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1. INTRODUCTION: PROBLEMS AND GUIDING PRINCIPLES

Since the pressure gradient force involves horizontal differencing of the
geopotential, discretization of the pressure gradient force is related to the
discretization of the hydrostatic equation. Another term of the primitive
equations strongly coupled with the pressure gradient forcé is the "omeqé—
alpha" term of the thermodynamié equation. ‘It is perhaps generally accepted
as very important that this term be defined so as to guarantee that. there will
be no false energy generation in transformations between the kinetic and the
total potential enérgy.. Thus, we shall in this lecture mainly be concerned

with the terms/equations
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Here V is the horizontal velocity, t is time, p is pressure, ¢ is
geopotential, R is the gas constant, T is temperature, d/dt is the material
time derivative, K is R/cp, where ?p is the specific heat at constant
pressure, and w = dp/dt is the vertical velocity in the pressure system (used
at this point for reasons of convenience). Finally, the subscript of the del
operator, as.usual, denotes the variable held constant under the

differentiation process.
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Problems and properties of schemes used for the discretization of the
considered terms depend oﬁ the choice of the vertical coordinate. To avoid
difficulties with the lower boundary conditions, in almost all comprehenéive
atmospheric models terrain-following coordinates are used. A major problem
then is related to the appearance of two terms in the expression for the
pressure gradient force. For example, with the original sigma coordinate of
Phillips (1957)

0 =p/P_ o (1.4)
where the subscript s stands for surface values, one obtains

-Vp¢ = = v0¢ - RV lnps . (1.5)
Over sloping terrain the two terms on the right hand side of (1.5) tend to be
large in absolute values and to have opposite signs. If, say, they are
individually ten times greater than their sum, a 1% error in temperature
(2-3°C) will result in a 10% error in the pressure gradient force (Sundgvist,

1975)

It has not been proved that it is possible to construct a scheme which would
be free of this error, and, for example, give no false pressure gradient'force
in the simple case of an atmosphere in hydrostatic equilibrium. HoweQer, a
number of techniques have been designed with the aim of keeping the error
within hopefully tolerable limits. In addition, schemes have been constructed
which maintain an integral property of the pressure gradient force (Arakawa,
1972). This feature was apparéntly also largely directed at controlling the
effects of the error by putting a constraint on the error in such a wayAthat
there are no spurious sources or sinks of the vertically integrated vorticity
(Arakawa and Suarez, 1983). We shall in this section briefly review these

various approaches.
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A technique practiced as an early response to the.reCOgnition of the problem
was the vertical interpolation of geopotential from sigma back to constant
pressure surfaces (Smagorinsky'et al., 1967; Xurihara, 1968). Problems
remain near the ground however, where extrapolation to obtain subterranean
geopotentials is then needed. In addition, resulting schemes may be
relatively time consuming. Finally, with this apbroach it is not obvious how
to construct the scheme for thé‘omega—alpha term in such a way as to prevent

v

false energy generation in the energy conversion process.

The Arakawa scheme (Arakawa, 1972; Arakawa and Lamb, 1977) maintained the
property of the pressure gradient force that there is no generation of
circulation of vertically integrated momentum along a contour of the surface
topography. WNamely, we have, with g denoting gravity, and subsecript T values

at the top pressure surface of the model,

pS 1 PS
1{> Veaw=-[V] -+ (b p),] (1.6)

7 P

Q f=

Thus, the integral of the left hand side of (1.6) along any closed curve
following a contour of the surface topography will be zero, and no circulation
of the vertically integrated momentum along such a curve will be generated by
the pressure gradient force. The Arakawa (1972) scheme has been further
developed to satisfy additional requirements (Phillips, 1974; Tokioka, 1978),
and is being extensively used in general circulation and weather prediction

models (e.g., Stackpole, et al., 1980).

105



A scheme maintaining the one-dimensional analog of the integral of (1.6),
necessary from the point of view of the angular momentum conservation, has
been developed by Simmons and Burridge (1981). The Simmons and Burridge
scheme was however designed in terms of a very general "hybrid" vertical
coordinate; and for a "local"™ hydrostatic equation, thereby avoiding the
physically unrealistic dependence of geopotential of the lowést level on the
temperature of all model levels that occurs in the Arakawa (1972) scheme. A
most concise formulation ofithe vertical differencing requirement in sigma
coordinates resulting in schemes that satisfy an analog of (1.6) has recently
been achieved by Arakawa and Suarez (1983). The Arakawa and Suarez

formulation permits an arbitrary choice of the hydrostatic equation.

For a given atmosphere in hydrostatic equilibrium, Corby et al., (1972) have
defined the difference analog of the pressure gradient (second) term of the
-pressure gradient force so that it was exactly balancing the geopotential
gradient (first) term. It was expected that with no error for this chosen,
typical, atmosphere, large errors would be avoided in more general cases.
Subsequently, this technique has been used and/or generalized by a number of
authors: Nakamural(1978), Sadourny et al., (1981), Simmons and Burridge

(1981), and Arakawa and Suarez (1983).

Janjié (1977) addresses the generation of the error in the general case. The
basic idea is present also in an earlier paper by Rousseau and Pham (1971).

Note that, say with the original definition of the sigma coordinate,

-V = -V - RT V = -V + (V -V = -V + V - .
K 40 lnp_ bt (V= V8 RS CRE N
Thus, the pressure gradient term of the pressure gradient force can be
considered to represent a hydrostatic correction to the geopotential gradiént

term.. In a difference scheme, it corresponds to a vertical extrapolation/
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interpolation of geopotential from the sigma surface, or surfaces, back to the
constant pressure surface of the considered velocity point, say the surface

p* in Fig.1. It was pointed out by Rousseau and Pham that for‘minimization of
the error the formulation of that second term should be "coherent" with that
of the first term and with the formulation of the hydrostatic equation. In
the paper by Janjié’the same requirement is put forth as that for a
"hydrostatic consistency" of the scheme. The geopotential gradient term
implies a certain difference scheme relating vertical increments of
geopotential from pressure to the sigma surface, increments from @ to x points
in Fig.1, to some grid point values of temperature. If a different scheme
and/or different grid point values are used to evaluate the same pressure
gradient term, an erroneous remainder can be produced, large compared to the

change of geopotential along the constant pressure surface.
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Fig. 1 Illustration of the hydrostatic consistency
problem of the sigma coordinate schemes.

