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1. INTRODUCTION

In this lecture I shall discuss how integral constraints can be used in designing
finite~difference schemes for the two-dimensional advection equatibn with a space-~
dependent current. Taking the vorticity equation for two-dimensional nondivergent
flow as an example, the possible cause for. nonlinear computational instability is
demonstrated. Then, following Arakawa (1966), a method that preﬁénts the instabil-
ity through the conservation of enstrophy and/or enmergy in a finite-difference vor-
ticity equation is described and some numerical examples are presented. This method
is subsequently applied to the problem of computational boundary conditions. It is
then generalized to the two-dimensional advection equation with a divergent current.
The method is also applied to the design of dissipative schemes and schemes that

conserve non-quadratic quantities.

2. THE POSSIBLE CAUSE FOR NONLINEAR COMPUTATIONAL INSTABILITY ’ '

2.1 Aliasing error

When grid points with the interval Ax are used, wavelengths shorter than 2Ax ( wave-
numbers larger than k.max = T/Ax ) cannot . be resolved. To see what happens in such
a situation, consider a wave with the wavenumber k > kmax' At the’grid points

x = iAx, where i is an integer, zkmaxx = 27i. Thus
sin kx = ~sin (2k - x, cos kx = cos (2k - k)x
max : max

at the grid points. Since k > k y 2k -k <k . This means that, recognizing
max max max

only the grid point values, the grid misrepresents the unresolvable wave with the

wavenumber k as a resolvable wave with the wavenumber k* = kaax - k. The error due

this spectral misrepresentation is called aliasing error.

In numerical integration of a nonlinear eguation (or a linear equation whose coef-
ficients vary in space), the product term in the equation can generate waves that
have wavenumbers larger than kma" The spectrum of the solution can then be affec-

x
ted by the aliasing error, and even an instability known as nonlinear computational

instability can occur, as shown below.
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2.2 A finite-difference approximation to the vorticity equation for two-
dimensional nondivergent flow

Let us consider two-dimensional nondivergent flow as an example. By assumption

Vey = 0, (1
where v is the two-dimensional velocity and V is the two-dimensional del operator.
The time change of the flow is governed by the vorticity equation

9s _ . :
—E——VV?;, (2)

where t is the time, ¢ is the vorticity, k*VXy, and k is the unit vector normal to
the plane of motion. Using (1), we may rewrite (2) as
T _ g G
5t - Ve(vD). ( )

The form (2) will be referred to as the advection form and (3) as the flux convergence

form.

The continuity equation (1) is identically satisfiled with

v = kxV{, (4)
where ¥ i1s the streamfunction. The vorticity is then given by

L= Vi, (5)
Using the streamfunction and cartesian coordinates (x,y), thé vorticity equation
may be written as

== 5w, (6)
where J(Z,y) is the Jacobian operator defined by

oz oY _ 3z 3P ' ,
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Fig. 1 A square grid showing the indices for grid points

For a square grid as shown by Fig. 1, use of the simplest centered finite-dif-

ference approximations to the Jacobian and Laplacian operators gives
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2.3 An example of nonlinear computational instability

Following Phillips (1959), we show that the allasing error can cause computational
instability when the above finite-difference Jacobian is used. Let us consider the

initial condition such that

V=9 +v, _ (10)
where
i 2m] : ., 2]
(w1)i,j = (C cos%% + 8 in ) 51n~%l (\,[)2)]__'j = U cosTi sin~%l. (11)

Substituting (10) and (11) into (9) and the right hand side of (8), we obtain, after

some manipulations,

d _ Y30 , 3mi Ti 3mi i . 4T

EEﬁi,j = 5 [ -c( sin=5= - sinTT-) + 5¢( COS"TT'+ cosTT-) ] 51nf§Jx (12)
But due to aliasing,

sinmont & _ sinli, cosort + COSE—y sinélri+ - sin?ld, (13)

2 2 2 2 2 3

Then (12) becomes

9 /__

B_tgi,j 7av (c 51n2 + S cos——) 5111——3- (14)
From (14) and (9), we find

V30U i i . 2m]j
§Ewi,3 Toaz ( C 51n7? + S cosif-) sin—3 . (15)

Substituting (10) into the left hand side of (15), we see that (10) is the solution

for all t, due to aliasing, if

dc _ V30 ds _ v/3U au _, (16)
dt 1042 ’ dt 1042 ’ dt .

Then U = constant and

Y3ut/10d? or -/3Ut/10d2

C=S8occe C=~5S <e . a7

Note that (15) is in phase with wl.for the growing mode and 180° out of phase for
the decaying mode. Typically, U/d? ~ 107° sec—l; then the growth rate of the growing
mode 1s given by V3U/10d% ~ 1.7 x 107 ° sec™® ~ (6,7 days) !.

As we can see from the above example, nonlinear computational instability can

occur even when time is continuous. This is in sharp contrast to the more
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familiar linear computational instability which occurs in commonly used schemes

when the Courant-Friedrichs-Lewy stability criterion is violated.

