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1. INTRODUCTION

In this lecture I shall discuss some of the basic problems in vertical differ-
encing of the primitive equations. Th use of the hydrostatic equation is the
only major approximation in the primitive equations, as far as adiabatic fric-
tionless processes are concerned. Consequently, horizontally propagating sound
wave (the Lamb wave) and internal gravity waves are among the solutions of the

equations, although vertically propagating sound waves are filtered.

In the quasi-geostrophic system, horizontal advections by geostrophic wind are

the only nonlinear terms. In the primitive equations, however, there are addi-
tional nonlinear terms associated with the horizontal advection by non-geostrophic
wind and with the vertical advection. 1In addition, it is generally attempted to
incorporate a realistic topography of the earth's surface into the system as the

lower boundary condition.

These situations make vertical (and horizontal) differencing of the primitive
equations more difficult than that of the quasi-geostrophic system of equations.
We must properly choose a vertical coordinate, asvertical grid structure, a
vertical difference scheme satisfactory for all possible types of motion, the
vertical extent of the model, and finally, vertical spacing and resolution of

the grid.

2. MERITS AND DEMERITS OF EACH VERTICAL COORDINATE

Among other possibilities, the height z, the pressure p (or %np), or the poten~
tial temperature 8 (or #nf) can be used as the vertical coordinate; but various
versions of the O-coordinate (Phillips, 1957), in which the earth's surface is

a coordinate surface, are most commonly used for the primitive equations.
Kasahara (1975) and Sunqvist (1979) discussed the governing equations (and
boundary conditions) for each of the above coordinates, as well as for a general

~

vertical coordinate.

Each of the above vertical -coordinates (see Fig. 1) has its own merits and demerits.
Use of the O-type coordinate makes the lower boundary condition very simple because

& Z do/dt = 0 there. The expense we are paying for this simplification is a com-
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plication of the pressure gradient force. In this type of coordinate, the pressure
gradient force appears as the sum of the two terms that are of comparable magnitude
and opposite sign near steep topography. Discretization efrors, therefore, even
when they are small in either term, can result in a larger error in the pres-’

sure gradient force. This problem is discussed on one of Mesinger's lectures.
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Fig. 1 Tllustration of the heights of coordinate surfaces
for the z-coordinate, the p-coordinate, the 8-coor-
dinate and a O-type coordinate.

The difficulty with a coordinate other than ¢ is that the coordinate surfaces can
intersect the earth's surface and the lower boundary conditions must be incorpor-
ated in the form of the "lateral" boundary conditions. In addition, with the z~coor-
dinate, the equation that diagnostically determines the vertical velocity (the
Richardson equation) has a very awkward form unless the local time derivative

of the density in the continuity equation is neglected. With the p-coordinate,

however, the equation that diagnostically determines the "vertical velocity”,
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w = dp/dt, is the continuity equation, which has an especially simple form with
this coordinate. The f-coordinate, which is discussed in one of Sadourny's
lectures in more detail, is attractive since the coordinate surfaces are material
surfaces under adiabatic processes. This eliminates the problem of 'differencing"
of the vertical advection. Moreover, since there is no mass flux across fhe
coordinate surface under adiabatic processes, the average pressure along an isen-
tropic surface is an invariant. This makes it possible to rigorously define the
available potential energy and the gross static stability (see Section 5 of my
second lecture) even for a discrete system. Another advantage with the 0-coordin-
ate is that the pressure gradient force is an irrotational vector (when the curl
is taken along a constant 6-surface), as in the case where any thermodynamical
state variable, such as p, is uséd as the vertical coordinate. Moreover, the
application of a potential vorticity conserving scheme originally developed for
the shallow-water equations, suchlas that of Arakawa and Lamb (1982), gives con-
servation of (the hydrostatic version of) the Ertel's potential vorticity. With
the 8-coordinate, however, the thickness of each layer can become very thin as

a front forms. A more serious problem associated with the O-coordinate would be

the case wheré an isentropic surface becomes vertical.