Another technique introduced by Janjié/(1977), and recently proposed also by
Arakawa and Suarez (1983), is directed at the accuracy of vertical
differencing in the hydrostatic equation. WNote that the geopotential of a

pressure surface is given by
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P
o =¢_ - [ ®rra inp , (1.7)
pS

Thus, the geopotential of a constant pressure surface depends only on

temperatures at and below the considered surface. If this property of the

continuous equations is to be maintained by the finite-difference scheme, it
will not be possible to use space-entered schemes of a high order of accuracy
for the numerical integration of the hydrostatic equation. Indeed, with
almost no exceptions, simple divided differences are used. In this situation,
it was pointed out by Janjié that the actual accuracy of the vertical

' differencing and the resulting pressure gradient force can be increased if the
variable used for the vertical differencing is judiciously chosen so as to

minimize the error. In other words, (1.2) can be replaced by

3(]) RT

. 1.8

9g p dt/dp ( )
where

z = C(p) (1.9)

is a monotonic function of pressure, not necessarily equal to the vertical
coofdinate of the model. Instead, it is chosen so as to optimize the error
properties.of the scheme. This can be done with the idea of, once again,
eliminating the error completely for a specific atmosphere. However, the
technique can also be aimed at minimizing, in some average sense, the error of

the difference approximation to 3¢/BC for a variety of the expected profiles.

An earlier suggestion of Phillibs (1973) and Gary (1973) was to formulate the
pressure gradient force in terms of deviations from a suitably chosen
reference state. The effect of this technique is, in fact, équivalent to that
of the Janjié and Arakawa-Suarez method. 1In récent experiments of Johnson and
Uccellini (1983) these two methods have indeed given extremely similar

results.
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Most of these points we shall discuss in more detail in the continuation of

this lecture.

2. A GENERAL FORM OF THE PRESSURE GRADIENT FORCE

We shall need an expression for the pressure gradient force enabling use of
the separate hydrostatic equation coordinate (1.9), in addition to a general
vertical coordinate

n = n(p,ps,z) (2.1)
N is also assumed to be a monotonic function of pressure (and/or geometric
height,

z); 1t can be a terrain-following (sigma), but also a more general

type of coordinate. The choice of variables displayed here is motivated by an
actual definition of N used for a specific pupose later on; note that a still
wider selection of variables would not, in fact, change the considerations to

follow.

To derive the general formula for the pressure gradient force in such an n-

system, consider the situation schematically represented in Fig.2. Namely,

using the notation introduced in the figqure, we may write

¢, _ o3¢, 2773
As

As

const

p =

const, § (p)=const

| As >
l
Fig. 2 Stencil and notation used to derive the general
formula for the pressure gradient force in the

eta (e.g. sigma) system.
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If As is oriented in the direction of the largest variation of geopotential
along the pressure surfacé, in the limit as As tends to zero this expression
tends to

- - - 3%
V¢ Vbt 5 Ve | (2.2)

Here

L
ar/9m an '

thatvis, eta is the vertical coordinate actually used.

)
FIa (2.3)

The formula (2.2) represents the general form of the pressure gradient force
in the eta (e.g., sigma) system in the sense that any of the commonly used
expressions can be derived from it by a particular choice of one or both of
the functions C and n. For instance, if we choose

¢ = 1lnp (2.4)
formula (2.2) takes the form

- VP¢ = - Vn¢ - RT Vn 1lnp (2.5)
(e.g., Simmons and Burridge, 1981). As an example where both of these

functions are specified, consider the choice

p - PT )
L =p; N=0= Y+ T = P, = Pp - (2.6)
It results in
g d9¢
Vp¢ = - V0¢ + 7 30 Vcw . (2.7)

which is another frequently used expression (e.g. Arakawa and Lamb, 1977).

One form of the pressure gradient force not resulting from (2.2) in a direct
way is the "flux form" of Johnson (1980; Johnson and Uccellini, 1983)
IS a7+ (i) (2.8)
This form can however be obtained by a manipulation of the right hand side of
(2.7). A straightforward discretization of the first term in the bracket of
(2.8) again leads to a geopotential gradient term, same as that obtained by a

discretization of (2.7).
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3. DISCRETIZATION OF THE PRESSURE GRADIENT FORCE AND
CALCULATION OF GEOPOTENTIAL BY THE HYDROSTATIC EQUATION

Following Janjié (1979), it will be convenient to consider the construction of
the pressure gradient force scheme as consisting of three steps. 1In the first
step the geopotential is calculated at constant N surfaces intégrating the
hydrostatic equation. As the second step, starting from known values at the
neighbouring N surfaces, the geopotential is extrapolated or interpolated to a
constant pressure surface, again via the hydrostatic equation. Finally, in
the third step, the values of geopotential obtained in this way are used to

calculate the finite-difference pressure gradient force approximation.

In order to apply this procedure, a specific distribution of variables over
grid points in the verﬁical is needed. Almost all models carry temperatures
(or potential temperatures) at the levels of horizontal velocity components,
and the vertical velocities in between (the "Lorenz distribution" according to
Arakawa). Among these models, differences exist in schemes used to calculate
geopotential. Possibly all schemes can in this respect be classified as being
either schemes which calculate geopotentials at the same levels as horizontal
velocities, or schemes which calculate geopotentials at levels in between
horizontal velocities. We shall call these schemes "non-staggered" (or
"level"), and "staggered" (or "layer") schemes, respectively. These two
possibilities are schematically represeneted in Fig.3. The symbol k appearing
in the figure représents the vertical index, and 6C¢ is the finite-difference
approximation to 94¢/9%Z. It is defined by the particular form of the

hydrostatic equation used.
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Fig. 3 '"Non-staggered", or "level" (left panel) and
"staggered", or "layer" (right panel) scheme
for calculation of geopotential by the hydrostatic
equation. .

One should however note that a finite-difference hydrostatic equation for
calculation of, for example, "full level" geopotentials, when it is supplied
with a definition of "half level” (interface) geopotentials, can be rewritten
so as to obtain a hydrostatic equation in terms of half level geopotentials,
and a definition of full level geopotentials. The same kind of reformulation
can be done starting with this latter set of equations, a hydrostatic equation
for half level geopotentials and a definition of layer geopotentials. Thus,
for a given scheme, it may not be obvious what should be considered as levels
at which geopotentials are calculated by the finite-difference hydrostatic

equation.

Given such a choice, by definition, we shall assume that the discrete values
of ¢(p) are actually defined at the points between which with the given finite
difference hydrostatic equation we obtain the thicknesses of the layers,
which, in the case of arbitrary spacing of vertical levels, do not depend on
the temperatures outside of the layers, or depend on them to the minimum

extent possible. Thus, as examples of non-staggered schemes the Arakawa
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(1972), and the Corby et al. (1972) schemes can be given; staggered schemes
are those of Janjid (1977), Burridge and Haseler (1977), and the Arakawa and

Suarez (1983) "local hydrostatic equation" schemes.