3. PROPERTIES OF THE. JACOBIAN OPERATOR AND CONSERVATION LAWS FOR TWO-DIMENSIONAL
NONDIVERGENT FLOW :

Before proceeding to the problem of overcoming nonlinear computational instability,
let us consider the Jacobian J(p,q) in its differential form, where p and q are

arbitrary functions of space. We note that

J(p,q) = k*VpXVq = kVx(pVq) = -k-Vx(qVp) , (18)

and

L[}

J(p,q) = -J(q,p). | (19)

Using (18) and Stokes' theorem, we f£ind
3,0 = 0, - (20)

where the overbar denotes the area mean over a domain along the boundary of which

either p or q is constant, or over a periodic domain. Furthermore, we can easily

show that

pI(p,q) = 0 @1)
and

aI(p,q) = 0 (22)

for the same domain.

In our problem p = £ and q = ¥, Let us assume a bounded domain along the boundary
of which Yy = constant so that there is no inflow or outflow across the boundary.

From (6) and (20), we obtain
3 — _ .
=T=0 (23)
Thus the mean vorticity is conserved. From (6) and (21), we obtain
d 1% _
5t 2 £z = 0, (24)

Thus the enstrophy defined by E = %'C is conserved. From (6) and (22), on the
other hand, we obtain {37/t = 0. Using T = Vzw and (23), we may rewrite this as

g%—i(vw)z = 0. . (25)

Since vZ = (kxyy)? = (vw)i, (25) means that the kinetic energy K = %-Gi-is conserved.,

We can express the streamfunction | as a series of orthogonal harmonic functions.

Then
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X v | (26)
n
where the functions wn are eigenfunctions of
Vi +A21pn=o. (27)

The parameter A is the generalized wavenumber of the component w Due to

orthogonality, we find
- Y k, x =Lwor | (28)
n’ n 2 ‘n’
n ,
Also we can show from (27) that

> E, E =AkK. (29)
n n
n

Since both K and E are conserved, their ratio is also conserved. Then the average

wavenumber A defined by

-n_ ’ (30)

is conserved Since A% is the mean of A with the weight K , conservation of
A? means that a systematic energy cascade toward higher wavenumbers is not

possible in two-dimensional nondivergent flow, as pointed out by Fjgrtoft (1953).

4, THE ENSTROPHY AND ENERGY CONSERVING FINITE-DIFFERENCE JACOBIAN

We now return to the problem of numerical solution of (6). If a finite-dif-
ference scheme could be comstructed so as to conserve discrete analogs of either
the enstrophy or the kinetic energy, nonlinear computational instability would
be prevented. Furthermore, if both could be conserved, the average wavenumber
would not change, and, therefore, a systematic cascade of energy toward higher.
wavenumbers would not be possible. Arakawa (1966) has pointed this out and

showed that such finite-difference schemes can indeed be constructed.

For convenience, let us introduce a single index 1 to identify a grid point. The
finite-difference approximation of the Jacobian at the point i may be written, in
a general form, as

043, (T.¥) = ?; 1Z TURTILIE TTR (31)
where Oi is the area represented by the grid point i. 1In the case of a square grid
with the grid interval d, o, = d®. The choice of coefficients ci, g in (31)

i
determines the order of accuracy and other properties of the fin1te~difference
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approximation. Here we are particularly concerned with the properties

]

Y 0,2,3,(,P) =0 (32)
i ===

and

Y oI, @Y =0 ' . (33)
- 1101 _

When divided by the total area, these are discrete analogs of the integral constraints
(21) and (22) on Jacobian, which lead to the enstrophy and energy conservation when
=7 and q = V. .

To find the condition to satisfy.(32), it is convenient to rewrite (31) as

0,3,(C,0) = :; TIRTTLLIPPLa o)

where

Multiplying (34) by Ci; we obtain

°if1

i(c W) = %: a, c ci+i. . (36)

The term a ¢ can be interpreted as the contribution of the interaction

i+H',1, Ci+1'c
can be interpreted as the contribution of the same interaction to Ui+i'Ji+i'(§’w)'
These two must have the same magnitude and the opposite sign to satisfy (32). Thus

4,141 010k _
between the grid points i and i+i' to o 471 (@.¥).  similarly, a

we must require

T ' 37
ai+i'xi éi,i+i' , for all i and i', (37)

to conserve enstrophy.

The finite-difference Jacobian (31) may also be written as

c,J (C,IP) = Z” bi :H_inw:H_in s : (38)
r2 i L i
where

An argument similar to the above shows that we must require

-b -

{ qg4qvv forall i and i ‘ (40)

Piggre g =
to conserve energy.
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In these arguments, we did not specify the finite-difference form of the Laplacian,
V2Y. We can simply assume that the form of the Laplacian and the form of the
kinetic energy, %(Vw)z, maintain the relation YV?y = ~(V)2. The finite-difference
Laplacian (9) satisfies this relation.

