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Abstract

The structure of long stationary and transient waves in the atmosphere is
studied using a quasi-geostrophic, two level model and spherical geometry.

The waves are forced by heating or orography.

The solutions for stationary waves influenced by heating show that the
amplitudes and slopes are determined mainly by the strength of the zonal wind.
Weak zonal winds create an eastward slope with height and strong zonal winds a
westward slope. The transition from one slope to the opposite slope occurs
for a value of 5-6 of the meridional index for weak zonal winds and for 2-3
for strong zonal winds. The amplitudes are largest in the neighbourhood of
the transition. These maxima in the amplitude may be explained as resonance
phenomena. The energetics of the long stationary waves is analysed in detail
showing that the total production of available potential enerqy of the waves
is always positive, but that the conversion from zonal available potential

energy is negative for the eastward sloping waves.

The theoretical study is compared with the structure of the waves as obtained
from climatological maps for the Northern Hemisphere for January and July

using spherical harmonic analysis with favourable results.

The forcing of long stationary waves by orography is considered using the same

technique as earlier and with analogous results.

Finally, the transient waves are analysed using a stability analysis showing
that the unstable case leads to a westward slope with height while the stable

case has the opposite slope.



1. INTRODUCTION

This study is concerned with the structure of long waves in the troposphere.
A Fourier analysis of the height field of the normal maps for the Northern
Hemisphere along a middle latitude circle (50°N) shows that the waves with
wave number 1, 2 and 3 slope £o the west in the winter and to the east in the
summer, (Eliassen, 1958). An investigation of the structure of the long
stationary waves was made by Wiin-Nielsen (1961) using the‘vorticity egquation
for the vertical mean flow in the stationary case. From this equation it is
possible to investigate the distribution of temperature relative to height in
the stationary planetary waves. On the other hand the investigation did not
give any results concerning the absolute position of the long, stationary
waves because the vorticity equation for the vertical sheér flow was
disregarded. The reason for the neglect of the equation for the shear flow
was that this equation contains the heating of the atmosphere, and it was not

possible at the time to give a realistic specification of the heating.

Investigation by Saltzman (1968) and Wiin-Nielsen (1972) have shown that the
heating in a two-level model including short-wave solar radiation, long-wave
outgoing radiation, small=-scale convection, evaporation and condensation,
latent heat release and subsurface conduction may be formulated in a
parameterized form, and it was demonstrated by Wiin-Nielsen (loc.cit.) that
the heating function may be formulated in a Newtonian form where the
coefficient of intensity and the equilibrium temperature field can be
calculated from the parameterization formulas. This formulation will be used

in the model to be described later.



Wwith this formulation of the heating and with the incofporation of dissipation
in the planetary boundary layer and in the free atmosphere it is possible to
solve the stationary linearized equations for a two-level quasi-geostrophic
model. The model will be formulated on the sphericai earth and linearization
will be around a zonal flow with constant angular velocity. It will
furthermore be coﬁvenient to find the solutions in terms of spherical
harmonics. The investigation is in this regard similar to a large number of
other studies which attempt to calculate the atmospheric response to heating.
Smagorinsky (1953) initiated such studies. The response as a function of
scale is important particularly because pf the recent interest in the
influence of anomalous heating on the atmospheric circulation, as for example

the effects of the heat source created by the El Nino phenomenon.

The study of the long stationary waves is described in’ Sects. 2 to 5 of which
Sect.2 contains the formulation of the problem, Sect.3 gives a description of
the solutions and discusses the results, Sect.4 discusses the vertical
structure and the energetics of the waves, and Sect.5 contains a comparison
between the theoretical results and results from a decomposition of
climatological maps for January and July in spherical harmonics showing good

agreement between theory and observations.

Sect.6 contains a discussion of the long stationary waves as forced by
topography which was disregarded in the previous sections. The main result is
that the mountain forcing acts gualitatively in the same way as forcing by
héat sources in the sense that the slopé in the vertical direction of the
waves is controlled by the zonal wind speeds. For small values of the zonal
wind speeds the waves slopé eastward with height for sufficiently small
values of the meridional index. Strénger zonal winds limit the eastward

sloping waves to smaller values of the meridional index.



In Sect.7 we leave the problem of stationary waves and give a brief analysis
of the stability of transient long waves on the spherical earth including
heating and dissipation. This study supplements the investigation of the

stationary waves and extends earlier studies to a spherical geometry.

Sect.8 contains a summary and concluding remarks.

2. THE LINEARIZED MODEL

As indicated in the introduction we shall specify the heating in a Newtonian
form:
H=-YC (T~-T .
Y P ( E) (2.1)
in which H is the heating per unit mass and unit time, Y is the coefficient of
intensity, CP the specific heat at constant pressure, T the temperature and

TE the so-called equilibrium temperature.

The dissipation is formulated in agreement with the model used by
Wiin-Nielsen (1972), and the basic equations may be obtained from that study

by setting the time-derivations to zero.

As mentioned in the introduction we shall linearize around a zonal flow with
constant angular velocity. The linear velocities of the mean flow and the
shear flow are, respectively,

U, =acosp A ; UT = a cos¢} AT | (2.2)

and the corresponding relative velocities are:

T, = 20, u; ZT =20 4 , g = sind (2.3)

T

With these notations we may write the steady state equations for mean flow and

the shear flow as follows:
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while the thermodynamic equation may be written in the form:
£ P! P!
0 4 =22 T _ _x 2 vyt
o= (A 5 = Ap i) A2 Y (bn - ) (2.5)

When (2.5) is substituted in the last equation in the system (2.4) we obtain
two equations in the dependent variables ¥, and wé. In solving these linear
equations it is convenient to non-dimensionalize the dependent variables. The

perturbation streamfunctions are written in the form:

b N,

' —= a2
wT a“f nT (2.6)
VE "g

With this scaling we may write the vorticity in the form:

A

2gr _ of 1 3%n 3 .. 5,
v2yr = 9{1_u2 i [c1=u2) 31} (2.7)

It is furthermore decided to seek solutions in terms of the spherical harmonic

functions, i.e.

n, A,

m imA
nT = AT Pn () e (2.8)
nE AE

in which m is the zonal wave number and n the meridional index. Using (2.8)
we may write (2.7) as follows

V2y' = - Q n(n+1) A P e m - g (2.9)

in which C = n(n+1).



The dependent variables are now the amplitudes A, = A,(m,n) and AT = AT (m,n)
while the forcing is represented by AE{ The non-dimensional variables are

introduced in the basic equations together with the representation (2.8).

- After considerable reduction we find the following equations for A  and AT:

(1 + iG)A* - (2 - 1iH) AT =0 | (2.10)
- . . —I‘_ )
- {1 - iX)a, + (M + iL) AT = =0 AE
in which
A*
.- ﬁ_ (3c-1) - 1
= eC
Ay
o o (4C-1)
= eC
AT
o (dc-1-% A2a2)
A*
g~ (3c-1+3 A232)-1
L=m oC
a
M=2+— + r
e ec
_E _V oY A%a?
and e = 20 ' aT =q T = 0 (2.12)

Since (2.10) is a system of linear inhomogeneous equations it is
straightforward to obtain the solutions for the (complex) amplitudes A, and
AT. The remaining part of the paper will be devoted to a study of the
solutions as a function of the scale parameters m and u. In this connection

we shall always express the wave in the form

¥ = A cos[m(A-6)] pg(u) (2.13)



The phase angle 0 is thus the position of the maximum of the wave having the

wavelength 27T /m.

The solution of (2.10) may be found in a straightforward manner. We write the

final result:

Pt r ety B 1 14 @)s
A eC Q%+s¢ ¢ Ap © eC Q°+ S
B(E) p (o-He)Q - (He20)s (2.14)
AL T eC Q% + s .
By(1) _ I (2-HG)S + (H+2G)Q
A T eC Qf +s°
E
where
0 M(1+G“) + H(G+K) + 2GK~2 (2.15)

L(1+G2) + 2(G+K) + H(1-KG)

wn
I



3. THE SOLUTIONS

In evaluating the solutions it is necessary to assién numerical values to the
various constants. The value of € is about 3 x 10=® s=! from which it follows
that

e = 0.01

For A we may adopt the value A = 6 x 107 s~1 which leads to

alII = 0.008

The evaluation of I' is based on the values Y = 1.4 x 10-% s'l,
A2= 2.5 x 10712 m~2, a = (2/m1) x 107m, § = 7.29 x 10~5 s~l. With these values
we obtain

r =1

A* and AT measure the strengths of the zonal winds. According to (2.2)

we have in general

U
A= a cos ¢ (3.1

Measuring U at 45°N we find for U45 = 10 ms~! that A = 2.2 x 10~® s~1. This

calculation indicates the order of magnitude to be selected for A* and AT.