3. CHARACTERISTICS OF VERTICAL WAVE PROPAGATION IN DIFFERENT VERTICAL GRIDS

Whichever vertical coordinate (possibly except for the B-coordinate) is used; a
proper choice of the vertical grid structure is an important problem in vertical

differencing. This is the case even for a quasi-geostrophic system of equations,
as is discussed in my second lecture. This problem can be more important in

vertical differencing of the primitive equations, the solution of which includes

vertically propagating internal gravity waves.
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Fig. 2 Four ways of distributing variables over the discrete levels,
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Tokioka (1978) compared characteristics of vertical wave propagation in various
vertical grids, in which the variables are distributed over the discrete levels
differently. The Boussinesq system of equations, linearized with respect to a
perturbation on a resting basic state, was used in his analysis. Among the

eight possibilities Tokioka considered, the results of the four shown in Fig. 2
will be presented here. In the figure, v is the horizontal velocity, w is the

vertical veloc¢ity, p is thevdensity and p is the pressure.

After separating the three-dimensional equation for w into the horizontal and ver-
tical structure equations, Tokioka obtained the relations between the vertical
wavenumber for the continuous case, n, and that for each of the discrete case, N,

We have the relation.

2 1 (_gdilzlp) ] (1)

" gh

n

Here (—ngnEIdz)% is the Brunt-Vaisala frequency of the Boussinesq system, which is
assumed to be constant; g is the acceleration due to gravity; and h is the equiva-
lent depth, which is a separation constant introduced in separating the original
three-dimensional equatilons into the horizontal and vertical structure equations.
For avforced—wave problem, in which the frequency v is given, h is determined as
an eigenvalue of the horizontal structure equation. We assume here that h, and
therefore n, is a given quantity. Using the siﬁplest centered differences for
vertical derivatives and the trapezoidal averages wherever needed, he obtained

the foliowing results:

Grid A, C', D':
4nAz

NAz = £ tan-l [ m] . (2)
Grid B:
- _ 2%
NAz = % tan 1 [ nAzz{f (n§2§§) } 1. (3)

Here Az is the vertical id i - ‘ =
grid interval, Zit2 = Zpe and 21 (zk+2 + zk)/2 has

been assumed. These results are plotted in Fig. 3.

With Grids A, C' and D', N is real for all ‘nAzl. Consequently, internal waves

in the continuous case (n? > O)Vate also internal waves in the discrete case,
regardless of InAzI. This is not the case with Grid B, since N is complex for

large |nAz|. This can be considered as a demerit of Grid B.
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Fig. 3 The relation between |nAz| and |NAz|, where n is
the vertical wavenumber for the continuous case
and N is that for each of the discrete cases.
The continuous case is shown by the thin line as
a reference. Redrawn from Fig. 2 of Tokioka (1978).

The finite-difference hydrostatic equation for each grid is given by

Grid A:
’ - ’ = _ _g_ ’ 7 ) /
(Ppyy = Ppp) /B2 = =5 iy * Pry) ~ ®
Grid B:
s - -5’ v 5
(Pt Py /B2 g0, (5)
Grid C':
’ ’ = _ L4
(Pryp = P /02 = ~ 8 Py | (6)
Grid D':
r - ’ ! = _ _g_ F'4 L4 » :
(Pryp = PI/82 = =5 (oyyp + 0, 7

Here the prime denotes the perturbation.

Based on these forms of the finite-difference hydrostatic equation, Tokioka dis-

cussed the possible existence of "computational mode" for each grid. With the
grid A, for example, p' # 0 is possible even when p' = 0 at all levels, due to the
averaging of p' in (4). With the grid B, on the other hand, p' = 0 at all levels

implies p' = 0, so that there is no "computational mode".
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One might argue that there is no "computational mode" with Grid C', since there

is no averaging of p' in (6). This argument is somewhat misleading, since a pres-
sure perturbation can influence the motion only through the pressure gradient force,
which is defined at the levels where velocitiles are defined. If we follow the

trapezoidal rule, as Tokioka used everywhere else, p' that can influence the motion
is

! =1 ! ' =1 - '
Prel = 3 (Prgp + Py Pr-1 = 2 (pp *+ pp_,)» etc. (8)
The hydrostatic equation that governs these p's is
! - ! = e .g_ 1 ]
(pk_i_l pk_l)/Az > (pk+l + ol ) s (9

which is identical to (4). Fig. 4 shows this situation.
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Fig. 4 A possible "computational mode for Grid C'.
The open circles show p' and p' satisfying
(6) and the dots show p' given by (8) satis-
fying (9).