In the case of the finite-difference Jacobian (8) for a square grid with o, = d?,

the coefficients éixi_i' can be identified as
31,531+, 3 - (wi,j+l - 1pi,j-l)/‘f (41)
81,331-1,3 —(wi,j+1 - wi,j—l)/4 (42)
34,550,540 = "Wy 5 - Vg )74 43)
)/4 ' (44)

3,531,3-1 = Waaa 3~ Vi 04

Here the original double indecies are used instead of the single index i to identify

a grid point. Replacing i in (42) by i+l, we obtain
141,331,9 = Vi, g4~ Vo, 30074 | (45)

By comparing (45) with (41) we see that (37) is not satisfied by these coefficients
and, similarl by the coefficients and a; s We also find

’ Y» by the CTENES 83 3+151,3 ¥ 24,551, 541°
that (40) is not satisfied. Thus, the finite-difference Jacobian (8) maintains

conservation of neither enstrophy nor energy.

~To find a finite-difference Jacobian that satisfies (37) and (40), let us first

conslder the following three basic finite-difference Jacobians:

1

Gy5 570z L Caga g = %am1, P Wy 50~ ¥y,50)
T TR P R 6)
(004,5 Z%f'[ = @ ser ~ Barn, 3o Paan, gt Cacr,gen T Bae1,5-0Ye1,3
O T T (U P R MR DL TR

(47)

I35 5 gz b %, 3 Waan, 31 ™ Va1, 3-0) ~ Beoa,3Wacn 5e ~ Vi 3-0)

Ty Wi, g ™ Vimn, 3?05 Waan a1 - Yi0,5-10)
(48)

These finite-difference Jacobians use the grid points shown in Fig. 2 and correspond

to the following expressions of the differential Jacobian, respectively:

_OT By BT Ay L 3 3T, LB AT, o,
sy =R - BB T ¢ S = ) - 5
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Fig. 2 Grid points used for Jl, J2 and J3

The finite difference Jacobian J1 given above is that used in (8). It can be shown
that all of JI, J2 and J3 have second-order accuracy and satisfy a discrete analog

of the integral comstraint (20).

More general second-order finite-difference Jacobians can be obtained by linear

combinations of the above three; thus we let

Ty = ey @), L BE, (49)

where o + vy + B = 1. Identifying the coefficients 87 j4q' for this finite-difference
3
o

Jacobian, we find o = B is required to satisfy (37).  Thus u(J1+J3) + YJ,

where 20 + v = 1, is enstrophy conserving. An example is J2 itself. Similarly, we
find o = v 1s required to satisfy (40). Thus d(J1+J2) + BJa’ where 20 + B =1, is

energy-conserving. An example is J3 itself.

The finite-difference Jacobian that satisfies both (37) and (40) is then given by

o=f=v= %u Thus the finite-difference Jacobian given by

=1 (50)
JA 3(J1 +J2 +J3)

conserves both enstrophy and energy. When (50) is used, the vorticity equation is

given by
+ . ,+
dzic = - .2_ [ ¥ §i+l’j Ci’J T Z;i,:l Ci'-l,j
3t1,j 3 i+, 2 i~4%,3 . 2 .
+ .
+ G Ei:j'l'l * Cirj -c i,i i,j-1 ]
isj'*’lﬁ 2 i,j_lyZ 2
. g PRy P1,1.7 Faml, et
3 i+, 44 2 i1, 5-% 2 .
[ . . + G, .
+ g Ci_l,j'H- * Ci,j - ! Cl’_—] i+l,j-1 1, (51)
1-%, 3+ 2 i+s,3-% 2
where

l -
Firgs = 2%4,5-1 Y Ve, 5-1 " Va,gm " Varn,ga

)s (52)

1 - S JEPRR (53)
Gi,j#/z’a(wi+1,j+‘1’i+1,j+1 l1’1—1,3‘ l1’:1—-1,J'+1)’ :
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11

' 1
Fivg, 3 = 2Wa41,3 ~ Va, 44100 (54)

' 1 -
Ciag, 345 = 20,301 T i, (35)

When divided by dz, (51) corresponds to the flux convergence form of the vorticity
equation, (3). The terms involving F, G, F' and G' correspond .to the vorticity
fluxes in the x, y, x' and y' directions shown in Fig. 3, respectively.

'y Y X
j+' k\ T /’
\\ | P
N\ s/
1:£.‘C> }:(
: \ 7/
j a"/')I( D—>X
. ,\\
}J o R
/ \\
j"' / \
7i-1 i+

Fig. 3 Fluxes appearing in the finite-difference
vorticity equation (51).

"From the definitions of F, G. F' and G' given above, we see that

+ G -G L =0, (56)

F .
i’J'*J’i isj"’5

Fi‘*‘l{z,j - i‘l/Zyj
' sy — F! +6i g sy ~Gly ., =0.
Fi*-%,:1+‘~z i-%,3-% Gl“l/ZsJ""/z Gi%,J—% 0 (57)

When divided by dﬁ (56) and (57) correspond to the continuity equation (1).  Using
these in the right hand side of (50), we find that the sum of all .the coefficients
on.; , vanishes; and thus Ci , can be replaced by —C . When this 1s done, we

obtain a form that corresponds to the advection form of the vorticity equation, (2).

