clear and precise definition of

where the parallelism is and also provides a more simplified
mode of programming. On the other hand, if the particular
machine in question has relatively inefficient create
processing, the overheads involved can limit the size of
parallel streams allowed. For example, if a machine is
inefficient at parallel process creation then only very

large segments of the program can be efficiently parallelised.
The second alternative, that of up-front process creation,

has advantages and disadvantages. When a process is created
at the beginning it is not known what routines it may
actually execute. As a result the parallelism is not

apparent to the programmer or to someone debugging the program.
A point of synchronization somewhere in the program, a barrier
of some sort would indicate that at this point some form of
synchronization is taking place and there would be no
indication as to what other routines may be involved. The
corresponding situation in a fork-join can only be a fork-
join statement in an isolated place in the program. At this
point all synchronization would be apparent to someone
debugging or trying to understand the program. The key
trade-off between using fork-join process creation and
up-front process creation is the trade-off between efficiency
and readability. As a result some form of measure of the
overhead involved in synchronization is required in order

for program designers to determine which form of process creation
is most suited to the application.

Ore such measure has been put forward by Dr. Roger Hockney
of Reading University with his S-3. S-3 is a measure of
the amount of overhead required to perform a parallel
process creation. To be more precise it is a measure

of the amount of parallel computation required for a
particular architecture to make use of half the number
~of instruction streams being considered.

For example, in a HEP1l program with two instruction streams,
sixty floating point operations are required to guarantee

half utilization of the two instruction streams. As a

result S-3 is the overhead for creating another instruction
stream. The S-% for the HEPl processor running 14 instruction

86



streams is 820. The S-3 for Cray XMP dual processor
running two instruction streams is 5700. (Reference
Dr. Hockney's paper in this publication).

Given the large difference in the efficiencies of the two
machines mentioned above it will be of interest to
describe how the two generate their parallel instruction
streams.

In the Cray XMP there is a system routine called Task-Start
or Task-Create that actually generates another virtual

job within the Cray XMP dual processor, and then the
scheduling between the two processors is determined by

the operating system. On the HEP, however, the approach

is much simpler. The execution stream that will be

doing the create performs a score-boarded store into a
demon location. This uses the empty/full facility of

the HEP architecture. Concurrently with this stream is
another stream already set out by the system at load time.

This stream then becomes the second instruction stream. As
a result some of the create processing itself is running

in parallel, and the number of processes that can be
created is much greater, and the efficiency much higher
than on a system that involves operating system control

and operating system scheduling of parallel streams.

Once many instruction streams have been created it would be
nice if all of the streams could execute independently
throughout the execution of a job. This, however, is

rarely the case and some form of synchronization between
instruction streams is virtually always required. As

a result various different schemes for controlling the
process synchronization have been developed. Two will

be discussed here:

One is pre-scheduling in which what work a particular
stream does is determined prior to the creation of that
stream. The other scheme is called self-scheduling in
which processes are created at the on-set and then work
allocated dynamically as a program runs.

In the pre-scheduling scheme it is ultimately the programmer
who decides what instruction streams will execute what code.
As a result issues such as load-balancing and efficiency of
parallel processing are left entirely up to the user and
not necessarily a function of the actual load on the
machine at a given time. Whereas, in self-scheduling,

when the process becomes available (i.e. it has just
finished a previous assignment) it goes to a queue of work
and picks up additional computation. In experience it has
been found that self-scheduling tends to.provide a more
efficient load balancing of parallel process execution.

87



In general it is the feeling of the authors that self-
scheduling with fork-join process creation is the

most self-explanatory and efficient mode of parallel
programming. This, however, does require that the
architecture in consideration have an efficient way of
first creating parallel instruction streams and

second of allocating self-scheduled process modules.

88



OTHER MIMD ISSUES

There are two major MIMD issues that have become quite
familiar to the industry as a result of experience in
vector processing.

The first is Amdahl's Law which states that unless the
entire program can be run in parallel, total performance
cannot be achieved. To the extent that, if a program is 90%
parallelizable or vectorizable the program can run a maximum
of 10 times faster, in which case the 90% parallelizable
section would be running in zero time.