Let us first consider the probably more frequently used, non~staggered scheme.
For simplicity, we shall restrict ourselves to, say, the x component of the
pressure gradient force. Let the x component of the pressure gradient force
be calculated at the‘pressure level p*, and let the values of ¢ and
geopotential at this level be denoted by Z* and ¢* respectively. Furthermore,
we shall assume that the first step has been completed and concentrate on the
second and third step only. Using the notation introduced in Fig.4 we may

write
k k k
* = *
o% = ¢, + 6C¢1(c Z,

k
2

)
(3.1)

k k

* + & * -
b5 = ¢, + 8,05(T% - L7)
where subscripts denote the grid points in the horizontal, and the superscript

k indicates the N level at which the variables are defined.

We have now completed the second step of our procedure for calculating the

pressure gradient force. The third step yields

* * k k k k
o, = ¢, by -0y k x. "2 T %4
- = - + S (8 ¢, + 8 o) ——
Ax Ax 2 gt z?2 Ax
k k
A R ck>]6C¢2 ~ %
2 1 2 Ax ’

or in a more compact notation

* k = k * k k
- 5X¢ = - 5X¢ + 6c¢ ch -{(z -7 ) GX(GC¢ ). (3.2)
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Fig. 4 Stencil and notation used to calculate pressure gradient force -
approximation in the case of the non-staggered scheme for calculation
of geopotential by the hydrostatic equation.
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Fig. 5 Stencil and notation used to calculate pressure gradient force

approximation in the case of the staggered scheme for calculation of
geopotential by the hydrostatic equation.
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If we define

*

—X
c = Ck

(3.3)
we obtain the usual form of the pressure gradient force approximation with the

non-staggered scheme
i k X k
- & = -34 + 6 § .
R O+ 89T (3.4)
As we can see from (3.3), unles § is a linear function of n, the approximation

(3.4) is not defined at the level nk as it is usually believed.

Let us now turn our attention to the staggered scheme. In the second step of
our procedure for calculation of the pressure gradient force, we shall here
use linear interpolation to obtain the geopotential at the pressure level p*
corresponding to £* = [(p*). Thus, with the notation introduced in Fig.5, we

may write

¢k+é ¢k—%
* k-3 1 1 * _ k-4
1 i (3.5)
k+1 k-3
¢ -
* _ k-} 2 2 ¥ k-}
2 2
Defining
k+3 k-3
ZT\nE‘;“(Ak-%+Ak+é), GAEA -~ A

z et kel

these relations, after rearrangement, can be written as

Proceeding with the third step, we find that

L% o =T
-8 ¢ = 6x¢ +

X

-
E —— _n * _n
6c¢ §.o - -2 GX(6C¢)n (3.6)
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If we define the level at which the pressure gradient force is calculated by

* -
T, (3.7)

[

4
we finally obtain

* =N |, T/X =T
-6 = = § + 6 ) .
& A N (3.8)
Again we see that the relation (3.7), analogous to (3.3), was necessary in

order to arrive at the result usually assumed.

In constructing the pressure gradient force schemes various authors, of
course, typically did not follow the three step procedure outlined here.
Usually, a difference analog to the hydrostatic equation would be chosen, and,
subsequently, a difference approximation made to one of the differential
expressions for the pressure gradient force. It is possible however to
demonstrate that, in spite of the difference in approach, each of the commonly
used schemes does in fact implicitly consist of the three step procedure
described here. We shall have a look at some specific schemes, from that

point of view, in later sections.

4. HYDROSTATIC CONSISTENCY

As we have seen, the first and the second step of our procedure for
calculating pressure gradient force involve the integration of the hydrostatic
equation in order to obtain the values of geopoten£ial at constant n and
constant pressure surfaces, respectively. 1In the first step, integration of
the finite~difference hydrostatic equation will at each point of the
horizontal grid define a certain vertical profile of geopotential, as a
function of the integration variable . Typically, as stated in the
introductory section, this integration is done by approximating 9¢/9%7 in
between discrete nk levels by a constant, so that the resulting vertical
profile of geopotential will be a piecewise linear function of , as

schematically represented in Fig.6.
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Fig. 6 Schematic representation of the vertical profile
of geopotential defined by the finite-difference
hydrostatic equation.

As proposed by Janjié: we can now define a scheme to be hydrostatically
consistent if the procedure used in the second step yields a value of
geopotential which lies on the geopotential profile defined by the finite-
difference hydrostatic equation of the first step. For example, this could be
the value represented by the plus sign in Fig.6. For hydrostatic consistency,
in the second step, explicitly or implicitly, the same finite-difference
hydrostatic equation has to be used, and the same grid point values, as in the

first step.

Let us now, from the point of view of preceding considerations, have a look at
some specific schemes for the hydrostatic eéuation and the pressure gradient
force. We shall first consider possibly the simplest scheme with the non-
staggered calculation of geopotential by the hydrostatic equation, that of
Corby et al. (1972; also Gilchrist, 1975; and Corby et al. (1977). They
have used the original definition of the sigma coordinate, (1.4), and a non-
staggered arrangement of horizontal velocities, temperatures and geopotentials

both in horizontal and in the vertical direction (Fig.7). The geopotential of
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the lowest level (k=K) they have defined by

¢

k= ¢s + RTkln(1/0K) ‘ (4.1)

and the difference analog of the hydrostatic equation above that level by

Ac¢ = = R.TG_A0 1nc . : (4,2)
Thus,
K-1 1 On+1 1
o, =0+ L S R(T_+T_ ) In "+ R In (4.3)
n=k n K

defines the vertical profile of geopoteﬁtial prescribed by the finite-

difference hydrostatic equation, that is, by the first step of our procedure.

To choose the analog of the pressure gradient force, Corby et al. adopt

§ ¢°

< %% (4.4)

as the difference approximation to (3¢/8x)0, and seek to find a consistent

approximation to the pressure gradient term so that combined the two terms

give a zero pressure gradient in case of the resting atmosphere defined by
T(p) = Alnp + B (4.5)

The profile (4.5) they héve considered a reasonable ‘average profile for the

troposphere. To this end, they substitute (4.5) into the hydrostatiq equation
d¢ = = RT 4 1lnp , (4.6)

and, integrating, obtain

¢(p) = ¢o + % RA (lnzpo - 1n%p) + RB (lnpo - 1lnp) . (4.7)

Thus, ¢S and p_ are seen to be related by

— + — -— + - .