Multiplying (51) by ¢ and using (56) and (57), we obtain

i,3

28 1,2 _ _1 -
5t 3 "1,5 7 73 0 Faay iB, 50040, 7 Fig, 3041, 14,9

Gy, 3#54,351, 541 ~ €4 351,5-151,5 ]
.'
-5 1 F it 5951, 3004, 341 T Pl § b0 4-1,3-154, 3
(58)

' _ ot :
TGy, 05,9501, 54 T i, R ae, 311,51,
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When divided by dz, this corresponds to the flux convergence form for 3%£2/8t of the

continuous case,

3 1.2 _ Jeoloo ’ v
sl = - Vv, N 39)

which can be obtained from (1) and (2). As this example for a square grid shows,
the product EiJi(C,W) can be written in a flux convergence form when the require-

ment (37) is satisfied. 1In Such a form, however, as in (58), each of the fluxes

of %Cz is based on a broduct of £ which is notvnecessarily positive. This is

anticipated since (51) reduces to

oL, 4 - T,
i_ i+l i-1
5t~ U 2d (60)

when it is linearized with respect to a small y-independent perturbation on a uni-
form flow in the x-direction, U. Multiplying (60) by Ci, we obtain
1

w11~ U2hi-1k) (61)

NJL!-—‘

9 1 _ 1.1
5t 2°1 3(U5%,4%

“which is the flux convergence form corresponding to (59) for this linearized case.

The products giC and Ci—lci are negative when averaged in time for waves whose

i+l
wavelengths are shorter than 4d. This is consistent with the fact that the group

velocity obtained from (60) is against the direction of U for such short waves.

As the above example shows, the finite-difference Jacobian J, is a generalization of

the right hand side of (60) to the two-dimensional nonlinéarAcase; and therefo;e

it does not eliminate (or decrease) any deficiencies that scheme (60) might

have, such as the computational dispersion of short waves. It should be noted
that, however, there are a variety of ways in generaiizing (60) to the nonlinear
case. Use of JA’ or its fourth-order version (see Arakawa, 1966), eliminates
computational instability that may occur in a nonlinear system (or in a system in
which the basic current varies in space). Moreover, it prevents a false systematic
computational- cascade of eﬁergy into small-scale motioné; and because there is then
relatively little energy in the small-scale motions, where errors are large, the
overall error is small. In this way, other statistical properties of the solution,
such as conservation of the higher moments of the statistical distribution of vor-

ticity, are approximately maintained.

If the energy in the shortest scale is the result of a spurious computational energy
cascade, a decrease of the grid size does not help insofar as the long-term simula-
tion of nonviscous flow is concerned (Arakawa and Lamb, 1977). Such é result is
completely different from that which might be expected from the usual analysis of
truncation error, which is a measure of the formal difference of the finite-difference
equation from the original differential equation. The paradox occurs because a

decrease of the grid size allows a further computational cascade of energy into the
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added part of the spectral domain. After a sufficient period of integration, the
cascading energy will again reach and accumulate in the shortest resolvable scale. -
The overall error will become large again and the prediction of some of the statis-

tical properties will become even worse than with the coarser grid.

The existence of lateral viscosity can make a false computational cascade of energy
less harmful. Since such viscosity is more effective for smaller scales, however,
a spurious computational energy cascade into these scales falsely enhances the total

amount of energy dissipation.

A vere derived
and investigated by Lilly (1965).. He pointed out that when JA is used for the two-
component system given by (10) and (11), we simply obtain dS/dt = dC/dt = dU/dt = O,

so that the aliasing error has no influence for this system.

The spectral forms of the finite-difference Jacobians J , J , J and J
1 2’ 3

It is interesting that when a regular triangular-hexagonal grid is used, the simplest

second-order finite-difference Jacobian satisfies the requirements (37) and (40)
(Sadourny et al., 1968; Williamson, 1968; Masuda, 1969). Jespersen'(l974) showed
that J, and its counterpart on a regular triangular-hexagonal grid can be derived

A
with a finite-element me;hod.

6. EXAMPLES OF NUMERICAL TIME INTEGRATION WITH DIFFERENT FINITE-DIFFERENCE
JACOBIANS

In the last section we let time t be continuous. In actual numerical integrations,

time must also be discretized.

When the trapezoidal implicit scheme is used as the time differencing, with JA for

a square grid, the vorticity equation (6) becomes

Cn+1 _ Cn _ (Cn+l + Cn wn+l + wn)

At A 7 7 (62)

where the superscript denotes time level and At is the time interval. The index

for space grid has been omitted. Multiplying (62) by %{Cn+l + Cn) and using the

property of JA’ we obtain

= Ler0y2 .
@ = 5D, (63)

where the overbar denotes the meanover all grid points. This means that enstrophy

is conserved in the time-~discrete case also.