Note that Grids A and C' correspond to the Lorenz grid and Grid B corresponds to
the Charney-Phillips grid referred to in my second lecture. The existence of the
"computational mode" is more or less common to any grids of Lorenz-type. It is
this situation that is responsible for the difficulty in computing (potential)
temperatures from geopotentials given at the same levels, which was pointed out

by Phillips (1974).
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4, EXAMPLES OF VERTICAL DIFFERENCE SCHEMES FOR THE PRIMITIVE KQUATIONS IN
O-COORDINATES

In spite of some demerits mentioned above, most existing numerical weather predic-
tion and general circulation models with the primitive equations are based on the
Lorenz-type grid in O-coordinates. The principal reason for this is that it is
easler with the Lorenz grid to construct a vertical difference scheme that main-
tains various integral constraints on the continuous system. In this section ex-

amples of such schemes will be given.

Arakawa (1972) and (Arakawa and Lamb (1977) chose the following integral constraints

in deriving vertical difference schemes:

(I) that the pressure gradient force generate no circulation of vertically
integrated momentum along a contour of the surface topography;

(II) that the finite-difference analogues of the energy conversion term
have the same form in the kinetic energy and thermodynamic equations;

(III) that the global mass integral of the potential temperature, 6, be con-
served under adiabatic processes;

(1V) that the global mass integral of a function of 8, such as 62 or nf,

be conserved under adiabatic processes.

Constraint (I) is on the form of the pressure gradient force in the momentum equa-
tion, and constraints (III) and (IV) are on the form of the thermodynamic equation.
It then follows from comstraint (II) that the form of the hydrostatic equation
cannot be freely specified. In this way the above four constraints are nearly
sufficient.to determine the vertical difference scheme, leaving one free to specify
only the pressure at which the potential temperature (or the temperature) is carried

as a prognostic variable.

Of the four, however, we regard constraints (I) and (II), which involve the

Pressure gradient force, as the most important in O-coordinates. If (I) and
(II) are not satisfied by the difference equations, an error in the pressure
gradient force near steep topography can lead to spurious sources or sinks of
the total energy and the circulation of the vertically integrated motion., - We

will, therefore, first restrict our attention to schemes that satisfy (I) and (II).

For simplicity, we shall use the original o-coordinate proposed by Phillips (1957)
given by

= P ,
U‘ps ’ ' . (10)

where Pg is the surface pressure. We then have 0 = 0 for Pp=0and 0 =1 for
P = pg-
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Fig. 5 The structure of the vertically discrete
-model being considered in this section.

We now consider a Lorenz-type grid shown by Fig. 5. In the following, details in

deriving equations, which can be found in Arakawa and Suarez (1983), will be omitted.

A discrete form of the continuity equation for the 0—coordinaté defined by (10) is
given by

opg 5(p55) : ,
3%t V'(Psvl)f 35 . =0, : (11)

Here and hereafter, SA for an arbitrary variable A is defined by

~ ~

BAYy = &gy~ Ay, a2
’

vhere a caret is used for variables at half-integer levels in Fig. 5. We begin by

writing the pressure gradient force as

- T 1 ‘5(09)'
V) = - v . , v 13
; ( P )2 P (p5¢£) b Pg §o ) Pg | (13)
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We can then show

(14)

N
M

(psdc)l(—vpd))l = —V[ '(pSMU)R, - ¢Sps ] —'pSV¢‘S ,

=1

o)
[[§

1

which means that constraint (I) 1s satisfied.

Evaluating the work done by the pressure gradient force given by (13), we find
that total energy is conserved 1f the discrete form of the thermodynamic equation

has the form

3 . ~ [stpgoe D)
ﬁ (pSCpTl) + V- (PSV»Q,CPTR;) + 5 - .

= o - S (B .
- [¢ 8a L Ge * v VIpg

A

1 . - . .
* @y, [(Ps“)z+g(¢m " bgup * (PP, (bp, - ¢z{|. (15)

We must now choose a discrete form of the hydrostatic equation. Its continuous

form 1s given by

—_ = =0 . X

0 - (16)
or, more generally,

3¢ _ _ RT
5¢ = " pdf/dp - an

where f is a function of p only. One way of deriving a discrete form of (17)
is to assume that layer &, which is the layer bounded by levels & - ! and % + L,
is a layer of constant RT/(pdf/dp). Then, by integrating (17), we obtain

_ ,_RT - , ,
Pos ™ % = Gagrapa i — fpy e
B, = &y = (—EL ) (£, - £)
L TaHs - Cpdf/dpaaHs T o) . (19)
Elimination of ¢2 between (18) and (19) gives
VS A RT A A
Vo~ Sou = Garzap ey ~ o) (20

Eliminating the common factor in the right hand sides of (18) and (19), on the

other hand, we obtain
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" bt Gy - B ‘ 1)

fong ~Foy ’

which shows that ¢l is a weighted mean of ¢Q_% and ¢£+%. Increasing % in (18) by

one and adding the result to (19), we obtain

(f - £ (22)

) s~ E) .