Corby et al. now evaluate (4.4) by inserting geopotentials given by (4.3) and
(4.8), and sigma level temperatures obtained from (4.5), that is
T =Aln(0p ) + B (4.9)
n ns

After some algebra, they arrive at

—_— ;
8§ §° = -~ RT~ & .10
xd)k RTk x lnps (4 )
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Fig. 7 The vertical grid of the Corby et al. (1972) scheme, with a non~
staggered arrangement of the time dependent variables p , Vand T, and
locations where ¢ is defined by the finite-difference scheme.

o=const

" T.&
og=const

T, ¢

P)s Ax \

AN 7

Fig. 8 A horizontally staggered arrangement of the variables needed by the
Corby et al. scheme. Note the difference in Ax as compared to the
non-staggered arrangement shown in Fig. 7.
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Accordingly, to eliminate completely the error in the case of the atmosphere

which is being considered, Corby et al. choose

E— 1
— :
- ) .
RT O 1npS (4.11)

as the difference analog of the x component of the pressure gradienf term.

For further simplification, let us consider the version of the Corby et al.
scheme oObtained using a horizontally staggered grid, with velocity and
temperature and geopotential defined at alternate grid points (Fig.8). Then,
following the same procedure, one arrives at the analog
- 86 - RTS8 1lnp (4.12)
X'k k x s

For a given value of Ax, (4.12) has a smaller truncation error than the

original scheme.

Now to obtain the scheme (4.12) using our three step procedure, we shall as

the second step need the extrapolation scheme

*

- - L -
¢4 = &y~ Ry y (Imp* - Imp, )y

(4.13)

*
= — L -
¢, = 9, " RT, , (Imp 1np, )

As could be expected in view of the second term of (4.12), only two grid point

values of temperature appear in (4.13). As the third step, the expression

b, - b
2~ "1
T hx (4.14)
is evaluated. Inserting (4.13), assuming that
1
* = — + 4.15
1np > (lnp1,k lnpzlk) ( )

and, finally, taking into dccount that
8 = §
xlnp xlnpS

one indeed arrives at (4.12).
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The values ¢* used in (4.13) are, however, not on the geopotential profile
(4.3) defined by the finite-difference hydrostatic equatioh,.(4.2), and, thus,
the scheme is hydrostatically - inconsistent. The finite-~difference hydrostatic
equation implied by (4.13), involving single sigma level temperatures only, is
different from the hydrostatic equation (4.2), involving two point vertical
averages of temperature. In addition, in case of steep sigma surfaces and/or
thin sigma layers, the pressure surface p* = const can intersect additional
sigma levels in between the grid points 1 and 2 used to form the analog

(4.14).

Thus, rather than the values (4.13), a method consistent with the geopotential
profile defined by (4.3) would have to use the values of geopotential located
on that profile. Denoting these values by ¢c, and assuming that the pressure
p* is at grid points 1 and 2 located in between the levels k-r and k-r-1, and

k+r and k+r+1, respectively, we have

c 1
= - + L -
O = ke T2 R (T ¥ T g0mp—q) (10P* — Inpy )y
(4.16)
6 = ¢ -1z + T ) (lnp* - 1n )
2 2,k+r 2 2, k+r 2, ktr+1’ TP P o, k+r
. . . .3). . ‘th th
with the wvalues ¢1,k—r and ¢2,k+r here given by (4.3) In this way, with the

extrapolation prescribed by (4.16) performed along the piecewise linear
profile of geopotential defined by the hydrostatic equation scheme,

evaluation of

- ' (4.17)

gives the pressure gradient force with the vertical discretization as accurate
as it can be achieved within the accuracy limits of the hydrostatic equation

scheme.
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In the simple case r=0, when the slope of the sigma surface is not too great
and/or the considered sigma layers are not too thin, so that the surface p*
intersects no additional sigma levels in between the grid points 1 and 2,

(4.17) gives

] |
-8 - = + + +
% TR Ty er P To  Tyen, e T T, k1

§ . (4.18
) < lnps ( )
Here, of course, again (4.15) had to be assumed, and j represents the grid

point index along the x direction.

The difference between the Corby et al. scheme (4.12) and the hydrostatically
consistent analog (4.18)

1 R (T T. +

+ + § .19
a 51,1 T T,k T To,k T Tyma,km100 1P (4.19)

s
can be considered to represent the error of (4.12) due to its hydrostatic

inconsistency. It can be written as

e [ 39 CS ey |
1g [(Z2— 18 - (% % §_1np (4.20)
4 Aa’ 31,k ac® i-1,k-3 * °F

and is thus, formally, a small quantity. Nevertheless, the presence of (4.19)
seems to be a rather undesirable feature of the scheme. Grid point wvalues of
temperature are known to exhibit large grid point.to grid point variations due
‘to the effects of the so-called physical processes in atmospheric models, and
the factor 6x1nps increases in magnitude with the slope of the model
mountains. Scheme (4.18), free of this error, appears from that point of view
certainly much more appealing. It has, however, the problem of being
asymmetric, and thus possibly time consuming. In addition, it is not

applicable at the uppermost as well as at the lowermost level of the model.
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The staggered scheme for calculation of geopotential permits a straightforward
construction of hydrostatiéally consistent pressure gradient force schemes
without these disad?antages; As an example, consider the scheme of Burridge
and Haseler (1977). They use the same arrangement as that in Fig.8, except
that geopotentials are carried at the interfaces of sigma layers. As the
hydrostatic equation they have simply

A¢k = —RTkAlnGk , (4.21)
for all the sigma layers. Here

Ay Ay T Ay
denotes the vertical difference across the layer. The pressure gradient force
retains the form'(4.12), with the layer values of geopotential, needed by

(4.12), prescribed as

1
¢, = 5 (¢

k + ¢ (4.22)

k-3 k+i)

To construct this scheme using the described three step procedure, again
equations (4.13) are needed as the second step. However, now the finite-
difference hydrostatic equation implied by these equations is the same as the
hydrostaticvequation used to calculate geopotentials, (4.21). Thus, in this

sense, the scheme is hydrostatically consistent.

The staggered schemes of Janjié (1977), and Arakawa and Suarez (1983), in the
same way as the Burridge and Haseler scheme, achieve hydrostatic consistency
through hydrostatic equations of the (4.21) type, in which a single
temperature (or potential temperature) governs the change of geopotential
across a layer. As already mentioned, they have additional features which

shall be discussed later on to some extent.
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However, the second step equations of the type (4.13) can of course maintain
hydrostatic consistency only as long as extrapolafion is performed along
linear segments of the profile of éeopotential. Thus, as pointed out by
Janjié'(1977), hydrostatically consistent schemes of this type lose
consistency in a situation as shown in Fig.9, when points at whichAthe
pressure surface p* intersects the neighbouring grid verticals are outside of

the considered layer. These points are denoted by A and B in the figure.

o=const

i Ax \

N , V4
Fig. 9 An example of hydrostatically inconsistent evaluation
of the pressure gradient force by schemes such as the
Burridge and Haseler (1977), (4.21) and (4.12), scheme
(Janjid, 1977).