When the more common leapfrog scheme 1s used, we have

Z;n+l _ 2;n—l n n
= 3, (64)
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Multiplying (64) by z™ and agailn using the property of JA, we obtain

ncn+l - lﬁn—lcn . (65)

ﬁﬁ‘
X

instead of (63). If the solution is "smooth" in the sense of

R (66)
(65) gives
FhH2 s Ly | | (67)

so that the enstrophy at every other time level remains approximately constant.

It is well-known, however,that there are two sets of solutions with the leapfrog

scheme: one "physical" mode and the other computational mode (see, for example,

Mesinger and Arakawa, 1976). With a sufficiently small At, the computational mode
is characterized by an oscillation from level to level in time with the period of
2At. It is also well-known that the computational mode 1s unconditionally unstable

for a decay equation (see also Mesinger and Arakawa, 1976).

In a nonlinear system there are wave-wave interactions and, even when the entire
system does not inciude any dissipative effect, a wave can decay by transfering its
energy to another wave. . Presumably due to this decaying effect acting on each wave
component, numerical integrations of a nonlinear system with the leapfrog scheme
usually show gradual amplifications of the computational mode even when the system
is stable in the time-continuous case. (See, for example, Lilly, 1965). A common
way to overcome this problem is to periodically insert a time-differencing scheme

that is free from a computational mode, or to introduce a time-smoothing operator.

Numerical tests have been made with the finite-difference Jacoblans presented in the

last section. In these tests, the initial condition was given by
Y =¥ sin(mi/8)[cos (1§/8) + 0.1 cos(mj/4)] ' (68)

and At was chosen such that At/d? = 0.7. The leapfrog scheme was used for most time
steps. In order to eliminate the gradual separation of the solutions at even and odd
time steps due to a growth of the computational mode, a two-level scheme was inserted
every 240 time steps. The simplest five-point Laplacian given by (9) was used. Fig.
4 shows the time change of enstrophy and energy obtained with these Jacobians. The
expected conservation properties are observed even though the trapezoidal implicit
scheme was not used. The energy-conserving J3 showé considerable increase of ens-
trophy. On the other hand, the enstrophy-conserving J2 approximately conserves

energy in spite of the lack of a formal guarantee. This is reasonable because ens-
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trophy is more sensitive to shorter waves for which errors are large. JA conserves

both quantities, with only negligible errors arising from the leapfrog scheme.

Enstrophy Energy
J
N et e
JS'J;A
| ! | | | I | |
0 500 1000 1500 2000 0 500 1000 1500 2000
Time Step Time Step

Fig. 4 Comparison of the time variation of enstrophy and energy
during a numerical integration with the finite-difference

Jacobians»Jl, Jz’ J3 and JA'

(wave number)?
| %

e .l|||..|..1.,;|||.|,l|. L

{wave number)?

Fig. 5 Comparison of the spectral distribution of energy obtained
with J and J, after a numerical integration of 2400 time
steps.3 The arrow shows the wavenumber that contained most
of the energy at the initial time.
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Fig. 5 shows the spectral distribution of kinetic energy obtained by JA and by J3
at the end of the calculations. The small arrow shows the wavenumber for sin(mi/8)
cos(mj/8), which contained almost all of the energy at the initial time. Although
energy was approximately conserved with J3 there was a considerable spurious energy.
cascade into the high wavenumbers, whereas with JA more energy went into a lower
wavenumber than into the higher wavenumbers, in agreement with the conservation of

the average wavenumber as given by (30).

7. COMPUTATIONAL BOUNDARY CONDITIONS

In this section we consider the problem of iIntegrating the vorticity equation (6) for
a limited domain. The boundary of the domain can be either a rigid wall or an arti-
ficial open boundary within the fluid, To solve for 3y/dt from known 37/3t(=V?3y/dt),
we need a boundary condition for 3Y/dt. When discrete érid points are used, we need

an additional boundary condition, which may be called computational boundary condition,

as shown below.

Let the heavy line in Fig. 6, 1 = I, be the boundary of the computational domain.
The point (I,j) shown by the open circle in the figure is an outflow point, a rigid

wall point, and an inflow point, depending on 0. We assume that

: >
I,j-1 1Pz,j+1 <
the finite-difference vorticity equation (51) is used for all inner grid pqints,

1 £ I-1. By substituting i = I-1l into (51), we see that L at i = T must be known ,

or must be somehow determined, in order to compute 3C /3t.

I'lsj

j+i

ig
<
5

¥
J a
I-2 I-1 I

Fig. § TFluxes from or toward a grid point at the boundary
of the computational domain. See text for explanation.