_RT
by = 9941 = Garrap e Fuar ~ fa) * (pdf/d o

It should be noted that the forms (20) and (22) correspond to (6) and (9) for
Grid C', respectively.

At each half-integer level, 8 is prescribed, and therefore p and f there can be
determined for a given Pg- It then remains to determine f at integer levels to

obtain a complete vertical differenciﬁg;> We may choose

p1+%
£dp . A (23)

Motivation for this choice is given in Arakawa and Suarez (1983).

A member of the family of schemes presented in this section is the scheme pro-
posed by Simmons and Burridge (1981), which can be obtained by choosing f = an
Then

RT '
(pdf/dp)ﬂ, RTy - : (24)

Another member of this family of schemes is the scheme proposed by Arakawa and

Suarez (1983), which can be obtained by choosing f = P, where

Pp= (B S (25)
Py : ~ . ‘
Then
RT _
(pdf/dp)k - Cp62 ; . (26)

where 92 is the potential temperature for the layer % defined by

T
3

= . (27)
Py

With this choice the discrete thermodynamic equation (15) can be rewritten as

%

9 . [0
ot (Ps¥) + T (pgvefy) + || = 0 o (28) -
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with 6 defined by

~ ~

A P -P + -
o2 e " Pan)O By, - B0 (29)

s P~ By

-

The discrete thermodynamic equation‘(ZB) satisfies constraint (I1T),

Arakawa (1972) and Arakawa and Lamb (1977) showed that the use of

t - - ni} -
A FpirPpan ~ Foan) — ey — Fp)
ol Fl.. - Fp (30)
2 41 L s
instead of (29), satisfies constraint (IV). With F(0) = 62, (30) gives
8, ., =28, +8,) (31)
s 2V R+ A
This was chosen by Lorenz (1960) for the balanced system of equations and by
Arakawa (1972) for the primitive equations. Arakawa and Lamb (1977), on the
other'hand, chose F(B) = %nb. Eq. (30) then gives
gw - 2:/:2 - lnljgﬂ : 32)
G ¥ | 2

The advantage of this choice fof the stratosphere was discussed by Arakawa and
Lamb (1977) (see Section V.A,4 of their paper) from the point of view of a con-
straint on the statistical distribution of 6, and by Tokioka (1978) (see also
Arakawa and Lamb, 1977, Section V,C.2) from the point of view of wave propaga-
tion through an isothermal atmosphere. These schemes, however, do not belong

to the family of schemes described in this section. In particular, the discrete
form of the hydrostatic equation cannot be written in the form of (20). This

can be considered as a demerit of the schemes that satisfy all of the constraints
(I) through (IV). For example, in actual numerical weather predictions with a
scheme that is a member of the family presented in this section, we may use (20)
for initializing model's (potential) temperatures from the observed values of ¢
at half-integer levels. With a scheme that uses (30), hoﬁever, there is no such
simple relationship as (20), and therefore we must initialize the model's (poten-
tial) temperatures from the observed values of ¢ at integer levels, using a rela-
tionship analogous to (22). Since an average of the temperatures at two adjacent
integer levels appears in such a relationship, as in.the right hand side of (22),
we usually obtain temperatures highly oscillating from level to level, as Phllips
(1974) pointed out.
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5. LAYER-MODELING VS. INTERPOLATION APPROACHES

The family of schemes presented in the last section are constructed following
an approach which may be called 'layer-modeling". 1In this approach prognostic
variables (other than the surface pressure) are defined for each sub-layer
bounded by adjacent solid lines in Fig. 5, réther than for each discrete level.
The finite-difference schemes for the continuity, momentum and thermodynamic
equations are then constructed to represent the budgets of mass, momentum and
enthalpy (or potential enthalpy) for each sub-~layer. Here we are assuming,
either explicitly or implicitly, that the prognostic variables are piecewise
constant Within each sub-layer. The value of a prognostic variable at an
interface of two sub-layers, which is necessary for calculating the vertical
flux of that variable through the'interface, can be determined by placing
further integral constraints. In the examples given in the last sectiom,
furthermore, the discrete hydrostatic equation is comnstructed by assuming that
the quantity RT/(pdf/dp) is piecewise constant, as shown schematically by the

heavy solid lines in Fig. 6(a).