We may start by considering a number of special cases. The first case is the

one when n and therefore C is very large. It is then seen from (2.11) that

m A* m AT
G = e oq ¢ H = = 20 (3.2)
The first equation in (2.10) is in this case:
' A* . AT
A - (e + im ZQ)(2e + im 0 . 3.9y
T A * :

2 _T.2 2
4 e + (29) m

(3.3) may be used to find the difference in phase angle between A_ and AT.

10



Assuming that y  has a zero phase angle we find that

2h, + AT
tan eT=—2-§—__A—_A_ (3.4)

2_2_ * 1T
2e mEz—

but e? is small compared to the other term in the denominator such that

MMy
o e f 20

tan OT = - i, AT (3.5)
20 " 20

The right hand side of (3.5) is negative for relevant values of A, and AT for
the troposphere. An investigations of (3.3) shows that the solution is such

that #7m < OT € . If m is large also we £ind therefore that

b e
e 0 20 -
OT =Tm - - A* AT = | (3.6)

(z)( =)
© m 2m

The phase angle difference is thus o = o but the wave length is o We have

thus shown that for sufficiently large m and n the phase angle difference

between the mean wave and the thermal wave is approaching one half of the

wavelength.

The next special case will be m=1, n=1, i.e. C=2. 1In this case we have:
2e ' '
or
AL = (3 -11) a4 (3.8)
T T e’ S '
The phase angle difference is in this case determined from
tan OT = = — = = 50 (3.9)
T
or GT =2 - o which means that the thermal wave is about a quarter of a

wavelength ahead of the mean wave, or that the wave with (m,n) = (1,1) 1is

tilting from west to east in the vertical direction.

To illustrate the effects of the zonal velocities we may consider still
another case {(m,n)= (1,2), i.e. C=6. We obtain

11
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* o
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) - * . 20, AT
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It is seen from (3.10) that if A* = A = 0 we still have a negative value of

T

the phase angle which implies that the thermal wave is ahead of the mean wave
or, in other words, the wave is sloping from west to east in the’vertical
direction. However, for sufficiently large value of A, and A, the imaginary
part will be positive and therefore the slope will be from east to west. The
exact condition is in this particular case

20, + AT > Q (3.11)
We have thus seen in this example that within the model it is the westerly (or
positive) angular velocities which makes it possible for the wave to have a
structure such that the mean wave is ahead of the thermal wave. Such a
structure is always possible for sufficiently large values of A* and AT except

for the wave (m,n) = (1,1) which always has the opposite arrangement.

The next case is the general case in which we are interested only in the phase
difference between the mean wave and the thermal wave. In all cases we have

used e = 0.01, an = 0.008, I' = 1 while A, and AT have had the following

values:
A, =0 ; AT =0 (Table 1a)
A, = 4.0 x 1076 s~} ; Ay=1.5x 10-% s~} (Table 1b)
A* = 8.0 x 10°% g1 ; AT = 3.0 x 1076 g-1 (Table 1c5
A, = 1.2 x 1070 s~1 ; Ay =4.5x 10-% s=1 (Table 14)
A, = 2.4 x 1075 g1 A, =9.0x 10-6 s-! (Table 1te).

The calculations in these cases are shown in Table 1(a) to 1(e) showing

(0 -0 ) expressed as a fraction of the wavelength.
* 7

12



Table 1a Phase difference (6.-Op) expressed as fraction of wavelength

I'=1, e =0.01, a; = 0.008, A, =0, A, =0
n

m 1 2 3 4 5 6 7 8 9 10

1 ~0.25 | -0.26 | =-0.27 | -0.28 | -0.30 | ~0.31 -0.33 | =0.35 | -0.37 | -0.38
2 —o.és -0.26 | -0.27 | -0.27 | -0.28 | -0.29 | ~0.30 | -0.32 | -0.33
3 -0.26 | -0.26 | -0.27 —o.é7 -0.28 | -0.29 | -0.30 | -0.31
4 -0.26 | -0.26 | ~0.27 | -0.27 | -0.28 | ~0.29 | -0.29
5 -0.26 | -0.26 | -0.27 | =0.27 | -0.28 | -0.28
6 -0.26 | -0.26 | -0.27 | =-0.27 | -0.28
7 -0.26 | -0.27 | -0.27 | =0.27
8 -0.26 | -0.27 | -0.27
9 -0.27 | -0.27
10 -0.27

13



Table 1b Phase difference (3*—GT) expressed as fraction of wavelength
I'=1, e=0.01, ap = 0.008, A, =4 x 107%, A, =1.5x 107°

T
n.
m 1 2 3 4 5 6 7 8 9
1 -0.25 -0.19 -0.16 -0.12 -0.03 0.11 0.192 | ~0.22 0.23
2 | -0.15 -0.12 -0.10 -0.04 0.19 "0.29 0.32 0.33
3 -0.10 -0.08 -0.03 0.25 0.35 0.37 0.37
4 -0.06 -0.03 0.29 0.38 0.40 0.40
5 ' -0.02 0.33 0.40 0.41 0.42
6 0.35 0.42 0.43 0.43
7 0.45 0.44 0.44
8 0.456 0.45
9 0.45
10

Table 1c Phase difference (6*—@T) expressed as fraction of wavelength

I'=1, e=0.01, a =0.008 A, =8x 107®, A =3x 1076

N

m 1 2 3 4 5 6 7 8 9
1 -0.25 | -0.14 | -0.10 0.11 0.29 0.32 0.33 0.34 0.34
2 -0.09 | -0.06 0.15 0.38 0.40 0.40 0.41 0.41
3 -0.04 0.17 0.42 0.42 0.43 0.44 0.44
4 0.17 0.44 0.45 0.45 0.45 0.45
5 0.45 0.46 0.46 0.46 0.46
6 0.46 0.47 0.47 0.47
7 0.47 0.47 0.47
8 0.48 | 0.48
9 0.48
10

14




Table 1d Phase difference (9*-OT) expressed as fraction of wavelength
I'=1, e=0.01, ap = 0.008, A, = 1.2 x 1075, A, = 4.5 x 106
n
m 1 2 3 4 5 6 7 8 9 10
1 -0.25 | -0.11 | -0.01 0.34 0.37 0.38 0.38 0.38 0.38 0.39
2 -0.06 | -0.01 0.41 0.43 0.43 0.44 0.44 0.44 0.44
3 -0.00 0.44 0.45 0.45 0.46 0.46 0.46 0.46
4 -0.46 0.46 0.47 0.47 0.47 0.47 0.47
5 0.47 0.47 0.47 0.47 0.48 0.47
6 0.48 0.48 0.48 0.48 0.48
7 0.48 0.48 0.48 0.48
8 0.48 0.48 0.48
9 0.48 0.48
10 0.48
Table 1e Phase difference (6*—9,1,) expressed as fraction of wavelength
T=1,e=0.01, ap = 0.008, A, = 2.4 x 1075, Ay =9 x 10-6
n
m 1 2 3 4 5 6 7 8 9 10
1 -0.25 | -0.04 0.41 0.43 0.43 0.44 0.44 0.44 0.44 0.44
2 -0.02 0.45 0.46 0.47 0.47 0.47 0.47 0.47 0.47
3 0.47 0.48 0.48 0.48 0.48 0.48 0.48 0.48
4 0.48 0.48 0.48 0.48 0.48 0.48 0.48
5 0.48 0.49 0.49 0.49 0.49 0.49
6 0.49 0.49 0.49 0.49 0.49
7 0.49 0.49 0.49 0.49
8 0.49 0.49 0.49
° 0.49 | 0.49
10 0.49
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Table 2a Relative amplitude of Y,and

''=1, e = 0.01, agp = 0.008, X* =0, A= 0

1 2 3 4 5 6 7 8 9 10

0.0275}0.0777 |0.1416 |0.2083 |0.2690 |0.3190 {0.3574 |0.3852 |0.4041 [0.4160
0.6873|0.6465 |{0.5941 |[0.5311 |0.4681 [0.4120 |0.3657 {0.3296 |0.3021 |0.2811

0.0259 {0.0496 [0.0776 [0.1069 [0.1349 |0.1595 |0.1799 |0.1962 0.2088
0.43.12/0.4138 |0.3898 |0.3604 [0.3282 |0.2958 |0.2656 |0.2391 |0.2166