Here we follow an approach in which CI,j is prognostically determined. We first let
time t be continuous and consider the vorticity budget for the area represented by
the point (I,j), the area surrounded by the boundary and the dotted lines in the
figure. Taking (51) applied to i = I-1 into consideration, the vorticity budget

equation may be written as
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_d_z_. 3 = E I’j I-l:j
7 5t°1,5 - 3 F1,3 2
+lim SIS S W SR ‘11,541 Y Py
3 I'li:j"li 2. I";i,j'l""ﬁ 2
N o T A .+ . A Tt T,
-c CI:J+1 CI:J +e CI!J CI;J—l -F EJ CI’J . (69)
ivs 2 3% 2 i~ 2

The factor d2/2 appears on the left hand side since it is reasonable to assume that
the boundary points represent one half of the area represented by the inmer points.
The terms involving F, F' and G' are the vorticity fluxes from or toward points
(I-1,3), (1I-1,j-1) and (I-1,j+l), respectively, as shown by the double-stroke arrows
in the figure. The terms involving 8, the form of which is yet to be specified,
are the vorticity fluxes along the boundary as shown by the open dot arrows. The
term involving ;, the form of which is also yet to be specified, is the vorticity
flux across the boundary as shown by the solid dot arrow. This flux also depends
on an unspecified hypothetical vorticity E.

The forms of F, F' and G' are given by (52), (54) and (55). TFor E we choose the
following uncentered form:

~

- - - 0
Cipg, = © (wI,j MRS TSR l"I—l,j+1) , 70)

where o is an unspecified positive constant. For F we choose

~

T, = (71)
j

B (wl,j_l - I\UI,j'I'l)’

, » s e . > L >
where 8 is another unspecified positive constant, so that Fj < 0 as wI,j—l wI,j+l = 0.

Since the right hand side of (69) should vanish when f is constant, we require

~

L g e _ 6., - % =
+3 P, . -6 ) Gip, + 6y F. =0 . (72)

2
= F N
3 TI-%,] Y,i-% I-%,34s i~k h| ’

Substituting (52), (54), (55), (70) and (71), we find that (72) is identically

satisfied if and only if

a=;16— B:l‘. ‘ ) (73)

Let us now consider the enstrophy budget equation. Multiplying (69) by CI , and
J ,
using (72), we obtain ’

2 3 1, _1
2 %€ 2°1,5 © 3 14,351, 551-1, 5
+ l.[ F! T .C - G; C. .G I
6 I"I/Zaj—l/z Iaj I-lsj"l I_I/Z:j'p/z I,j I_lyj+l
]_ A . l ~ . l ~ A~ ~
- =G, Lo . = -= .
2 J“‘l/z;IsJEIaJ'*‘l *3 Gj—LzZ;I,jCI,j—l 2 FjCI,jCJ' (74)
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The first three terms on the right hand side of (74) cancel when theAsum of (74) and
(58) applied to the inner points is taken. The two terms involving G cancel when the
sum of (74) over j along the boundary is taken. The net effect on the entire domain
is, therefore, through the term involving %, which represents :the enstrophy flow
across the boundary.

~

We must now choose I properly.

(a) Rigid boundary ( Fj =0)
In this case ¢ in.(64) has no effect since it is multiplied by Fj'

> 0)

j AN ~ 2

i . = F, >
T, seems to be the best choice since FjCjCI,J JEI,j 0
and, therefore, the enstrophy flux across the boundary is in fact outward.

(b) Outflow boundary ( F
In this case Ej =T

() Inflow boundary ( Fj < 0)

In this case we have more freedom. We may wish to prescribe CI i and ignore
3

the prognostic equation (69). Or we may wish mo inflow of vorticity, with

°3 77 P

effect on %-C; i until CI i itself becomes zero. Or we may wish no inflow
3 A s

in (69). With this choice the last term of (74) has a damping

of enstrophy with Cj = 0,

To compare with the results of other authors ( e.g. Nitta, 1962; Matsuno, 1966;
Gustafsson et al., 1972; Elvis and Sundstrom, 1973 ) on oﬁtflow boundary condi-
tions and obtain a guide in time-differencing, let us apply (51) and (69) to the
case of the one-dimensional édvection equation with constant current. This can
be.done by formally making ¥ constant in i, { constant in j, and (wj_l - wj)/d
= (wj‘— wj+l)/d = U for all j. . Then (51) with (52), (53), (54) and (55) for
inner points becomes (69), i.e.,

3y 4y

5T -9 4

s = = (z;iJrl - ), dio= see, I-2, I-1; (75)

i-1
while (69) with (52), (54), (55), (70), (71) and (73) becomes

oz

1_ 1 5 | '
EE e e

Now let U be positive s0o that 1 = I is an outflow point as shown in‘Fig. 7. With
the choice E = EI (see the argument in (b) above), (76) becomes

3§I

U .
= - = - 77
ot d (CI CI—l) ‘ an
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Fig. 7 A one-dimensional grid, showing an outflow
point i = I by the open circle.

Eq. (77) is based on uncentered upstream space-differencing. For the case of

constant U being considered now, it is equivalent to

ar
_I__01 - . (78)
5t 53 Fr41 = F1-1)

with c1+1 given by the extrapolation

(79)

< 27

I+1 = %°1 T bra1t

Matsuno (1966) discussed false reflection of waves at an outflow boundary with
boundary conditions based on extrapolation. Nitta (1962) examined various
boundary conditions through actual numerical integrations. Their results show
that (78) with (79), or equivalently (77), is a reasonable choice as far as

space differencing 1s concerned. We must then find a suiltable time differencing

for (77).

