MIMD FEATURES SUPPORTED IN

NEC'S COMPUTER SYSTEMS

Akihiro IWAYA Tadashi WATANABE

EDP Planning Office Computer Engineering Division
NEC Corporation , NEC Corporation

33-1, Shiba 5-chome 1-10 Nisshin-cho, Fuchu,
Minato-ku, Tokyo 108 Tokyo 183

JAPAN JAPAN

Abstract

In this paper, NEC's development approach to multiprocessing
in scientific computer is introduced by showing three
computers as examples, where inherent multiprocessing (or
MIMD) features are incorporated. Computers introduced are;
ACOS Mainframes, Supercomputer SX system and NEDIPS Dataflow
computer. These computers were developed according to the

NEC's approach and now commercially available.

142

1. INTRODUCTION

NEC's approach to develop scientific computer series is
always to offer these computers based on market requirements.
It is observed user want to have a cost effective high-speed
and yet easy to use scientific processing environment and to
utilize many application programs already developed. It is
also found major application areas now in use require only
homogeneous computational environment (the same computation
is applied to every grid points of the model) such as
aerodynamics, even though exceptionally some applications
such‘as Monte Calro type simulation require non-homogeneous
computation.

On the other hand, in the computer technology field;
speed limit of devices is not yet reached; connection delay
may be further minimized by using VLSI and high-density
packaging technoloéy. New high-speed device such as GaAs
will be available in the near future.

Considering above market requirements, applications and
high-speed technology our approach for scientific market was
decided in the following way:;

. Offer a cost effective high-speed vector (SIMD) machine
with high-speed scalar processing.

. Offer multiprocessor version of SIMD machine to increase
the total performance. This may include not only

homogeneous multiprocessor but also heterogeneous one.

143

. Multiprocessing system with hundreds or thousands of
processors, central high-speed scalar processor and
linearly cbnfigured main memory may be feasible, but we
have tb resort to'the appearance of micro-processor with
tens of megaflops. Yet high-speed connection network
between main memory and processors have to be developed.
(Sometimes called Von-Neumann bottle-neck problem)

. Further advanced type MIMD machine based on dataflow
concept which may give the solution for Von-Neumann
bottleneck problem is to be developed. This machine
achieves instruction level (function level) concurrency and
proves to be effectively operable.

According to the observation just described, three types

of scientific computer, all of them have some sort of MIMD

features was successfully developed and now commercially

available.

144

2. MULTIPROCESSING IN NEC'S ACOS MAINFRAMES

NECis mainframe computers called ACOS series, entry
model to high-end model, all have multiprocessing features.
In particular, high-end mainframes called S-950 and S~1000
support both vector processing and multiprocessing up to 4
processors., Fig; 1 showé the high~-end mainframe's central
complex configquration.

2.1 Process structure of ACOS mainframes

Multiprocessing function in ACOS mainframes is
controlled by a mechanism called process control feature. A
Process‘is defined as a sequence of instructions which are
always executed without concurrency (at least conceptually),
it may be seen this corresponds to the programming notation
of a task. The programmer thinks of the ACOS series
environment as the parallel execution of his program with
others (multiprogramming) or togethér with the parallel
execution of tasks (multitasking) within the program,
(Dijkstra (1968))

Processes have to be created by system software, énd
made known to the processors by a specific 'start process'
instruction. Each process has a process control block to

serve as an area for firmware dispatching mechanism.

145

Event controls between processes are made by a mechanism
called semaphore. The semaphore is a description located in
a special segment whose data contents are used by firmware to
represent a counter and a queue pointer. These semaphores
are used for the following purposes with associated
P-operation (wait) and V-operation (Signal);

. Dispatching processors for competing processes in
multi-tasking environment

. the passing of messages between processes

. the control of areas which are not reentrable (monitor)

. the interpretation of I/0 interrupts.

Fig. 2 shows the schematic view of semaphore operation.

'Many semaphores are defined for operating system purposes in

the operating system kernel. Others can be included in

object programs by the compilers.

2.2 Integrated array processor (IAP)

Vector processing feature called Integrated array
Processor (IAP) is incorporated in high-end ACOS mainframes.
This feature, which accelerates vector processing speed, is
implemented by adding relatively small amount of hardware.
Around 60 vector instructions such as vector Add, Subtract,
Multiply, Divide, Inner-product, Sum and Find-max are
supported. Programs written in FORTRAN are compiled to the
vectorized object code by FORTRAN 77 compiler.