Another way of constructing finite-difference schemes may be called "interpo-
lation approach". In this approach priority is given to local accuracy, without
explicit considerations on the budgets and other integral constraints. Vertical
discretization is made using interpolations from directly predicted values,
shown by the solid circles in Fig. 6(a). The hydrostatic equation can be dis-
cretized by assuming that a thermodynamic variable is, for example, piecewise

linear as shown schematically by the heavy dashed lines in Fig. 6(a).

The difference between these two approaches can be seen most clearly in (29).
Suppose that the thickness of layer 241, measured by P, is much smaller than
that of layer %, as shown in Fig. 6(b). Egq. (29) then shows that g£+% if
mainly QQtermined by 62, as shown by the‘solid triangle in the figure. 82+%
obtained by an interpolation, on the other hand, is mainly determined by

62+1 under such a situation, as shown by the open triangle in the figure.

While finite-difference schemes constructed following the "layer-modeling" are
more attractive, the above example shows that they can have poor local accuracy
when the vertical spacing of the sub-layers is very uneven. This indicates
that the choice of a proper vertical spacing is as important as design of the

vertical difference-scheme itself.
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Schematic figures showing the difference between the
"layer-modeling" (heavy solid lines) and "interpola-
tion" (beavy dashed lines) approaches. See text for

explanation.
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6. VERTICAL STRUCTURE OF FREE OSCILLATIONS

The existence of an artificial upper boundary in numerical weather prediction

models can be a serious problem. By comparing solutions of the tidal equation for
infinite and bounded atmospheres, Lindzen et al. (1968) showed that applying the
upper boundary condition dp/dt‘= 0 at some finite height introduces spurious free
oscillations and correspondingly spurious resonances of forced oscillations.

They also pointed out that having the model top at p = 0 is in practice equivalent
to having the model top gt some small finite p due to inevitable finite-difference
errors. This latter point, in particular, is supported by later studies by Nakamura
(1976) and Kirkwood and Derome (1977),

We have made an eigenvalue analysis of a diécrete version of the vertical structure
of various free oscillations and tﬁe "cémputational mode" in a discrete model. In
this analysis, .the Arakawa—Suérez scheme described in the last section, was used
with a modified definition of ¢ given by ¢ = (p - pT)/(pS - pT). Here p, is the
pressure at the model top, which 1s assumed to be a material surface so that

G = 0 there. In the results shown below, Py = 100 mb was used.

Fig. 7 shows the vertical structure of the "computational modes" in 7-layer and
l4-layer models, with different spacing between the half-integer levels. Here

a "computational mode" is defined by the vertical structure for which the pressure
gradient force, which ié defined at integer levels, is zero for all lavers. The
scale of the horizontal axis of Fig. 7 is such that a single unit corresponds to
1°C of potential temperature perturbation when the surface pressure perturbation

is 0.1 mb.

Fig. 8 shows the 7th eigenmode of the 7-layer and l4-layer models, which is the

highest vertical mode in the 7-layer model. An equal spacing in %np between

half-integer levelé is used. The scale of the horizontai axis of O perturbation
is such that a single unit corresponds to 1°C of the potential temperature
perturbation when a single unit of the horizontal akis of the "height" perturba-
tion is 1 m. Here the height means the height of an isobaric surface, rather

than that of a sigma surface.

Fig. 9 is the same as Fig. 8 except for the highest mode in the l4-layer model.

Fig 10 shows the speed of pure gravity waves for each mode in the 7-layer and

1l4-layer models.
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VERTICAL STRUCTURE OF 8 FOR COMPUTATIONAL MODE
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Fig. 7 The amplitude of 6 for computational mode in 7-layer (shown by solid
squares) and in l4-layer (shown by solid triangles) models, with
three different types of spacing between half-integer levels.
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Fig. 8 See text‘for explanation.
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Fig. 10 Speed of pure gravity waves in the 7-layer
and l4-layer models for each eigenmode.
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This type of analysis, which 1s similar to that of Williamson and Dickinson (1976),
has been extended with a multi-layer model with the top at 1 mb. The result shows
very large (relative) amplitude in temperature perturbation near the top for high
vertical modes due to false reflection of vertically-propagating waves.

Treating the upper boundary condition properly in a numerical weather predic-

tion model is, therefore, an important problem in vertical discretization of

the primitive equations.
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