As seen from the figure, for the hydrostatic consistency of this group of
schemes one should require that

§ 'A <|6 |Ao .
Thus, increasing the steepness of model mountains, and increasing the vertical

resolution, may lead to a violation of the hydrostatic consistency of the

scheme.
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5. CONVERGENCE

The property of hydrostatic inconsistency appears to be under certain
conditions related to the lack of convergence of the scheme, (Mesinger, 1982).
An obvious example is the Arakawa (1972) scheme, in which the geopotential of
the lowest level, and consequently, also those of all levels above the lowest
ievei, depend on the temperature of all model levels. Since as pointed out in
the introductory section, the true value of the pressure gradient force does
not depend on temperatures above the considered pressure surface, in such a
situation the difference between the true value of the pressure gradient force
and its difference approximation can be arbitrarily great. This cannot be
removed by the reduction of the grid intervals, and, hence, the scheme is not

convergent (Arakawa and Suarez, 1983).

A different kind of problem exists with the Corby et al. scheme. It is
illustrated with the help of Fig.10. WNote that the "domain of dependence" of
the true value of the pressure gradient force at the V point in that figure is
the region below the line p=const shown in the figure. On the other hand, the
finite-difference value calculated at the same point using the Corby et al.
scheme depends on values at grid points on and below the dashed line
connecting the two T,¢ grid points. In this way, a section exists of the
domain of dependence of the true value of the pressure gradient force which is
not included in the domain of dependence of its finite-difference value. If
the temperature gradient is permitted to be a discontinuous function of space

coordinates, the error of the scheme can again be arbitrarily great.
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Fig. 10 Illustration of the convergence problem of Corby et al.
scheme. The shaded area represents the section of the
domain of dependence of the true value of the pressure
gradient force not included in the domain of dependence
of its finite difference value.

With schemes using the staggered calculation of geopotential, a similar
situation occurs when the consistency condition (4.23) is violated. Then
again a section exists of the domain of dependence of the true value of the
pressure gradient force not included in the domain of dependence of its
finite-difference value. In Fig.9, this is the section bounded by the
vertical line at point A, the isobar and the uppermost constant sigma line

shown in the figure.

6. THE ERROR PROBLEM: A NUMERICAL EXAMPLE

A numerical example calculated by Mesinger (1982) will be included here as an
illustration of possible quantitative implications of some of the preceding
considerations. Following a number of previous authors, an atmosphere in
hydrostatic equilibrium is considered, so that the error is entirely due to
the pressure gradient‘force approximation. Errors are calculated for the
Corby et al. and for the Burridge and Haseler schemes, taken as possibly the
simplest examples of hydrostatically inconsistent and consistent schemes,

respectively.
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Before describing the example, one more remark regarding the Corby et al.
scheme should be made. Recall that the scheme was constructed to achieve
exact cancellation of the two terms when temperature is a linear function of
Inp, (4.5). The procedure used included insertion of sigma level
temperatures, (4.9). An objection can however be raised regarding this step.
Namely, schemes used to initialize finite~difference calculations are
typically not based on an analysis of temperature; rather, they are based on
the analysis of geopotential. WNote that values of geopotential represent
information on the vertically integrated temperature. Thus, observed values
of geopotential, defining the true value of the pressure gradient force except
for observational errors, cannot be recovered from a limited number of the
local observations of temperature. Therefore, by analyzing temperature to
initialize a primitive equation model, needlessly pressure gradient force
errors are_introduced in addition to those due to the observational errors and

to the finite-difference scheme.

Accordingly, instead of using (4.9), it would have been more appropriate to
use (4.7) to define the sigma level geopotentials, and then calculate
temperature from the difference equations (4.1) and (4.2). Temperatures
obtained in this way would differ from those defined by (4.9), and, therefore,
the two terms of (4.12) would not cancel. Simiiar consideration is applicable
to error estimates of a number of other authors (e.g., Nakamura, 1978;

Simmons and Burridge, 1981).

To have the numerical example include an estimate of the resulting error,
Mesinger has calculated errors for the reference atmosphere of Corby et al.,
in which temperature is a linear function of 1lnp. It seemed of interest to

have a look also at errors in a case of a more irregular variation of
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temperature; for example, error calulations of Janjic (1977) showed maximum
errors at tropopause levels. Therefore, a temperature variation including an
inversion was also considered. Recalling a situation with cold air impinging
at one side of a mountain barrier, an "inversion case" was defined, with an
inversion below a presumed mountain height. In this inversion case, except

for the inversion level, temperature was still assumed to be linear in lnp.

Following the error calculations of Phillips (1974) and Janjic, two
neighbouring surface pressure points were considered located along the
direction of the x axis at pressures of 1000 mb and 800 mb, respectively. The
temperature at the 800 mb level was taken to be 0°C, and those at 1000 mb 10°C
("no inveréion case") and -10°C ("inversion case"). Temperature above 800 mb
in the "inversion case" was taken to be the same as in the "no inversion
case". These two temperature profiles are shown in the left panel of Fig.11.
Errors were calculated for the velocity point located in between the two
surface pressure points, at (or, approximately at, the level 0=0.9, as
sketched in the right panel of the figure. Calculations were performed for
Ao=1/5 (below the 0=0.8 interface), Ao=1/(3x5), Ao=1/(5x%5), etc., and in the
limit as Ao+0. ‘These values are chosen to keep the velocity point at the same

altitude, at 020.9.

The errors obtained for the two schemes and the two temperature profiles are
displayed in Table 1. The values shown are in units of geopotential. To
obtain the values of the pressure gradient force they should be divided by the

horizontal grid interval.
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Table 1 Errors of the pressure gradient force analogs obtained using the
Corby et al. and the Burridge and Haseler scheme, for the "no. inversion case"
and the "inversion case"; see text for details. Values are given in
increments of geopotential (m?s 2), between two neighbouring grid points,
along the direction of the increasing terrain elevations.*

Ao= - 1/5 1/15 1/25 N lim
Ao+0

Corby et al. scheme - 151.2 -48.7 29.0 vee 0
"no inversion case"
Corby et al. scheme -159.6 -159.6 -159.6 . -159.6
"inversion case"
Burridge and Haseler scheme 0 0 0 .o 0
"no inversion case"”
Burridge and Haseler scheme 0 -142.1 -153.3 con -159.6

"inversion case"

*Note that some of the numbers in the last two lines are slightly different
from those published in the referred paper; this is a result of the removal
of an error that Mesinger has found in his program for calculation of the
Burridge and Haseler scheme values. The numbers published previously actually
referred to a scheme which within the geopotential gradient term used
geopotentials of the 0=0.9 surface, rather than values defined by (4. 22)
Corrected values are given in the present table.