However in order to utilize multiprocessing feature
described above, user have to partition his program into
individual FORTRAN program which correspond to the process
and final load module which may contain vector instructions

and executable in parallel is generated at linking time.

146

3. HETEROGENEOUS MULTIPROCESSING IN NEC SUPERCOMPUTER SX

SYSTEM

NEC Supercomputer SX System which offer up to 1.3
gigaflops processing power employs heterogeneous
multiprocessor architecture in order to offer increased total
system throughput. The functions of the SX System are
allocated to two processors called arithmetic processor (AP)
and control processor (CP). These two processors operate in
parallel. (Watanabe (1984))

3.1 8X System Configuration

Fig. 3 shows the_configuration of SX System central
processing complex. Processor part called Scientific
Processing Unit (SPU) consists of two processors; AP and CP.
AP is a kind of high-speed FORTRAN engine dedicated to
execute user program and CP is a supervisory processor to
control the entire system.

The objectives to employ such heterogeneous
multiprocessor configuration are described below.

Generally speaking, the internal processing part by
processor (central processing unit) is divided into two types
of operation;

. System control such as resource management and scheduling

. User program execution

147

In large scientific computation, significant reduction in
user programs execution time may be expected by the use of
high-speed vector and scalar processing power. This results
in an increase of relative percentage of processor time for
system control. Even worse, expensive vector processing
function is not effectively utilized in this type of system
control processing because most of the system control is
processed as scalar operation. Fig. 4 (a) illustrates the
internal processing time of conventional mainframe which
exemplifies the above situation.

The SX system employs multiprocessing system and
functions required for scientific processing are distributed
to AP and CP. AP and CP share the Main Memory Unit and in
each processor, process control primitives described in
section 2 are implemented to offer multiprocess structures.
System control process and user program process run in
parallel in CP and AP respectively, turn-around time as well
as total system throughput is considerably improved in SX
- system. Fig 4 (b) illustrates this situation.

3.2 Arithmatic Processor (AP)

AP is a heart of SX system and dedicated to run user
program. AP is divided into the scaler unit and vector unit,
each can operate in parallel.

The scaler unit includes 64 k bytes cache and 128 scaler
registers and employ scaler arithmetic pipelines. The scaler
unit interprets the instructions and controls their
execution, and high-speed scaler operation is performed on

it.

148

The vector unit includes 16 multi-parallel pipelines and
80 k bytes vector registers and executes vector arithmetic
operation, which include extensive vector operations such as
vector mask operation, scatter/gather operation in order to
increase vectorizing ratio.

AP may be consided to be a FORTRAN engine optimized to
run FORTRAN program. To maintain high-speed operation, AP
employs so called 'RISC' (Reduced instruction set computer)
architecture. '

3.3 Control processor (CP)

CP performs operating system function. It controls AP,
IOP (Input output processor), XMU (Extended Memory Unit).

The system control functions included are;j resource
management, scheduling, compilation and linking. Time
sharing system called ATSS is also supported to use SX
system from remote site.

CP employs the similar architecture to ACOS mainframes.
It can be considered to be powerful main-frame processor.
Fig. 5 shows the typical job flow and functional distribution
between CP and AP.

Not only system programs but user program execution is
also possible on CP. (FORTRAN 77 is supported for both AP and

CP)

149

3.4 AP and CP overlapped operation

Although parallel operation of AP and CP is obvious
under multi-programming environment, such operation is also
possible within the operation of one user program, reducing
the turn-around time. One such example is asynchronous
input/output function which enables input/output process and
user program process for a program run in parallel,
Input/output process including format editing run on CP and
simultaneously user program process on AP.

Fig. 6 shows asynchrous input/output operation where I/O
operation (READ) is specified with identification (ID) and
user program process proceeds until it has to wait the
completion of data transfer with the identification. While
user program process 1S ruﬁning on AP, entire I/0 processing
is performed on CP until the I/O termination. This function
may sometimes be very effective when user want to output
intermediate results to the file system in order to reduce
the turn-~around time of user program.

Above is an example where system process (I/0 operation)
and user process run in parallel. User may also want to run
one user process on CP in parallel with another user process
on AP within one program. This is also possible. Each
user's CP task and AP task have to be complied individually,
then at link time they can be combined to form a load module
with multi-process structure. Load-balancing between CP and

AP is user's responsibility.

150

Heterogeneous tightly coupled multi-processor
configuration of SX System with mainframe compatible
processor (CP) and FORTRAN vector processing engine (AP) is,
we believe, the one of the best choice considering the
present state of the art. In SX System, actually no

front-end system is required.