0.0243 |0.0391 [0.0558 [0.0731 |0.0899 {0.1052 |0.1183 |0.1293
0.3037 |0.2938 |0.2803 |0.2638 |0.2450 ]0.2253 |0.2059 |0.1878

0.0232 [0.0337 |0.0451 |0.0569 |0.0683 [0.0788 [0.0881
0.2319 [0.2251 |0.2162 |0.2052 |0.1928 |0,1795 [0.1662

0.0223 |0.0304 |0.0389 [0.0475 |0.0559 [0.0636
0.1865 |0.1813 |0.1747 |0.1667 |0.1577 |0.1480

0.0217 |0.0281 [j0.0347 |0.0414 [0.0478
0.1554 |0.1511 |0.1458 |0.1395 [0.1326

0.0212 |0.0264 |0.0318 [0.0371
0.1327 |0.1290 [0.1246 |0.1195

0.0207 {0.0251 |0.0295
0.1154 [0.1122 |0.1084

0.0203 |0.0240
0.1018 [0.0989

0.0199
0.0908

16



Table 2b Relative amplitude of Y, and ¥
=1, e=0.01, a =0.008 A, = 4x 1078, A, = 1.5x 10~
n
m 1 2 3 4 5 6 7 .8 9 10
1 0.0110/0.0382 |0.0928 {0.2171 |0.6957 {0.7140 {0.3326 |0.2197 |0.1649 |0.1316
0.2760/0.2685 |0.2613 |0.2680 [0.3963 {0.3314 |[0.1965 |0.1594 [0.1372 |0.1202
2 0.0115 {0.0303 [0.0757 {0.3083 [0.2863 |0.1240 |0.0838 |0.0647 |0.0530
0.1411 |0.1395 |0.1433 |0.2047 |0.1127 |0.0875 |0.0813 [0.0752 |0.0691
3 0.0169 [0.0433 |0.1879 {0.1680 |[0.0725 |0.0495 |0.0386 [0.0319
0.0942 {0.0969 |0.1353 [0.0576 |0.0560 [0.0544 [0.0514 [0.0479
4 0.0302 |{0.1345 {0.1185 |[0.0512 |0.0351 [0.0274 {0.0228
0.0731 |0.1009 [0.0367 |0.0413 [0.0409 |0.0389 |0.0364
5 - 0.1049 |0.0917 |0.0396 [0.0272 |0.0213 [0.0178
0.0805 |0.0265 [0.0327 |0.0327 [0.0312 [0.0293
6 0.0750 {0.0324 [0.0223 |0.0175 [0.0146
0.0207 |0.0271 [0.0273 |0.0261 |0.0246
7 0.0275 [0.0189 |0.0128 |{0.0124
0.0232 |0.0234 |0.0224 |0.0211
8 0.0164 {0.0129 |0.0108
0.0205 |0.0196 |0.0185
9 0.0114 |0.0095
0.0175 [0.0165
10 0.0085
‘ 0.0148
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Table

2¢ Relative amplitude of Y,and ¥

I'=1,e=0.01 a;=0.008, R, =8x 1076, A, =3x 1076

m 1 2 3 4 5 6 7 8 9 10
1 0.0050{0.0235 [0.0954 {0.5482 [0.1242 [0.0812 {0.0637 |0.0534 |0.0462 [0.0406
0.1253|0.1266 [0.1409 |0.2015 |0.0918 |0.0875 {0.0824 [0.0768 [0.0711 |0.0655
2 0.0084 {0.0372 {0.2137 |{0.0488 [0.0325 [0.0259 [0.0220 {0.0193 {0.0172
0.06412(0.0711 |0.0512 |0.0418 |[0.0427 [0.0413 |0.0391 |0.0367 |0.0343
3 0.0231 [0.1330 |0.0306 |[0.0205 [0.0164 |0.0139 {0.0122 |0.0109
0.0474 {0:0229 |[0.0273 |0.0283 |0.0275 |0.0262 |0.0247 |0.0231
4 0.0971 [0.0224 [0.0150 |0.0120 |0.0103 [0.0090 |0.0081
0.0130 [0.0204 [0.0212 |0.0206 |0.0197 [0.0185 |{0.0174
5 0.0177 [0.0119 [0.0095 |0.0081 [0.0072 |[0.0064
0.0162 |0.0169 |0.0165 |0.0157 |0.0148 |0.0139
6 0.0098 |0.0079 [0.0067 [0.0059 |0.0053
0.0141 [0.0138 |0.0131 [0.0124 {0.0116
7 0.0067 |0.0058 |0.0051 |0.0045
0.0118 |0.0112 [0.0106 |[0.0100
8 0.0050 [0.0044 |0.0040
0.0098 |0.0093 |0.0087
9 0.0039 [0.0035
0.0083 |0.0078:
10 0.0032
0.0070
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Table 24 Relative amplitude of Y and Y

T'=1,e=0.01, a; = 0.008, X* = 1.2 x 1075, A, 4.5 x 1076

1 2 3 4 5 6 7 8 9 | 10

0.0032{0.0216 |0.3747 |0.0754 |0.0462 |0.0365 (0.0312 0.0275 |0.0246 |0.0222
0.0806|0.0844 |0.2049 |0.0574 |0.0588 |0.0570 |0.0541 |0.0509 |0.0476 [0.0443

0.0087 |0.1795 |0.0329 |0.0201 |0.0161 |0.0138 |0.0123 (0.0110 [0.0100
0.04242(0.1013 (0.0270 {0.0289 [0.0284 |0.0271 |0.0257 |0.0242 [0.0226

0.1182 {0.0209 |[0.0130 [0.0104 {0.0090 |0.0086 |0.0072 |0.0065
0.0672 (0.0178 {0.1092 |0.0182 |0.0181 |0.0172 |0.0162 [0.0151

0.0155 [0.0097 |0.0077 |0.0067 |0.0059 [0.0053 {0.0049
0.0133 |0.0144 |0.0142 |0.0136 |0.0129 10.0121 |0.0114

0.0077 |0.0062 |0.0053 |0.0047 {0.0043 {0.0039
0.0115 |0.0113 |0.0109 |0.0103 {0.0097 |0.0091

0.0051 |0.0044 |[0.0039 !0.0035 [0.0032
0.0094 |0.0091 |0.0086 [0.0081 |0.0076

0.0038 |0.0034 [0.0030 |0.0028
0.0078 |0.0074 |0.0069 {0.0065

0.0020 [0.0027 |0.0029
0.0069 |0.0061 |0.0057

0.0024 [0.0021
0.0054 (0.0051

0.0012
0.0046
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2e Relative amplitude of YP,and ¥

Table
I'=1, e=0.01, a; = 0.008, X* = 2.4 x 107, A, =9 x 1076
n

m 1 2 3 4 5 6 7 8 9 10
1 0.0016/0.0413 {0.10283[0.0179 {0.0148 [0.0131 {0.0119 [0.0109 [0.0100 |0.0093
0.0389(0.0521 |0.0281 [0.0298 |{0.0293 {0.0281 [0.0267 |0.0252 |0.0237 |0.0222
2 0.0192 [0.0123 {0.0085 [0.0071 [0.0063 [0.0057 [0.0053 (0.0649 |0.0045
0.02602/0.0138 |0.0149 [0.0146 |0.0140 |0.0134 |0.0126 {0.0110 [0.0111
3 0.0088 [0.0056 [0.0047 |0.0042 {0.0038 [0.0035 {[0.0032 |0.0030
0.0092 [0.0099 }0.0097 |0.0094 [0.0089 {0.0084 [0.0079 |0.0074
4 0.0422 [0.0035 [0.0031 {0.0028 |0.0026 [0.0024 {0.0022
0.0074 |0.0073 [0.0070 [0.0067 |0.0063 |0.0059 |0.0056
5 0.0028 {0.0025 [0.0023 |0.0021 [0.0019 [0.0018
0.0058 |0.0056 |0.0053 [0.0051 {0.0048 {0.0045
6 0.0021 {0.0019 [0.0017 [0.0016 [0.0015
0.0047 [0.0045 [0.0042 |0.0040 |0.0037
7 0.0016 |0.0015 |0.0014 [0.0013
0.0038 [0.0036 [0.0034 [0.0032
8 0.0013 [0.0012 |0.0011
0.0032 |0.0030 ]0.0028
9 0.0011 [0.0010
0.0026 |0.0025
10 0.0009
0.0022
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Table 1a shows that for A, = AT = 0 the phase difference is always negative.
For reLative small values of A* and AT we see from Table 1b that the phase
difference has turned positive for n > 6. For larger values (Table 1c and
1d) we find positive values for n > 4, while the largest values of A* and AT
gives positive values for n » 3. (Table 1e). We notice also from these
tables that 6* —GT = =0.25 for (m,n) = (1,1) and that when:m and n are both

large we gradually approach the value 0.5 for 0, _'OT' This is particularly

so for the larger values of A, and AT.