640
p inversion
(mb) 800 ag=08
1000 .
290 7=1.0 Tp_=1000 mb

T(K)

Fig. 11 The temperature profiles used to calculate the errors
of the Corby et al.and of the Burridge and Easeler
pressure gradient force scheme (left panel), and the
location of the grid point at which the errors were
calculated (right panel), Mesinger (1982).
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Quite an appreciable error is found‘to be associated with the Corby et al.
scheme in the "no inversion case", when, éupposedly, the scheme should have
had no error. - The error, of course, results from the procedure used here to
prescribe geopotentials, rather than temperatures. If the horizontal grid
interval is taken to be 150 km the obtained error of about 150 mzs_z,
expressed in terms of geostrophic wind, corresponds to an error of the order
of 10 ms™!. Since with the temperature profile of the "no inversion case" the
error shown for the Corby et al. scheme is entirely due to the discretization
of the hydrostatic equation, the error vanishes in the limit as the

thicknesses of sigma layers tend to zero.

With modest vertical resolution (Ao = 1/5), the Corby et al. scheme is seen to
give an error of about the same magnitude in the "inversion case". However,
with the temperature not being a single lineaf function of 1lnp, the error now
does not vanish as the thicknesses of sigma layers tend to zero. In fact, it
can be demonstrated that in this particular example the vertical resolution
has no effect on the error. Thus, rather large errors are shown to be
possible with the Corby et al. scheme irrespective of the vertical

discretization problem.

With the hydrostatically consistent Burridge and Haseler scheme there is no
error in the "no inversion case". Having no error in the limit as Ao+*0 should
come as no surprise: recall that the two schemes differ only in the
discretization of the hydrostatic euation, and this difference vanishes as the
thickness of sigma layers tends to zero. The absence of ‘an error in case
Ao=1/5 can be understood in view of the hydrostatic consistency of the scheme,
and the special configuration of the sigma layer in this case (the right hand
panel of Fig.11), such that the pressure surface p* passes through

geopotential grid points at interfaces of the layer. With the geopotential
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interpolated in a consistent way, along its piecewise linear profile defined
by the finite-difference hydrostatic equation, exact interface values of
geopotential are recovered. The reason for the absence of errors at higher
(but still not infinite) vertical resolution, when the consistencey condition
(4.23) is violated, is at this point not obvious. We shall return to an

analysis of this case in the following section.

In the "inversion case", there is of course again no error for Ao=1/5; note
that the hydrostatic consistency argument just given does not involve the
prescribed temperature profile. However, as the vertical fesolution is
increased the consistency condition is violated, and an appreciable error is
.once more obtained. The asymptotic error is entirely due to hydrostatic
inconsistency: correct values of geopotential of the sigma surface, obtained
"by a vertical integration of the hydrostatic equation, are used to calculate
the increment of geopotential within the first term of the pressure gradient
force; while a local (incorrect) calculation of the sigma-to-pressure

~increments of geopotential is performed within the second term.

One should note that this rather large asymptotic error is a result of only
the upper half of the inversion shown in Fig.11. 1In the considered limit the
two schemes are not affected by the actual temperature profile within the
lower half of the assumed inversion layer; a different profile in this lower
half of that layer, provided the geopotential of the 900 mb remained the same,

would have given the same asymptotic errors.

The asymptotic error of this example illustrates the nature of the pressure
gradient force problem: it was not possible to remove this error by an
increase in the accuracy of vertical differencing. In fact, it was

demonstrated that an increase in the accuracy of vertical differencing can be
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associated with an increase in the error. The errors considered are related
to the chosen horizontal grid length, but only through the difference in
surface pressure between neighbouripg grid poiﬁts. Therefore, these errors
cannot be removed by an increase in formal accuracy of the horizontal
differencing. Thus, it is seen that the difficulty is not due to the

truncation error of the approximations to the space derivatives involved, as

it is frequently believed. Considered errors result from the two point
temperature average used within the second term of the considered schemes, and
also cannot be removed by an increase in formal accuracy of the temperature

analog used within that term.

7. REDUCTION OF THE ERROR

On the basis of arquments presented so far we believe the use of
hydrostatically consistent schemes certainly appears advisable. However, this
generally still does not accomplish elimination of the error, even in the
simple case of a resting atﬁosphere. Let us, therefore, proceed with the

analysis of the error.

Consider the reason for the error in case'of a hydrostatically consistent
scheme and an atmosphere at rest. Recall the argument explaining the absence
of the error of the Burridge and Haseler scheme in case Ao=1/5 of the
preceding example: a consistent interpolation of geopotential was performed
up to the ends of two linear segments of the defined geopotential profile, so
that exact geopotential values were recovered. In the more general case, such
as illustrated in Fig.5, even though it is hydrostatically consistent
interpolation will have an error, because the actual profile of geopotential
is not the same as that defined by the finite-difference hydrostatic equation.

Thus, the values ¢* will generally have errors. Furthermore, errors of

132



¥ %7
V  Fig. 12 A schematic representation of the geopotential profiles at two
adjacent grid points in the sigma system (Janji&, 1979).

5 1 3

Fig. 13 Same as in Fig. 12 but for the case of hydrostatic inconsistency.
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* *
¢2 and ¢1 will generally be different, so that

* *

by - o,

Ax

will have an error.

In most cases, the geopotential profile defined by the finite-difference
hydrostatic equation should be considered to be a piecewise linear function
such as e.g. shown in Fig.6. The errors of ¢* would then be due to the
deviation of the actual geopotential profile from that piecewise linear one.
This situation is visualized in Fig.12. The dashed lines represent the "true"
profiles at two adjacent points of the horizontal grid. The heavy dots
correspond to the values of geopotential at the interfaces of the sigma layers
while the two piece-wise linear curves represent the geopotential profiles
obtained by integration of the finite-~difference hydrostatic equation. As

* *
before, the values of ¢1 and ¢2, denoted by crosses, are used to calculate the

pressure gradient force at the pressure level defined by Z*.