" Suppose that we are using the leapfrog scheme for (75). Then

E?+1 _ Cn—l

i S T

U n n
AT =-32d Cyp ~F

i) L=ty 122, I-1. (80)

We may formally write a time-discrete version of (76) as

ntl n-1

I cI
2At

)

= U gn_
- d (E CI"'l .

(81)

If we replace En in (81) simply by C?; we obtain the leapfrog scheme for (77),

Z;1:1+l - cn—l
I I __0.,.n_ ' n
2At =-q G-ty - (82)

But from the argument given in (b) above, it is clear that (75) and (77) form
a damping system. The damping effect is due to the leading term in (77). This

means that when the leapfrog scheme (82) is used, the solution is unstable.

We must therefore seek a suitable alternative. To thils end, we temporarily write
a scheme for (78) as
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n-—_l

n+l
cp -~ %q

=Y 0 _ .0 :
e - " 2d G 7 Rp) (83)

Eqs. (8l) and (83) are equivalent when

® = +22 ). - ' (84)

@ I+1

N

n
I-1

If we use the "rhomboidal" extrapolation and "imward-backward" extrapolation for

C;+l (Gustafsson et al., 1972; Elvis and Sundstrdm, 1973; see also Sundstr6m and
Elvis, 1977) given by

ﬁ _ ntl n-1 n :

‘1% YO Tt : (85)
and

n n-1 n-2

= - 86

‘1" %1 "t (86)
we obtain from (84)

=T 87
and

~n n-1 , 1 .n n-2

T = CI + 5’(C1_1 - L) (88)

respectively. One of these expressions, with the subscript j added, should be a

good choice of 2 for use in (69).

We must also be careful in time-differencing of (69) at inflow point if 2 is chosen
in such a way that it adds to the entire system a damping effect, as in the case

of Ej = (see the argument in {(c) above).

1,1

8. FINITE-DIFFERENCE SCHEMES FOR THE GENERAL TWO-DIMENSIONAL ADVECTION
EQUATION

In this section we consider the general two-dimensional advection equation

5
36 = - Ve, (89)

where q is an arbitrary variable and v is the advective velocity, which is not
necessarily nondivergent. The two-dimensional continuity equation may be writ-

ten as

o Ve, | (90)

where m is the mass of the layer bounded by two material surfaces, per unit

horizontal area, as shown in Fig. 8. Combining (89) with (90), we obtain the
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flux convergence form for q given by

-g%(mq) = -~ Ve(mvq). o ' (91)

| cface
watera Surta® e

_nusatll

— i

:

Unit Area

Fig. 8 A material layer whose mass per unit horizontal area is m.

Let F(q) be an arbitrary function of q and F'(q) = dF(q)/dq. Multiplying (89)
by F'(q), we obtain

—2—% = - yeVF. (92)

Combining (92) with (90), we obtain the flux convergence form for F(q),

%(mF) - - Ve (avE). | | (93)

Let an overbar denote the area mean over a domain along the boundary of which
the normal component of v is zero, or over a periodic domain. Then, from (90),

(91) and (93), we have

3 ' :

om 94
St 0, _ , (94)
omq _

Tl 0, (95)
OmF :
OmF _ 6
T 0 . (96)

When multiplied by the total area, (94) represents conservation of the total
mass, while (95) and (96) represent conservation of the mass-weighted integrals

of q and F(q), respectively.

We are now interested in constructing finite-difference schemes in which discrete
analogs of T and Wq are conserved and in which a discrete analog of wF is either

conserved or bounded by a selected F(q) other than q itself.
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i~} i i+1

Fig. 9 See text for explanation.

Consider a square grid as shown by Fig. 9. We assume that the dot poihts carry
both m and q. The velocity components may be carried at other points, das in
the case of a staggered or a semi-staggered grid. In any case, we may write
a finite-~difference approximation to (90) as

Bmi

1
5% = At (ma) gy = (@)

— - (97)

(=3

Here only the mass flux convergence in the x-direction has been written and

the index j has been omitted for simplicity. The mass flux (mu) is defined

at the cross points in the figure; and its actual expression generally involves
space-averaging of m and, depending on the staggering, space-averaging of u

as well, Regardless of its form, however, successive cancellations of (mu) will
take place when the sum of (97) over all grid points is taken, leading to

conservation of the total mass.

Similarly, conservation of a discrete analog of Tg can be achieved by writing

a finite-difference approximation to (91) as

) .
3cmidy) = %[ (muq) ;- (muady
- 1, , (98)

regardless of the actual expression for (mugq).