So far we have used only the first'equation in (2.10). The results in Table 1
may thus be considered as an extension of the study by Wiin-Nielsen (1961) to
the spherical spectral domain. In the following we shall make use of both
equations in the system (2.10). We may then solve for both the amplitudes and
the absolute phase angles. Tables 2 a-e give the felative amplitudes for the
mean flow and shear flow for the various pairs of A, and AT. Table 2a for

A, = AT = 0 shows that the amplitude of ¥, (the mean flow) for a fixed value
of m is an increasing function of n, while the amplitude of wT (the shear
flow) is a decreasing function of n for a fixed value of m. This is radically
changed for the other pairs of A, and AT. Table 2b shows that the maximum
values of the two amplitudes are found close to the dividing line between
negative and.positive values of (OQ—OT). The corresponding observation can be
made from Tables 2(c), (d) and (e). It is furthermore seen from these tables
that the response decreases markedly as A, and AT increase. In view of these
results it is clear that the response to the forcing wE depends very much on
whether or not the forcing field contains components with considerable

amplitude close to the dividing line between positive and negative values of

(0,-0,).
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The change in sign for (O*-GT) in Tables 1b-e can be deduced from the solution

given in (2.14).

tan (m GT)

We note first that

10 |

From these formulas we

tan [m(O*—OT)] =

find that

H+2G
2=-HG

showing that @*-OT = 0 if H+2G=0.

we find that this condition is equivalent to

A A

*

T
(2 5= + g9

or

(3.15) may be solved for n for given values of A, and AT.

in Table 1 b-e we

These values of n are in agreement with Tables 1 b-e.

A

*

x 10-%
x 107°
x 106
x 1075

x 10-5

1
> c-1

find:

7.5
1.5
3.0

4.5

)

|
38)

1t
2 8

Aoy

x 10~/
x 10~
x 10-6
x 10~

x 10-6

+

and tan (m G*) =

1

(2-HG)S + (H+2G)Q

(2-HG)Q - (H+2G)S

(3.12)

(3.13)

Using the definition of H and G in (2.11)

(3.14)

(3.15)

For the values used

The next question is whether it is possible to explain the maxima which occur

in Tables 2 b-e.

resonance if the forcing and the dissipation are neglected.

It is well known that models of the present kind contain a

22

The resonance



will be determined in this case and compared with the maxima found in Tables 2
b-e. For this purpose we return to the system (2.10). Setting e=aT=F=O the
system reduces to a homogeneous linear system. The following notation is

introduced:

A2a2 (3.16)

The system will have non-trivial solutions if the determinant vanishes. This
condition leads to the equation:

(2,2-1)(2,2-1 + 2,q) = 22 2 (Z-q) (3.17)

(3.17) is a quadratic equation in Z for given values of A_ and AT. It was

solved for the pairs (A

"’ AT) used in Tables 2 b-e. The results are:
A, AT n
2.0 x 10~ 7.5 x 107 7.98
4.0 x 107® 1.5 x 10~ 5.43
8.0 x 10~° 3.0 x 10~ 3.80
1.2 x 1075 4.5 x 10~ 3.11
2.4 x 10-3 9.0x 10~ 2.26

It is seen that these results compare favourably with the values given in
Tables 2 b-e. The maxima occur for a fixed value of n in the tables and in
the above approximate determinations. It may thus be concluded that the
positions of the maxima in the response to the forcing can be determined
rather well from the calculation of the resonance in the equations without

forcing and dissipation.
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4. THE VERTICAL SLOPE OF THE WAVES

In the previous section we have concentrated on the properties of the waves in
the mean flow and the vertical shear flow. At several occasions we have
indicated that when the wave in the vertical shear flow is lagging behind the
wave in the mean flow the wave will slope from east to west in the vertical
direction. This statement is normaily true but there are exceptions because
the vertical slope depends not only on the phase difference between the two
waves, but also on their amplitude. It is thus necessary to investigate this

question in details.

For this purpose it is most convenient to move the reference point for
longitude to a point such that
Y, = A, cos(m A) (4.1)
The thermal wave may then be written in the form
= A A+0 4,2
Vo p Cos (m ) (4.2)
We shall assume that 0<OT<n. This means that wT is lagging behind y,. For

the waves at levels 1 and 3 in the two level model we obtain:

v

1= vy, + wT (p, + AT cos GT) cos{m A) - AT sin GT sin (m A)

(4.3)

=
I

Vv, + Vv =(a, - A

- cos GT) cos{m A) + AT sin GT sin (m A)

T

The phase angles for levels 1 and 3 may be calculated from (4.3). The same

applies for the amplitudes.
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With the definitions

AT sin OT AT sin OT
tan O, = ; tan @_ = (4.4)
‘ + 0 -
1 A, AT cos O, 3 A, AT cos @T
we find that
Vv, = (A2 + a2 + 2A, A_ cos © ]% cos(mh + Q)
1 * T * T T 1
(4.5)
P, = (a2 + a2 - 2a A' cos © ]i cos(mA - ©_)
3 * T * T 3

The maximum of ¢1 is located at —91/m while the maximum of ¢3 is found at
93/m. It is seen from (4.4) that if 0<®T<ﬂ/2 We have O1>0, and O3>0 if
A*>AT cos OT. On the other hand, if ﬂ/2<OT<ﬂ we have O3>O, and @1>0 if
A*>—ATcos @T. Similarly, if the phase lag is less than a quarter of the
wavelength the amplitude will increase with height, while it will decrease if

m 0 «<m.
/2< T<

To illustrate these relations it will suffice to calculate the two extreme
cases, i.e. A, = 4.0 x 107® 571, A, = 1.5 x 106 s=1 and A, = 2.4 x 1075 s71,
AT = 9.0 x 10~ s=1. The relative ampiitudes are reproduced in Tables 3a
and 3b. We notice that the component (1,1) has the same amplitude at levels 1
and 3. This is due to the fact that for this component we have @T =7n/2. A
dashed line has been drawn in each table separating the region where A1>A3
from the one where A1<A3. It is seen that the long waves only have A1>A3.

Table 3b shows the very small response obtained for the very large values of

A* and AT.
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Table 3a The amplitudes A4 and A3 for A, = 4 x 10~6s-1, A

= 1.5 x 1076g~1

T
m 1 2 3 4 5 6 7 8 9 10
1 0.28 | 0.28 | 0.32 | 0.45 | 1.00 | 1. 0.44 | 0.20 | 0.23 | o0.1s
0.28 | 0.26 | 0.23 | 0.18 | 0.32 | 0.51 | 0.32 | 0.25 | 0.20 | 0.17
‘r——r——-ﬁ——_——_
2 0.15 | 0.1 0.21 | o. 0.34 |j0.13 | 0.09 | 0.09 | 0.06
0.13 | 0.12 | 0.09 | o. 0.27 |{0.17 | 0.14 | 0.12 | 0.11
3 0.11 0.14 .32 | o. Lo.1a | 0.06 | 0.08 | 0.03
0.08 | 0.06 | 0.16 | 0. lo.11 | 0.00 | 0.08 | 0.07
]
— m— -ty

4 0.10 | 0.23 {{o0.12 | 0.04 | 0.02 | 0.02 | 0.02
0.05 | 0.04 |{lo0.13 | 0.09 | 0.07 | 0.06 | 0.06
5 0.19 .08 | 0.02 | 0.02 | 0.02 | 0.02
0.03 |lo.11 | 0.07 | 0.06 | 0.05 | 0.05

i

]
6 |0.07 | 0.02 | 0.01 | 0.01 | 0.01
|0-09 | 0.06 | 0.05 | 0.04 | 0.04
7 0.01 | 0.01 | 0.01 0.01
0.05 | 0.04 | 0.04 | 0.03
8 0.01 | 0.01 | 0.01
0.04 | 0.03 | 0.03
9 0.01 0.01
. 0.03
10 0.01
0.02
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Table 3b The amplitudes A4 and A3 for Ay = 2.4 x 10-5 s—1,