It is well-known that Amdahl's Law cannot be changed or
avoided. However, by investigating the contributing factors
one can get an idea of how programming practice can avoid
Amdahl's Law to some extent. The goal in avoiding Amdhal's
Law is to have as much of the program parallelizable as
possible. What typically happens in a program once it is
parallelized is that different instruction streams wind

up doing different amounts of work. The problem is
typically called load-balancing, in which case a large
segment of code has been allocated to one instruction stream
whereas another instruction stream is dealing with a much
smaller section. When a smaller section has completed,

the longer section must continue running on only one processor.
As a result Amdhal's Law comes into play and the program
does not run at full efficiency. The load-balancing

problem is particularly pronounced when pre-scheduling

is used, as dynamic scheduling algorithm on a large

number of parallel streams is not possible. The best
solution to this problem is to have a large number of
.smaller parallel code segments executing in a self-scheduling
manner. In this case busy processes continue executing
while non-busy processes return to the queue and acquire
more computation.

In a very large problem one would be able to achieve high
degrees of parallelism by using a large number of very

small pieces of parallel execution. The problem that

arises here is that the synchronization associated with
selecting a parallel segment is significant to the total
performance of the system. As a result, for any given
system, a balance between the number and size of executable
grains, and the scheduling algorithm (either self-scheduling
or pre-scheduling) must be chosen.

Another issue that contributes to Amdahl's Law is memory
“latency. As the systems are built with larger and larger
memories the memory latency or access time to memory

becomes significantly large. Even when facilities for
masking the memory latency (i.e. overlapping of instructions
and other techniques used by various different, architectures)
are employed, the memory reference time becomes a

89




significant factor in the performance of a parallel system.
It becomes even more important as the number of parallel
streams increases, as memory conflicts will begin to
accrue between several different processes in the

system. : ‘

The Heterogeneous Element Processor from Denelcor has a
facility for handling this memory latency issue. The
way it works is by ensuring that there is more work to
do than there are actual processors in the system. The
HEP, in a single processor version, is essentially a

12 instruction stream machine requiring typically 12
instruction streams to keep the processor busy.

By queueing up a larger number of instruction streams,

say 20 to 30, the HEP is able to fill-in the time it

takes to go to memory with more work. As a result when
more processors are added to the HEP system, the increased
conflicts and latency associated with a multi-processor
system are also masked by creating more instruction
streams in the overall system.

Based on a preliminary study of the weather model at ECMWF
it appears to the authors that there are some 900,000
potential parallel streams in the standard weather model
currently being run at the Weather Centre. It should be
noted, of course, that each one of these streams has
associated with it enough instructions that it would land
within the efficiency range of a fork-join synchronization
approach on the Heterogeneous Element Processor. Hence
the potential is high for parallelizing weather models to
a very high degree on a large large number of processors.
As the weather community comes closer and closer to using.
parallel processing as a production tool there are still
many questions that have to be considered.

One issue that would require a little closer examination would
be an extension to Amdahl's Law. Amdahl's Law has typically
been stated for one or all processors executing. It would be
interesting to investigate what happens to Amdahl's Law

when one considers the performance achieved when a certain
percentage of the code is running with full parallelism, a
smaller percentage is running at 50% parallelism and then a
smaller section running in serial or scalar mode.

Such a study is currently being carried out by Denelcor
Limited in the United Kingdom along with a study into a
parallel run time load-balancing package in which, at
execution time, the load is balanced dynamically at a
very fine grain level. ' '

One issue being addressed by Denelcor Inc. in the United

States with regard to their second generation processor, is the
development of a parallel memory management system for

programs executing many parallel streams simultaneously.

90



Studies underway at Los Alamos National Laboratory in
conjunction with University of California at San Diego
are providing tools for global data dependency analysis
and a simplified package of portable parallel
programming tools.

These tools provide a collection of macro facilities

and synchronization modes that allow them to generate
code for HEP processors, Cray XMP processors and multiple
VAX processors, all using one standard syntax.

Parallel processing provides a rich and efficient mode of
achievinghigh degrees of performance in various different
applications, the weather industry in particular. However,
many questions remain to be considered and one hopes that
academic activity in the area continues and that manufacturers
and industry continue to co-operate towards that end.

91