So far we have discussed the pressure gradientg force error in the case of
hydrostatically consistent calculations. The situation corresponding to the
hydrostatic inconsistency is schematically represented in Fig. 13. The

notation is the same as in Fig.12.
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This time the error results from the linear extrapolation of geopotential
]
beyond the range of validity of the finite difference approximation to 5%.

Apparently, in this case we should expect larger errors.

A similar analysis can be performed to show that analogous problems are
encountered in the calculations using non-staggered schemes for calculation of

geopotential.

An obvious question at this point is - can one eliminate this error? It has
been pointed out by Janjié (1979) that linear interpolation/extrapolation as
illustrated by preceding figures will be error-free if [ is chosen so as to
have ¢ a linear function of . In principle, this of course can be done for
any given geopotential profile. - However, note that in the "no inversion case"
of the previous section for the Burridge and Haseler scheme, for which Z=lnp,
no errors were obtained even though geopotential was a guadratic and not a
linear function of {. One may wonder whether some additional guidance can be
obtained from an understanding of the reason for the absence of the error in

this case.

Consider, therefore, a general quadratic function

¢ = o+ Bz + yz2 (7.1)
where a, B and Y are constants, and Y#0. Note that, without loss of
generality, this can be written as

¢—C+1—(A+BC)2 (7.2)

2B ! '
with A, B, C being a new set of constants. We are interested in errors of the
scheme (3.8)
TN T X =N
-8 + & § 7.3
L O 0T8T (7.3)

with geopotentials at interfaces being prescribed by (7.2).
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When we insert (7.2) into the first term of (7.3) we readily obtain

-n osenm—— < n
-8 ¢ =-(a+B) 6. (7.4)
x X" ,

similarly, evaluation of the difference in geopotential across the layer
yields
Ay = (& + BO)" A,
n n

so that we have at the same time

—— . =T JE—
6C¢ ch = (A + BZ) GX; . (7.5)

Inspection of the right hand sides of (7.4) and (7.5) shows that they will
cancel when GXC is not dependent on n; thus, in that case the scheme (7.3)
will ha&e no error. The Burridge and Haseler scheme is a special case of this
situation: it is obtained from (7.3) insetting n=p/pS and z=1lnp, which
satisfieé the requirement for 6XC = 5xlnps to be independent of n. Thié,

"no

therefore, explains the absence of the error of this scheme in the
inversion case"™ of ﬁhe preceding section. It is thus seen that with

geopotential considered specified it is the Burridge and Haseler scheme that
has no error when temperature is a linear function of 1lnp; while it was the

Corby et al. scheme that in that case had no error with temperature considered

specified.

Another special case for which the right hand sides of (7.4) and (7.5) cancel
is the case B=0. This case was not covered by the analysis just given, which
assumed Y = 4B#0. However, note that for Y=0 ¢ is a linear function of (;

thus, (7.3) will indeed have no error in this case as well.
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It is not obvious that much guidance has been obtained from this
consideration. The feature of a scheme to have no error for a general
quadratic function of L, as compared to a linear function only, certainly
seems attractive. However, thgre is no guarantee that this feature will be
associated with acceptable errors in all, or most, cases of interest. For
example, the Burridge and Haseler scheme has indeed had quite large érrors in
the "inversion case" of the preceding section. Speaking more generally, ig is
not clear in what way or even if making the error zero for a specific
stratification reduces the error in general. 1In addition, reduction of the
error may not be the only point to consider when deciding on the choice of z.
For example, various choices could substantially differ from the point of view

of computational economy.

An attempt to deal with both of these difficulties has been made by Janjic
(1977). He has considered a family of schemes obtained from (7.3) by

inserting

_ P = Pq

1+m
——— , & = (lnp) ' (7.6)
Py P
and has then sought to optimize the choice of the parameter m. To this end,
for a given model resolution and vertical structure he has calculated errors
for a range of the values of m, in case of the terrain slope and an atmosphere
at rest considered previously by Phillips (1974) and representing an
approximation to the standard atmosphere. The obtained errors were generally
rather small except at the uppermost layer, centered at the pressure of 300

mb. At that layer the error was quite large for m=0 (when it amounted to the

geopotential increment between neighbouring grid points of more than 150

mzs"z); it then decreased with increasing values of m, and increased again
when m was increased beyond the value of 1.2. Since the integer values of m
were advantageous for reasons of economy, Janjid has chosen the value m=1 as a

compromise betwen the two requirements, that for minimization of the error and
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that for computational efficiency.

It is actually readily seen that with temperature having its typical
tropospheric lapse rate one should expect the errors of the scheme (7.6) for
m=1 to be smaller than those for m=0. To this end, compare the hydrostatic

equation (1.8) for C=lnp

93¢
3 1np = - RT, ‘ (7.7)
against that for [ = lnzp
a
¢ _ . 5 i{j‘l . (7.8)
Blnzp 3

With tropospheric lapse rates, the slope of the geopotential profile defined
by the discretization of (7.8) will-be less variable than that defined by the
discretization of (7.7), since on the right-hand side of (7.8) temperature is
divided by another function which decreases with height at a rate of about the
same order of magnitude. Thus, the pressure gradient force errors associated

with (7.8) will be smaller, as calculations have indeed shown.

Finally, let us briefly consider the pressure gradient force error in case of

isentropic coordinates. Choosing n=8, (2.5) leads to

- VP¢ = - VG (¢ + cpT) . (7.9)

Thus, in return for accepting the inconveniences of the lower boundary
condition, in addition to other advantages, pressure gradient force problems
due to mountain slope have been avoided. For example,.there arelno
difficulties in simulating a resting atmosphere. Furthermore, with the
pressure gradient force being a potential vector, its difference formulation
can hardly be chosen in a hydrostatically inconsistent way. However, note
that the pressure gradient force problems due to the slope of coordinate
surfaces have not changed, in the sense that the condition (4.23) still has to
be observed to maintain hydrostatic consistency. Otherwise, large errors are

possible.
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8. VERTICAL INTERPOLATION OF INITIAL PRESSURE GRADIENT FORCE

Preceding considerations show that with sloping coordinate surfaces it appears
not possible to construct a scheme able to simulate an arbitrary resting
atmosphere without creating false pressure gradient forces. With a carefully
chosen scheme the obtained pressure gradient force errors should be generally
rather small;‘ but in special situations (e.g. sharp inversions) large errors

are possible.