A

=9 x 1076 g-1

T
m 1 2 3 4 5 6 7 8 9 10
1 0.04 0.09 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01
0.04 | 0.02 jo.osy 0.05 0.04 0.04 0.04 0.04 0.03 0.03
T
2 0.05 1}}0.004 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 | 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
f
3 |0.002 0.004 | 0.005 0.005 0.005 0.005 0.005 0.004
|o.oz 0.02 0.01 0.01 0.01 0.01 0.01 0.01
4 0.003 0.004 | 0.004 | 0.004 0.004 | 0.004 | 0.003
0.01 0.01 0.01 0.01 0.01 0.01 0.01
5 0.003 | 0.003 0.003 0.003 | 0.003 0.003
0.009 0.008 0.008 | 0.007 0.007 0.006
6 0.003 | 0.003 0.003 0.002 | 0.002
0.007 | o.006 | 0.006 | 0.006 | 0.005
7 0.002 0.002 0.002 | 0.002
0.005 0.005 0.005 0.004
8 0.002 | 0.002 | 0.002
0.004 0.004 0.004
9 0.002 | 0.002
0.004 | 0.004
10 0.001
0.003
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4 x 1076 s-1, Ap = 1.5 x 106 g-1

The phase angles 61 and 63 for A, =

Table 4a
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"Table 4b The

phase angles @1

and ©

for Ay= 2.4 x 1073571, Ap =

9 x 10=65~1

3
n
m 1 2 3 4 5 6 7 8 9 10
1 87.6 8.8 : -73.1| -125.5| -133.2| -141.5| -142.7| -143.5] -144.1| -144.2
-87.6| =-125.3 | 16.1 15.8 16.8 14.8 15.0 15.1 15.2 15.3
2 2.1|l -43.2| =-74.0| -79.7{ -80.3| =-80.7| =-80.8] =-80.9 -81.0
-76.91| 4.6 4.6 3.6 3.7 3.8 3.8 3.8 3.8
i
3 | -32.6 -54.5| -55.4| -55.7| =-55.8| =55.9| =56.0 -56.0
| 1.8 1.5 1.6 1.7 1.7 1.7 1.7 1.7
4 -40. ~41.6| -41.8| -a1.9| -a1.9| -a2.0 -42.0
1.1 1.2 .2 1.3 1. 1.3 1.3
5 -33.2| =-34.7| -34.8| -34.8] -34.8 -34.8
1.0 0.5 0.5 0.5 0.5 0.5
6 -28.9| =-29.0| =29.0f -29.0 -29.0
0.4 0.4 0.4 0.4 0.4
7 -24.8f -24.8| -24.8 -24.8
0.4 0.4 0.4 0.4
8 -21.7| =21.8 -21.8
0.3 0.3 0.3
9 -19.3 -19.3
0.3 0.3
10 -17.4
0.3
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Tables 4a and 4b contain the phase angles 61 and 63. In each table a dashed
line has been introduced to separate the eastward and westward sloping
components. These dashed lines agree with the separations in Table 1b and 1e
between the waves in the mean flow and the shear flow. The uniﬁ-in Table 4a,b
is degrees, and the value indicate the position of the maximum (the ridge).
The long waves‘have a slope which in some cases approaches a half wave length.
Similarly, the westward sloping waves have also for large values of m and n a
slope coming close to half a wavelength. The slope is of course smallest

close to the dividing line.

We may thus conclude that when the very long stationary waves slope westward
with height in the winter and eastward in the summer it is due to the seasonal
change in the zonal wind which is strong during the winter season and wéak
during the summer season. .A comparison with data studies available so far is
difficult because they are based on Fourier analysis along longitude circles,

and the slope is thus given as a function of m only.

The energetics of the long term stationary waves in the model will be
investigated in this section. BAs usual we distinguish between eddy available
potential energy and eddy kinetic energy. The energy generations,
transformations and dissipations are well known for the two level model. 1In
the present model we may have generation of eddy available potential energy

G(A'), conversion from zonal to eddy available potential energy C(K,A'),
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conversion from eddy available potential energy to eddy kinetic energy
C(A',K') and dissipation of the eddy kinetic energy D(K').. The formulas for

the calculations are:

1 = ._2__];_’ 2 _1_ 1] | - 1]
G(A") 5 Mg {; Yo' (WL - ¥r) ds
!

A Rt _ 2P 2 1 . X :

C(A,A') = 5 A2 AL S {; Y5y s (4.6)
2P 1 fo
C(A',K') = = o £ oo Wiy ds
1 1
p(x) =22 {55 [ iy (VRpr-2viyrias + g [ vyl
s s

In view of the stationarity of the waves it is obvious that C(A',K') = D(X")
and that G(A') + C(i, A') = C(A', X'"). D(X') is presumably positive although
no guarantee can be given. It is thus most interesting to calculate G(A') and

C(K,A‘). For each separate wave we get

1 2P AT AT
2z G = = I a2Q3 (5-)(cos m 6, = =)
E E B
(4.7)
A A
- *
%z‘ c(x,an) = 22 (12a2)(a202) n AT(A—)(KE) sin[m(8,=6,]
g
E E E
where the associated Legendre functions are normalised such that
1 1 m
5 [ B an?an =1 (4.8)
n
-1
It is seen that G(A') is positive when
AT
cos (m 6_) > — (4.9)
T AE
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Table 5 AEZXG(A') and AEZXC(E,A') for

1.5 x 10-6g~1,

n 1 2 3 4 5 6 7 8 9 10
1 3.49| 9.20{ 15.64| 22.29| 24.22| -10.12| 4.13| 8.08| 9.18 9.26
~1.53| -4.36| -8.44| -14.47| -15.81| 37.61| 15.67| 8.45 24 3.50
2 3.04| 5.54| 8.67| 12.57| -10.38| 1.12| 3.45| 4.25 4.50
- -1.49 -3.00| -5.73| -10.10| 24.04| 7.58/ 4.10| 2.61 1.79
3 2.66| 4.28] 6.77| =-6.18| 0.50|  1.79 .27 2.44
-1.44| -2.84| -5.68| 13.36| 3.99| 2.18] 1.1 0.98
4 2.50| 4.10| -3.86| 0.28] 1.07| 1.37 1.49
-1.66{ -3.49| 8.17| 2.40| 1.32{ 0.86 0.60
5 2.72| -2.60| 0.18} 0.71|  0.91 0.99
-2.33| 5.44| 1.58] 0.87| 0.57 0.40
6 -1.85| 0. 0.50{  0.65 0.71
3.86| 1. 0.62|  0.40 0.29
7 0.09| 0.37| 0.48 0.53
0.83| 0.46]  0.30 0.21
8 0.29|  0.37 0.41
0.35| 0.23 0.16
9 0.29 0.32
0.18 0.13
10 0.26
0.11
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Table 6 AZ2xG(A') and AZ2xC (,a') for A, = B x;1076s71, A = 3 x 1076571,

n 1 2 3 4 5 6 7 8 9 10
1 0.98 3.10 7.69| -51.66| -3.28 0.73 2.39| 3.25 3.69 3.87
-0.61| =-2.13| -6.38| 67.75| 8.92 4.73 3.11 2.21 1.63 1.23
2 0.83 2.17| -14.53| -0.91 0. 0.67 0.95 1.11 1.20
-0.57| -1.81 18.28 2.37 1. 0.89 0.65 0.50 0.39
3 0.99] =-6.47| -0.41 0.08 0. 0.44 0.52 0.56
—0083 8-07 1.06 0-59 Oo 0030 0.23 0-18
4 -3.63] =-0.23 0.05| 0.17 0.25 0.29 0.32
4.52 0.60 0.34 0. 0.17 0.13 0.10
5 -0.15 0.03 0. 0.16 0.19 0.21
0.38 0.22 0. 0.11 0.08 0.07
6 .02 0.08 0.11 0.13 0.14
0.15 0.10 0.08 0.06 0.05
7 0.06 0.08 0.10 0.11
0.08 0.06 0.04 0.03
8 0.06 0.07 0.08
0.04 0.03 0.03
9 0.06 0.06
0.03 0.02
10 0.05
0.02
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Inspecting the table of GT (not reproduced here) it is found that (4.9) is
satisfied except in a narrow region close to, but not identical to the region
in which 6*-6T changes sign. C(Z,A') is negative when the wave is sloping
from west to east with increasing height. This happens in the model for
sufficiently small values of n. To illustrate these points Tables 5 and 6
have been prepared. They contain the quantities AEZ G(A') and AEZ C(K,A').
Table 5 is calculated for small values of A* and AT resulting in a change of
sign for C(E,A') between n=5 and n=6. G(A') is positive everywhere except for
n=6. However, the sum of G(A') and C(i,A') is positive everywhere and equal
to the dissipation of eddy kinetic energy. Table 6 contains the resﬁlts for
A, =8 x 10-65-1 ana AT =3x 10051, 1n this case C(Z,A') changes sign

between n=3 and n=4 while G(A') is negative for n=4 and n=5. The sum of G(A')

and C(K,A') is again positive everywhere.