151

4, DATA-FI,OW COMPUTER NEDIPS

Multi-processing system presented in section 2,3
exemplifie MIMD (Multi instruction Multi Data) in process
level. However there exists MIMD or parallel operation
possibility in instruction level even when the program is
executed is scalar mode. Parallelism inherently found
between instructions (or data) can be found by using
data-flow concepts.

Data-flow computer called NEDIPS (NEC Data Flow Image
Processing System) which employs so called non-Von-Neumann
architecture was developed in NEC and proved to be very
effective for scientific processing.

Data-flow computer where each instruction (operation) is
processed in parallel, we believe, is the ultimate goal of
MIMD processing (Temma (1984)).

4.1 Non-Von-Neumann type computer

Every computer commercially available today except
NEDIPS uses Von-Neumann architecture. In this architecture,
Principal operation is as follows; programs and data are
stored in central memory and program execution is
sequencially executed according to program counter. This
principal operation often limits the system performance. One
is the bottle-neck between memory and processor. Another is
the sequential processing even though there exists inherent

instruction level parallelism,

152

4.2 Data-flow control

In contrast to the Von-Neumann computer, the NEDIPS
architecture is designed to execute the processing as soon as
the necessary data is available. In other words, processing
is controlled by the flow of data, not by the flow of
control.

Fig. 7 shows the models of data-flow operation.

In this model, the operation modules are connected in a
ring. In each module, a program is stored as a 'template’.

A template is used in the data-flow computer in place of the
program used in a conventional Von-Neumann computer.

The template in the data-flow computer specifies how
data read by the processing module will be processed and
where the results will be sent. No sequence of processing is
specified. Further, in Von-Neumann computers, data is
identified by its memory location. In non-Von-Neumann
computers, however, data is identified only by the data name
attached to it, regardless of sequence and storage location.
Therefore, processing can be executed even though data
arrives at the operation module and processing starts
whenever sufficient data is available.

In Fig. 7 the reader module fetches data from memory and
attached ID and destination tags in accordance with the
reader template. Then, data is placed on the data bus. Each
module continuously checks the data flowing on the bus,
whenever a data item destined for that module is found, the
module captures the data. Then, the module checks the tag

related to the template to determine whether processing can

153

proceed. If data is incomplete, it is temporarily stored in
the gueue area and processing starts on whatever data has
accumulated. Processed data is again supplied with ID and
destination tags in accordance with the template. When
processing has been completed on a data item, it is given new
tags in accordance with the template of the final module and
again placed on the data bus. When data is returned to the
writer module, its tag is removed and it is stored at the
specified memory address.

4.3 NEDIPS system configuration

NEDIPS consists of a data-flow processor, memory unit
and software as shown in Fig. 8. By virtue of the data-flow
architecture, the Von-Neumann bottle-neck has been solved and
the efficiency of the operafion module has been greatly
increased.

Memory unit includes a mass storage system, a host
computer interface, and functions as an I/0 buffer memory for
the processor unit.

The hardware that makes up NEDIPS is connected to a host
computer by a control channel and a data channel, and
processing is executed under the control of the host
computer.

The NEDIPS data-flow processor is connected to memory
unit by means of a high-speed data bus and several control

signal lines.

154

4.4 Data-flow processor configuration

The NEDIPS data-flow processor consists of an addressing
unit, an arithmetic unit and a control unit as shown in
Fig. 9. The arithmetic unit and the addressing unit are
connected in a ring of operation modules by a data bus. The
data flows between operation modules. Each operation module
stores programs (templetes) and takes necessary data into the
module. The module processes whichever data is ready first.
The results are sent through the data bus,

The addressing unit is composed of operation modules
which perform fixed-point operations, memory interface and so
forth. The arithmetic unit consists of floating-point
operation modules. The addressing unit and the arithmetic
unit are connected by a riﬁg interface. The data input from
memory to the addressing unit is sent through the ring
interface to the arithmetic unit and the ring of operation
modules.

While the data is passing through the operation modules,
complex formula are executed. Notice that no additional
memory I/Os are required during a specific operation.
Therefore, the speed of Data-flow Processor is little
affected by the speed of memory Input/Output. Furthermore,
because each of the operation modules operates efficiently in

parallel, high-speed processing can be expected.