From (97) and (98), we obtain

1
m,s = - E-[ {(mUQ)i+% - (m.u)i_'_l/zqi P+ o (mu)i_l/zqi - (muq)i__l/2 }
1. (99

When divided by w,, (99) is a finite difference approximation to the advection
equation (89). ‘
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To. obtain the corresponding finite-difference approximation to (93), we first
multiply (99) by F'(qi). Then

oF :
i _ 1 '
moRe < - E‘[ { (muq):H_;5 - (mu)i_%qi 1 Fi + { (mu)i—%qi - (mgg)i_% } Fi
1,
. (100)
where Fi = F(qi) and Fi = F'(qi), Adding Fix(97) to (100) we obtain
@ F) = - 1 (g, ¥ '
3t miFy d mq) 345, Fy = o)y (aF' - By
—v{ (muq)i_%Fi - (mu)i_%(qF' - Py }
1. (101)

We are now concerned with the sum of (101) over all grid points. When the con-~

tribution from the boundary condition can be omitted, as in the case of the
periodic domain, we obtain .

S S R A T S ) Bt S O S
i

(102)

In deriving (102) the index i under the sum has been adjusted in such a way
that only .(muq) and (mu) at the point i+ appear. Let us define aiﬁ% by

(muq)i+%'= (mu)i+%qi+% ) (103)

Then (102) may be rewritten as

5
3t Z (myFy)
1

] ) .
Fl X [ o)y {agp (Pl - FD - (@' - By, + (@F' - P, )
1

(104)

If ws require that EZ:(miFi) be conserved for any (mu)i+%, the following form
for q must be used:
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(qF' - F)i+1 - (qF' - F)i

Qg = T . (105)
1+ Fim %1
This is a finite-difference approximation to the identity
]
q= dlgFl - F) (106)

aFT -

A

Some examples for the choice of F(q) and the corresponding q are given below.

~ q. + 94
(a) F= qz: qi'i'l'i = '1_2——}—; (107)
() F=Yq: 9341 = Y9394 (108)
~ 29.q
1 i%i+1
(c) F=-= q = (109)
1 Weoqy ¥agy
~ lnq. - Q{ﬂ.q
(d) F = ng it i (110)

Q. = =
i /gy - ey

Note that 4y given by (107), (1085 and (109) are the arithmetic, geometric
and harmonic means of 4y and Qyp1- Obviously, the choices (b), (c¢) and (d)
can be made only when q is a non-zero variable. The actual choice for F(q)
should be guided by the physical meaning of q and by judging whether conserva-

tion of a discrete analog of mF is an effective computational constraint or not.

In the case of the vorticity equation for nondivergent flow discussed in earlier
sections we have m = constant and ¢ = . TFor this case (a) is the most reason-
able choice because conservation of a discrete analog of the enstrophy then

follows.

The choice (a), however, does not necessarily give an effective computational
constraint for other variables. For example, when q is the mixing ratio of
an atmospheric constituent, such as tha£ of water vapor, conservation of a
discrete analog of EET generally does not prevent generation of negative
values for q. The choice (c) has some benefit in such a case since conserva-
tion of a discrete analog of ETI7€7 prevents generation of g = 0 at any grid
point if q # O initially at all grid points. However, this choice has dif-
ficulty at those points where q = 0 initially or q = 0 is generated by an
added sink term.

A promising approach in such a case as above is to abandon exact conservation,
except for discrete analogs of W and mq, but to require that discrete analogs
of mF be bounded for more than one selected functional forms of F(q). To

illustrate the approach, let us consider two functions of g, F(q) and G(q),
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that are positive definite for q > 0, and require that

3

EE'EZ (m;Fy) <
I

3

WEZ (myGy) <
i

From (104) we see that(l11l) and (112) are satisfied if we choose q for which

A
]

(111)

and

(112)

A
(=]
.

all of the following conditions are met:

(qF' = F) q - (F' - F),

A ' - " > »

g4, < R o when (mu), ., (Fi . - Fi) >0, (113)
(qF' - F),,, - (gF' - F)

~ i+l i 1 - ] . 3

Uy, > Fl,, - F] when (mu)i+%(F w1 - FpP 20, (114)

and the same conditions as (113) and (114) but based on G.

An interesting possibility is the choice F(q) = ¢° and G(q) = 1/q. Then the above

conditions become

q <'Ei_t_giil
qi+15 - 2
- ) >
. zqiqi+l r when (mU)i+%(qi+l qi) > 0 (115)
< —— =
T34 2 4y F 94 _)
and -
Ly > R
i1 = 2 -
- 116
~ 2939549 ( when (mu)i+%(qi+l qi) <0, (116)
q. > —
1+1’§ qi + qi+1 )
Since we have been assuming q > 0, the arithmetic mean of 9 and 9447 is larger

than their harmonic mean. Then (115) and (116) are satisfied with ai+b such that
2

2q,q,
~ i+l
. B - > o
i P when (mu) g (44,7 = 9y) 2 0 (17)
d
R 94 54
G =7 2 when ()5 (d34y = 9y) <0 (118)

This choice of a uses the harmonic mean when the mass flux is from a grid point
with smaller q to a grid point with larger q, and the arithmetic mean otherwise.
Consequently, when q at a certain grid point approaches zero, the outflow of q
from that grid point also approaches zero while the inflow to that grid point
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can remain finite. 1In this way, there is no possibility of generating negative
values of q if time truncation errors are negligible. A version of this scheme
is being used in the UCLA general circulation model for predicting water vapor

and ozone mixing ratios.
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