The sum of the numbers in the two tables is equal to C(A',K'). Tt is seen
that C(A',K') has a maximum at n=6 in Table 5 and n=4 in Table 6. These

scales represent therefore the maximum input in the spectrum of the kinetic

energy.
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5. A STUDY OF CLIMATOLOGICAL MAPS

As pointed out in Sect.4 it is difficult to verify the. present results using
previous studies because the decomposition usually is made in Fourier
components along selected latitude circles. It was therefore decided to make
a study of the climatological maps prepared by the National Center for
Atmospheric Research (NCAR). These maps are used as climatological maps
although they are averages based on about 15 years of data. Although the maps
are global, the present study has used the Northern Hemisphere only because a

contrast between winter and summer is needed in the zonal flow.

A decomposition of the height fields in spherical harmonic functions was made
for 100, 85, 70, 50 and 30 cb under the assumption that the fields are
symmetrical around the equator. In terms of the indices m and n in the
associated Legendre polynomials this restricts the elements to those for which
m+n is even. The complex coefficients were converted to an amplitude and a
phase angle using the previous conventions except that the phase indicates the
position of the first ridge, i.e. an element is

A(m,n) cos [m)\—G]PI;:(u) , (5.1)
The decomposition:was made for the months of January and July to obtain a
strong contrast. These months will be described separately. The truncation

was in each case m<n, m<10, n<10.

We present first the results for the phase angle for July. Since the theory
presented in the previous section of this paper indicates that the important
parameter is n we shall arrange the results of the data study in a similar

way .
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Fig.1 shows the vertical slope of the waves with n=1 and 2. ‘They slope toward
the east with height. The slopes for n=3 and 4 are shown in Fig.2 in which

. the element (1,3) slopes from east to west, while (2,4) and (4,4) slope the
other way. (3,3) is not shown in the figure because it represents only 0.3%
of the total kinetic energy showing that the amplitude is small which in turn
means that the determination of amplitude and phase are very uncertain. A
similar decision has been made in the other figures. - The component (1,3) is
not a major component in the two-dimensional spectrum because it contains only
1.7% of the eddy kinetic energy, and of this amount almost 90% comes from the
30 cb contribution. The amplitudes at the other levels are therefore very
small giving uncertainty in the phase determination. On the other hand, the
components with n=3 are close to those components which could be excited by
the influence of the mountains because the meridional half wavelength for n=3
is about 3300 km which corresponds roughly to the width of the mountain ranges
(Charney and Eliassen, 1949; Wiin-Nielsen, 1961). Fig.3 shows the results
for n=5 and 6. It is seen that the waves with n=5 slope from west to east,
while those with n=6 have a westward slope with height. Fig.4 for n=7 and 8

‘shows the same tilt as n=6. We have thus arrived at the conclusion that apart
from the low-energy wave (1,3) all waves with n<5 slope toward east with
height while the opposite slope exists for n?6. The July climatological map

confirms therefore the theory developed in this paper.

If the theory is correct we should also expect for the month of January that a
larger number of waves will show a westward tilt. The following figures will
confirm that this is so. Fig.5 contains the tilt curves for January for
n=1,2,3 and 4, Fig.6 for n=5 and 6, and Fig.7 for n=7 and 8. All curves show

a westward slope. The theory predicts that the single component (1,1) should
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always be to the east at variance with Fig.5 but this discrepancy between
theory and observation is due to the simplified theory in which the zonal flow

contribution cancels exactly for n=1 (C=2) and only for this value.

As described earlier we have used the contribution from a given component to
the eddy kinetic energy as a criterion to determine if the phase angle is
reliably determined. A by-product of this procedure is the-eddy kinetic
energy spectrum for n=1 to 10. If ¢ is the streamfunction we may write the
kinetic energy in the form

Py +1 om

[ ] =29 Phar au ap (5.2)
-1 0 .

11
K==— [
g 4m 5

Let § be represented by the series

10 10 :
v= Y Y B(mm) P(n) cos (mh-0) (5.3)
n=1 m<n n ,

It follows that

n{n+1)
2

V2y = - ¥ (5.4)

a

Having 5 levels in the vertical direction we may write

5 Ap, 1
K= ) {— —— ] n(n+1) B(n,m?} (5.5)
i=1 9 8a2 m,n

The spherical harmonic coefficients A(m,n) obtained from the height field are

available. We use the most simple assumption

£

Y = %— z; B(m,n) = I A(m,n) ' (5.6)
o] (o] .

for the evaluation and obtain

5 ‘ .
K= ) ) L, n(n+1) A(m,n)? (5.7)
i=1 m,n *
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where

L = —— (5.8)

Fig.8 shows the two spectra for January and July as a function of n. Maxima

- occur at n=5 and n=7 in January and n=5 and n=9 in July.

It is finally of interest to calculate an average angular velocity for the
January and July climatological maps. A(p) may be obtained geostrophically

from the formula

E .
Au) = ———Lg—u (5.9)
foa2

in which E(u) is the average height along a latitude circle. The average

value of A is then

1
E= [ Aaw=-—F— (Z(1) - 2(0)) (5.10)
o foa

Z(1) and Z(0) may be calculated from the spherical harmonic coefficients,

i.e.

Z(1) =) AP (1) =A +V5a_ + 3a, + /13A
m oD o 2 4

+ /17A8 + /21A1 (5.11)

6 0

because the unnormalized value of the associated Legendre polynomial is 1.

Finally,

= Y13a

-— b

/17A8

wiun
N W
win
| ~3

- 1 3
z(o)-ZAnPn(O)—AO-2/5A2+4.2.3A - . -

10 (5.12)

Using these formulas we find

3.0x 107 s=l; A = 1.8 x 1076 5-1

January: A* .

1.5 x 107 s~1; A = 0.5 x 106 g1

I

July: A
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6. STATIONARY WAVES FORCED BY OROGRAPHY

There is general agreement that the stationary long waves are forced by the
effects of mountains and heating (Charney and Eliassen, 1949; Smagorinsky,
1953; Derome and Wiin-Nielsen, 1971). The mountain effect has not been
included in the pfesent studies so far; In this section we shall consider
this effect in isolation thué neglecting the heat sources using once again the
same model. The standard way to incorporate the mountain effect is by
considering the forced vértical velocity which is

Po

—gﬁ-ym.Vh (6.1)
o

w = - = = vV .Vh =
m gpo Y gpo —m b
when the subscript m refers to the mountains. In the vorticity equation mm

appears in the form:

o) dh
22 n” TR, 20 gy | (6.2)

h will be scaled using the height H of the homogeneous atmosphere, i.e.
H=—z=— (6.3)

Let T(m,n) be the spherical harmonic coefficients corresponding to h/H.
Considering further the scaling used in deriving (2.10) we find that this

system is replaced by:

1im A* 'AT
(1 + iG6) A, - (2 - iH) AT =is 5 (5— - 2 ﬁ-) T(m,n)
(6.4)
1m * AT
- (1 - iK) A, + (M + iL) AT =i 2o (5— -2 5—) T(m,n)

where the notation is identical to the one used in Sect.2. From (6.4) it is
straightforward, but laborious to calculate A*/T(m,n) and AT/T(m,n) in terms
of an amplitude and a phase. In this section we have adopted the

trigonometric part in the form cos(mA-0). We shall be interested mainly in

the phase angle. It is shown in Tables 7a and 7b for two different cases.
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Table 7a Phase angles 8, and GT for A, = 2x10-6s-1, AT = 7.5x10"7g~1
n
m 1 2 3 4 5 6 7 8 9 10
i
1 -172.03[-154.82]-116.41| -62.51| =35.15|] -22.03] -13.39 -6.00 1.61 10.43
1.51 1.94 2.26| =-10.94 -19.41] -24.62| -26.50 ’—25.63 -22.13| -15.39
1
| I — i
2 -168.93|-158.80]-144.21{-117.92 -54.71} 0.92 23.49 36.26 45.13
1.08 ~1.10 -7.79{ -18.74| -28.62 |—30.38 -20.00 1.40 23.28
3 -167.00|-160.61|-154.10}-147.12 | 30.66 39.55 43.95 47.45
-0.73 -5.75] -16.26| -30.51 |—37.06 -20.81 11.26 30.11
| epp————
4 -166.47|-163.52[~-164.54 —214.33] 49.56 44.94 45.04
-4.50| -13.79] =-30.18| =-43.04 |-23.20 15.49 29.88
1
t
5 -167.74|-169.72|~-196.82 | 56.26 43.67 41.62
-11.77} -28.76] -47.88 |—26.1O 17.03 27.87
|
6 -172.20{~-191.78 ] 60.98 41.55 38.15
-26.92] =51.67 |-29.12 17.25 25.53
7 -189.27 : 64.44 39.17 34,95
~-54.60 I—32.08 16.83 23.29
8 | 67.06 36.79 32.006
:—34.91 16.13 21.28
9 34.51 29.53
15.32 19.51
10 27.28
17.96
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Table 7b Phase angles 0, and GT for A, = 8x10 6s~1, A, = 3x10~65~1

m 1 2 3 o4 5 6 7 8 9 10
1 186.40 180.58| 176.62 l 43.87 21.95 22.23 24.41 27.00 29.64 32.13
182.91| 188.54] 199.48 :—30.13 7.33 14.30 18.43 21.44 23.79 25.69
2 180.29| 178.31 l 27.59 11.68 11.76 12.94 14.38 15.87 17.31
184.28] 189.84 |—17.61 3.86 7.44 9.59 11.17 12.42 13.44

| .