155

4.5 NEDIPS system application field

At present NEDIPS is in actual operation for Remote
Sensing Image processing. However, NEDIPS can be applied in
every field of scientific processing where high-speed
computation is required. Language supported in NEDIPS is a
data~flow type language called templete assembler language.
Furthermore, full FORTRAN support is planned, then it is
expected to be used extensively as an alternatives of entry

level supercomputer.

156

5. CONCLUSION

NEC's development approach for scientific computer,
particularly those of multiprocessing (or MIDM machine) is
introduced as three processors as examples. It seems SIMD
architecture (or multiprocessor SIMD) with éowerful scalar
power and wide memory band width like SX system has still
have advantages over true MIMD architecture which may require
thousands of micro-processors considering the present state
of arts. One candidate of next genération supercomputer may

be one based on data-flow concepts like NEDIPS.

Reference

Dijkstra, E.W. 1968: "Cooperating sequential processes"
in programming Languages. New York: Academic Press, Inc.

Temma, T. and Mizoguchi, M. and Hanaki, S. 1984:
"Template—controlled image processor TIP-1. NEC Res. &
Develop., No. 73, pp. 33-41

Watanabe, T. 1984: Architecture of supercomputes - NEC

Supercomputer SX system. NEC Res. & Develop., No. 73,

pp. 1-6.

157

T T
| |
l EPU EPU EPU EPU | |
; |

I
| |
| l
| SCu SCu |
| !
< T

Top| |zop| |MMU mMu| |zop| {1OP
sce scc

CPU: CENTRAL PROCESSING UNIT

EpPU: EXECUTION PROCESSING UNIT (PROCESSOR)
SCU: SYSTEM CONTROL UNIT

MMU: MAIN MEMORY UNIT

IOP: INPUT/OUTPUT PROCESSOR

SCC: SYSTEM CONTROL CONSOLE

Fig. 1 ACOS Mainframe Central Complex Configuration

PROCESS
B
\
, _ ,
P-Operation . y V-Operation
e
SEMAPHORE '
MESSAGE

)} Semaphore

)} P-Operation

) V-Operation

) Wait Queue/Ready Queue

Fig. 2 Semaphore Operation

158

Arithmetic
Processor
(AP)

0

Control

Processor
(Cp)

Main Memory Unit (MMU)

Input/Output Processor (IOP)

Extended

Memory

Unit
(xMU)

| 1]

[|

Fig. 3

sX System Configuration

159

IJob input, Scheduling,

Resource management,
lFile processing,

Compilation, Linkage-editing

System control

User program execution

(a) Internal processing time of the central processing

unit in a general-purpose computer.

Control
Processor

Arithmetic
Processor

System control

User program execution

(b) Internal processing time when functions are distributed.

Fig. 4 Internal Processing Time of SX System
Main Memory
ey =Program
~Tocal @ ronten Buffer
Batch System > Data
~ b Input
Input Jo npu
Job
B> Compi le > VECTORIZER
> Link > ANALYZER
i TIMIZER
vodul a - Start
ocns Process
Start
I/0
—— 1/0 Operatiocn
Q Termination event
STermlnatlon Proce551ng Terminate
Process
Output Display, Operatlonéiggézi:
.
CP AP

Fig. 5

160

Typical Job Flow and Function Distribution
in CP and AP of SX System

- I/0 Processing in CP, User Program
in AP Simultaneously

AP Cp
User Program //rI/O Stant
) // -
READ(1,ID = 5) A~ I/0 Processing
-2
WAIT(1,ID = 5) A I1/0 End

Fig. 6 Asynchronous I/O Operation in SX System

Variable A Variable B

After A is processed with B After B is processed with A
they are named C and-sent they are named C and sent
to operation module 1. to operation module 1.

Example of the template in module 3

Template
Operation Module 2

bound for Ope-
ration Module 3

. bound for
VariableQOperation
C bound Module 3
for

Operation
odule 1

Data

T
empla Template

Reader/Writer Modules Operation Module 1

Fig. 7 Data-flow Model

161

To Host Computer

NEDIPS

(N P “|bata ~ Magnetic Disk |
Control Channel Channel Unit (option)

l High- :
i Data-flow Speed | Me@ory Soft- I
} Processor | .. p.o| Unit ware }
| |
-]

Fig. 8 NEDIPS System

Contrel Unit [—=To Host Computer

Operation
Module

Operation
Module

Operation
Module

Operation
Module

To Memory Unit

Operation
Module

Operation
Module

Operation
Module

Data Bus

Fig. 9 Conceptual Illustration of NEDIPS Data-flow Processor

162