3 - 178.88 19.50 7.88 7.92 8.73 9.71 10.73 11.72
186.57 |—12.16 2.60 5.00 6.44 7.51 8.35 9.04
4 l 14.95 5.94 5.97 6.57 7.32 8.09 8.84
: -9.23| 1.96| 3.76| 4.84| .65 6.28) 6.80
5 4.76 4.78 5.27 5.87 6.49 7.09
1.57 3.01 3.88 4.52 5.03 5.45
6 3.99 4.39 4.89 5.41 5.92
2.51 3.24 3.77 4.20 4.54
7 3.77 4.20 4.64 5.08
2.77 3.24 3.60 3.90
8 3.68 .06 4.44
2.83 3.15 3.41
9 3.61 3.95
2.80 3.03
10 3.56
2.73
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Table 7a, corresponding to weak zonal winds, shows a behaviour of the
spherical harmonics similar to a corresponding table using heat forcing. The
largest scales contain waves in which z, is lagging behind Znr i.e. eastward
slope with height. The change takes place at n=5,6 for m=1, at n=6,7 for
m=2,3 and at n=7,8 for the remaining part of Table 7a as shown by the dashed

curve.

Table 7b indicates that the dividing line is between n=3 and n=4. It is
furthermore seen that the numerical values of the differences 6*-6Tare much
smaller in this case. GT-BTis particularly small for large values of the

meridional scale parameter n.

An inspection of additional calculations for other values of A, and AT
indicates that the change in sign for 6*-9T occurs in agreement with the
values of n computea from (3.17) which indicates those meridional scales
for which resonance would take place in the case of flow without forcing
and dissipation. 1In view of the qualitative similarity between forcing
by heating and mountains in this respecﬁ we shall not pursue the forcing

by topography any further in this section.
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7. THE TRANSIENT WAVES

The previous sections described a study of the stationary fields in the
atmosphere as forced by heating and mountains. For each spherical harmonic
element we may conside£ that it consists of two parts, the stationary and the
transient parts of which the stationary part may be obtained by a time-average
over a sufficiently long time. The climatological maps used in Sect.5 are
averages over an ensemble of data sets, each of which represents a given
period such as a month. It is believed that a climatological map is a
reasonable representation of the stationary field. The transient state is the
difference between the total state and a representation of the stationary
state. This concept may be used on any meteorological parameter or on a

spherical harmonic element.

Although the calculations in the previous sections have been done with a
triangular truncation T-10 it is not believed that these elements are
stationary. We have tried to describe the stationary part using linear
analysis. 1In this section we shall investigate the transient part using a
model which includes heating and fribtion. A very large number of stability
studies of baroclinic flows are available in the meteorological literature,

and it is hardly possible to find anything new in this kind of investigation.

{

However, the literature does not seem to contain the necessary information in

the form needed here.

Studies on the beta plane of the influence of friction on baroclinic stability
was first carried out by Holopainen (1961) and by Haltiner and Caverly (1965),
while Wiin-Nielsen et %1. (1967) and Haltiner (1967) investigated the
iqfluence of various aspects of heating and friction. Baroclinic stability
studies in the case of adiabatic and frictionless flow using a spherical
geometry were performed by Hollingsworth (1975) and Hollingsworth, Simmons and
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Hoskins (1976). In this section we shall include perturbation heating and
friction in the most simple, two level, quasi-geostrophic model. This is of
course equivalent to adding time—dependence to the model used in Sect.2. The

perturbation equations are those used in (2.4). Dropping the primes we have

3v2y vy 3v2y 2(Q+A.) Y 20 3y
* * T * %

_* _* T _T__1 24 _ou2
5 thm Tt A Tt T I e - - g SRV

(7.1)

2412 20 12 25 22

3V \vTA wT] " 9V \pT A q)T] - (V2P -A%y ) . 2(Q+A) awT . 2AT W,
ot * oA T oA a‘ oA az . 9A

) _ 2 1 24 —oy2 : ’

= A Yq)T 2AV¢T+23(vw*2prT) , (7.2)

We adopt the same scaling as in Sect.2 and seek solutions of the form (2.8)

except that time-dependence is added in the exponential function using

exp[im (A-st)]
where s is the phase speed. Following standard procedure we derive two

homogeneous linear equations for the complex amplitudes A, and AT. They are:

2(Q+A)) :
- c-2 DB,
{s-p, + T+ i 2m} a, - { = A +i=}a =0 (7.3)
2(Q+A)
r=C+2 . EC * . _
{———r+c Ay - i 2m(ﬁc)} A, + {s-A, + o T (Yr+2AC+EC)}AT— 0

(7.4)

in which C = n(n+1) and r = A%2a2. We notice that the heating and the

dissipation appear in the imaginary parts of the coefficients to A, and AT.
The adiabatic and non-viscous case in thus obtained by disregarding these
imaginary components. It is seen from (7.4) that the heating in the present
Newtonian form acts qualitatively in the same way as the dissipation although
the dissipation is more strongly scale-dependent than the heating due to the
factor C. If (7.3) and (7.4) shall have non-trivial soluﬁions the determinant
must vanish. Denoting Z = s-A, this condition results in a second degree

equation with complex coefficients. It is:
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Z2 + (E + iF)Z + (G + iH) = 0 (7.5)

where
2C+r
E = c(rtC) 2(Q+A*)
_ E(xr+3C) + 2Yr + 4AC
F= 2m (r+C) (7.6)
Q+A )2
G = fi___il_ _ A2, f(e=2)(C-r-2) e (Yr + 2AC)
C(r+C) T " C(x+C) omZ r+C
_ 2Yr + 3eC+4AC € (2r-3C+6)
H = mC(r+C) @ + A*) + 2m{r+C) - AT

The case of adiabatic and frictionless conditions is easily obtained from
(7.5) and (7.6) by setting € = A =Y = o. This condition leads to F = H =0

and disregarding the last term in G. The solution is then:

_ _ 2C+r 2 r2 _ a2 (C-2)(2+r-C),}
2 = C(xr+C) @+, = {(Q+A*) cZ(r+c)2 AT C(r+C) J (7.7)

As expected instability will occur for sufficiently large values of AT

provided 2+r>C. The solution is stable for all values of AT when

C=n(n+1)<2+r which leads to n<9.68. The critical windshear AT or needed for
I

instability is

r

A = (Q+A)) (7.8)
T,cr * 3
[c(c=2)(C+xr) (2+r-C)]
T or as a function of n is shown in Fig.9 for A* = o, showing that the
4
minimum value occurs at n=8. The e-folding time is

1

Te = (7.9)
i

and is shown in Fig.10 for A* =8 x 10-° s'l, AT =3 x 10-% s-1 ana expressed

in days.
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16 |-

-1
Fig. 9 : Critical windshear in the unit 1065 necessary
for instability as a function of the meridional
index (m). Adiabatic, frictionless case.
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10 F

10

Fig. 10 : The e-folding time measured in days, for the adiabaggcllfrictionlgés_l
case as a function of m and n. Parameters :1\*=8x10 s ,]\T=3x10 s .
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6 -
: The critical windshear, measured in 10 s 1

, necessary for

instability ( 1\*=0) as a function of m and n.
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1 i 1 ] | ] 1
2. 3 5 6 7 9 10
i ; . . -2 -1
Fig. 12 : The e—fo}glx_lg time, measured in days, for A*=8x10 s and
AT=3x10 s as a function of m and n.
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A;=3x107% s-1 A=4.5x1076 s-1

Fig. 13 : Schematic illustration of the influence of heating and friction
on baroclinic instability. The horizontal lines indicate the
values of n for which instability exists in the adiabatic and
frictionless case. Dots indicate elements which are unstable
when heating and friction are included.
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We return now to the general case for which (7.5) and (7.6) apply. The

solution of (7.5) may be written in the form:

2. 0.3 % 2,723 . 2
% [_E+{L£_i§_l.i§} i {(LE_i%_l__E) - 7}]
7 = ' (7.10)
2..0.% % 2,2, %
% [_E_{LE_i%_l_iE} - i {(LK_ig_l__E) + F}]
in which
K =E82 - F2 -~ 4G; 1, = 2(EF-2H) (7.11)

Instability occurs when Z(i)>0. Since F>o0 according to (7.6) it follows that
the second root in (7.10) corresponds to stability. However, the first root
may give instability if

3 3

(k2 + .2)? = k1% > P V2 : ‘ (7.12)

Using the definitions in (7.11) we may rewrite (7.12) in the form

GF2 + H2 - EFH>0 , : (7.13)

We notice that G has a term containing Aé while H has a term containing AT.

It is thus possible to write the expression in (7.13) as a second degree
polynomial in AT. This expression may be used to determine the critical value
of AT necessary for instability. The results aré shown in Fig.11 for A, ,=0.
The critical windshear is now a function of both m énd n. A comparison
between Fig.9 and Fig.11 shows that a smaller critical windshear is needed to
create instability when heating and friction. is added. However, a better
measure is to consider the e-folding time which is shown in Fig.12 which
should be compared with Fig.10. It is seen that the general effect of heating
and friction is to increése the e~folding time and thus to make the flow less

unstable. As a final comparison we consider Fig.13 in which we have compared
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the spherical harmonic elements which are stable and unstable in the two
cases. In each figure, characterized by given values of A, and AT’ the‘
horizontal straight lines indicate thoée values of n for which instability
exists in the adiabatic and frictiopless cases, while the dots indicate those
elements which are unstable when heating and friction are included. For
example, in Fig.13(a) there is such a small windshear that only n=8vis
unstable in the first case. In the second only three elements (6,7), (7,7)
and (8,8) are unstable. All parts §f Fig.13 show that the inclusion of
heating and friction has the effect of stabilizing some large scale components

and, in addition, of destabilizing some components for lower values of n.

The analysis described above was not made to provide still another stability
study of a two-level, quasi-geostrophic model, but rather to provide the
information needed to study the structure of the waves. We consider first the
phase angle difference between the waves in the mean flow and the shear flow.
For this purpose we can use either (7.3) or (7.4). ’Solving (7.3) for AT and

assuming that A, = A_(r) we find after some reductions that tan ST =

2(2+A )
c-2 . £ E _ ¥
== AT(sm + —Zm) - = (stx) = A, + —
, (7.14)
2(Q+A )
E2 ) (stry-h, + ——) + £ (s(1) + &)
Cc T * C m 2m

where eT is the phase difference.

It is convenient at this time to compute a measure of the transport of

sensible heat by the baroclinic wave. The inﬁegral

2m 3?1’ on .
H =2 [ (n == +7 —) a (7.15)
T 2w a T 3A T 3A SR
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is proportional to the heat transport. A tilde in (7.15) means the complete
conjugate of a complex number. Evaluation of (7.15) leads to
2msit n 2 - o :
= i - -16
H =e [ 0] im (2, A~ 2, ) (7
Inserting from (7.3) in (7.15) we obtain

2msit 2m A_ A, 2(Q+A*)

7 {52 0, (st + 5 - £ (s(x)-p,

T n c-2 ‘ € c 2m

(= A) + (D)
m
(7.17)
It is easy to show that the denominator in (7.14) is positive for the unstable
wave for which s(i)>0. The requirement is that the expression in the first
term of the denominator is positive. From the upper expression in (7.10)

which applies to the unstable case we get

2(Q+A ) . r(Q+A,)

+ K] * STy O (7.18)v

3

1
s(r)-A, + =573 [(K2+L2)

c

A comparison between (7.14) and (7.17) shows therefore that if 0T>0, then
HT>0. Considering first the adiabatic and non=-viscous case we f£ind from
(7.14) that

_ s(i) '
tan BT = 2(Q+h,) (7.19)

s(r)-A, + G
GT is thus positive for the unstable case (s(i)>o) and negative for the stable
case, or the unstable waves are sloping toward the west with height and the
stable waves towards the east. For the general case which includes heating
and friction the sign of GT depends on the sign of the numerator in (7.14).
This sign must necessarily be positive for the unstable wave due to energy
considerations. We consider the available potential energy in the wave. The

available potential energy decreases due to the negative generation caused by

the Newtonian heating and also due to the conversion from eddy potential to
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eddy kinetic energy in the unstable case. Since the eddy available potential
energy will increase in this case the conversion from the zonal available
potential erergy is positive, but this latter conversion is proportional to
the heat transport which therefore must be positive. To check this argument
/the numerator in (7.14) was calculated from the solutions in all unstable
cases. The result was invariably positive. In summary, the unstable waves
have the temperature field lagging behind the geopotential field, slope

towards the west with height and transport sensible heat to the north.

The stable waves are damped in the model and are thus of minor importance.
However, for the sake of completeness it should be mentioned that the total
heat transport, calculated as the sum of the heat transports of the two
solutions given in (7.10), is negative for all (m,n) representing a stable

case.

In this section, where we have considered the transient waves as solutions of
the linearized equations we have thus arrived at the conclusion that the waves
in the unstable case transport sensible heat to the north and slope from east
to west with height, while the waves in the stable case transport heat

southward and slope eastward with height.
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8. CONCLUDING REMARKS

The main result of the investigation is that the structure of long transient
and statioﬁary waves are influenced significantly by the strength of the zonal
current. Sufficiently strong zonal winds will cause the waves to tilt
westward with height, while weak zonal winds will create the opposite slope.
ThisAstatement applies to the stationary and transient parts of the waves
although the mechanisms are different. The slope of the long transient waves
are determined mainly by the baroclinic stability of the zonal current while
the structure of the stationary part is governed by the influences of heat
sources and topography. It has been shown that the latter effects have a

generally stabilizing influence on the transient long waves.

While these results are of interest in understanding the observed state of the
atmosphere it is interesting to speculate on the implications of the results
in medium-range predictions. It is well known that one of the systematic
errors in these forecasts is a tendency to merge the polar and sub-tropical
jetstreams combined with a general and erroneous strengthening of the zonal
winds in middle latitudes. The zonally averaged winds in the high and low
latitudes of each hemisphere are decreasing as the forecast progresses in
time. Fig.14, kindly provided bj Dr. K. Arpe, shows a typical distribution of
the errors and the analysed zonal winds in a vertical cross-section from pole
to pole for the winter season. The error in the zonal wind may amount to

8-10 ms™! in a 10 day forecast. Given this error and assuming that the simple
linear theory developed here is at least qualitatively correct it is to be
expected that this systematic error will influence the structure of the very
long waves. Although the question deserves a detailed investigation there is

already some evidence for the hypothesis.
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It was shown in Sect.3 that the maximum relative amplitude in the stationary
waves .occurs close to the value of n for which the wave is vertical (compare
Tables 1b-d with the corresponding part in Tables 2b-d). The position'of the
maxima . in the amplitude were explained as being a resonance phenomenon (see
tables after (3.15) and (3.17)), and the resonant wave number becomes smallerxr
as A* and AT increase. One may see this effect in the spectra of the kinetic
energy for the observations and for medium-range forecasts prepared by Tibaldi
(1984) for the latitude belt 40°-60°N, dominated by too strong zonal winds.
The main change during the forecast with the sténdard orography is a marked
increase in the kinetic energy for wavenumber 2 and a decrease for wavenumber
3 interpreted as a shift in resonance. The results of introducing the

so-called envelope orography will not be discussed here.

It may also be anticipated that the slope of certain waves may change
erroneously during a medium-range forecast. In the high and low latitudes
when the zonal wind is decreasing during the forecast it may be expected that
a wave changes its slope from a westward to an eastward tilt. BAn example of
such a change can be seen from forecasts prepared by Simmons and Striifing
(1981) (see Fig. 23 in their paper) when the forecasts show a change in the

slope of wave number 2 at 60°N from a westward to an eastward tilt.

The major weakness of the present theory is the simplifying assumptions such
as the constant angular velocity, the Newtonian form of the heating and the
standard parameterization of the dissipation in the planetary boundary layer
and the so-called free atmosphere. Needless to say, the use of the two-level,

quasi-geostrophic model may also be a restriction.
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