The approach used so far assumed initial analysis of geopotential, or
temperature. If this analysis were done on constant pressure or other
surfaces not used as model coordinate surfaces, it would be followed by a
vertical interpolation of the analysed variable to obtain its values at model
coordinate surfaces. Having the values of geopotential on coordinate
surfaces, the initial temperature would be calculated using the hydrostatic
equation of the model. If the temperature were interpolated, geopotential
would be calculated in that way. Finally, the initial pressure gradient force

would be evaluated.

It was pointed out by Sundgvist (1976) that a different sequence of
initialization steps is possible. Following an analysis on pressure surfaces,
pressure gradient force can be vertically interpolated to obtain its values on
model coordinate surfaces. Assuming pressure gradient force to be known on
coordinate surfaces, a set of elliptic equations can be derived, and the
obtained numerical values used to solve this set of equations for

temperature.
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Apart from the problems of the analysis and the vertical interpolation error,
bthe method proposed by Sundqgvist appears to offer the possibility of
simulating an arbitrary restiﬁg state without creating false motions due to
the pressure gradient force errors. Rather than the initial pressure gradient
force, it is the initial temperature that in this case would have an error.
This error would be exactly such as to enable the correct initial pressure
gradient force field to be recovered by the pressure gradienf force scheme of
the model; hopefully, at the same time, it would never be so large as to make

the temperature field unreasonable.

Unfortunately, calculation of temperature using this approach is associated
with difficulties. To derive his equation for temperature Sundqvist has
applied the Vo' operator on the pressure gradient force. Had he applied the
E.ch operator instead he would have obtained a different equation, generally

giving a different solution for temperature.

A simpler method of solving for temperature has been used by Mihailovic
(1981). He has directly solved the finite-difference pressure gradient force
expression for temperature, starting from known value of temperature at the
boundaries. This, however, did not avoid the non-uniquenes problem: starting
from two boundary points of a grid line two generally different temperature
values are obtained at eachvinterior point.. In the two-dimensional case, at
each point two more values are obtained solving for temperature along the
other set of grid lines. Furthermore, each solution obtained along a grid
line starting from a boundary point at its one end violates the prescribed

temperature at the other end of that line.
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The following simple explanation of the non-uniqueness problem has been put
forward by Janjic. Namely, let us for simplicity consider the one-dimensional
problem. In this case the preséure gradient force contributions in between a
grid point and two adjacent grid points are, in general, defined on two
different T* surfaces. Thus, at the central point, we shall have two va;ues
of ¢*; This situation is schematically represented in Fig.14. Since,
however, geopotential may not be a linear function of ¢, a unique value of GC¢
cannot yiéld both values of ¢*. Instead we obtain two values of 6C¢ and,
consequently, two temperatures. In the two-dimensional case two additional
values will appear because the problem recurs in the direction of the other

coordinate axis.

Nk-1/2
»® 4%

Sk

Nk+1/2

Fig. 14 Schematic illustration of the non-uniqueness problem.

In order to minimize the deviation of the initial eta system pressure gradient
force from the pressure gradient force obtained by interpolation from the p
system, Janjié and Nicovic (unpublished) used least squares fitting to define
a unique linear geopotential profile within each eta (sigma) layer. This
profile is then used to calculate unique temperature. However, a more

elaborate variational approach is certainly also possible.
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9. BLOCKING TECHNIQUES FOR REPRESENTATION OF MOUNTAINS

In addition to the pressure gradient fore problem, terrain-following
coordinate systems have other difficulties. Dynamical processes may be
distorted by the irregularities inherent to a sigma-type grid (Sadourny et al.
1981). Several of the additional numerical problems (e.g., Simmons and
ﬁurridge, 1981; Simmons and Striifing, 1981), while not fundamental, certainly
are uncomfortable. Thus, it has recently a number of times been suggested
that alternate approaches to the representation of mountains in numerical

models may deserve more attention.

The pressure gradient force problem and to a large extent also the additional
numerical problems result from the slope of coordinate surfaces. A number of
definitions of the vertical coordinate go to and eventually become equal to
pressure as the height is increased. Unfortunately, such coordinates
obviously can be only of a limited help in alleviating the pressure gradient
force problem, since the reduction of the slope of coordinate surfaces is

limited.

A more drastic approach has been used by Egger (1972). The Egger's method
consisted of vértical walls, in a sigma system model, placed so as to block
the flow in a given sigma layer or layers and thus simulate the barrier effect
of steep mountains. Even though remarkably successful, this method had
obvious imperfections in not being able to properly accommodate the three-
dimensional geometry of steep mountains, and in having steep mountains change

their elevation as a function of time.
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It has been pointed out by Mesinger (1983) that these two weakneses can be
removed by constructing model mountains so that they consist of three-

dimensional grid boxes (Fig.15)
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Fig. 15 The vertical grid and indexing used by Mesinger (1983).

and by defining the vertical coordinate in such a way as to have its surfaces
remain at fixed elevations at places where they touch (and define) the ground
surface. He has pointed out that this can be achieved by the coordinate

~ p - PT prf(zs) " pT
n = - ) - (9.1)
Ps pT prf PT

Here prf(z) is a suitably defined reference pressure as a function of z, the
geometric height. To have, as stated, mountains formed of the grid boxes, the

values ofvzS are permitted to take only values given by:
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p .(z ) -p
~rf s T
n = , k=1,2,..., N, (9.2)
+ -
k+3 prf(O) Pq

-that is, by the values of T chosen for the interfaces of the n layers of the

model.

Note that (9.1) implies that

N=0 when p =p
T
and
n=1 when 2z = 0.
Furthermore,

n=(p - pT)/(prf(O) - pT) when P, = prf(zs).

Thus, when pressure'is a function of z only, and up to a level which includes
the highest model mountains this function is equal to the chosen reference
pressure, N coordinate suraces will all be horizontal. Then, for any
reasonable choice of the finite~difference scheme, fhere will be no error in
the pressure gradient force. This is a feature which with sigma-type
coordinates we saw as possible to achieve only under much more restrictive
conditions. But, of course, also in other cases the slope of coordinate
surfaces defined by (9.1) will be small, and errors of the pressure gradient

force should be very much reduced.

The proposed system makes an effort to preserve, to the maximum extent
possible, simplicity in the specification of the boundary condition. As a
result, velocity components normal to the ground surface are readily set to
zero. Further details of the wall boundary condition may, of course, be a
matter of some complexity if particular features of the horizontal
differencing are to be maintained. This obviously is a task to be considered

for each scheme separately.
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The coordinate of the type (9.1) is because of its dependence on z and because
the top N surface is permitted to be also at a level p=const > 0 more general
than the N coordinate considered by Simmons and Burridge (1981). These two
differences, as can be verified following Kasahara (1974), in themselves do
not affect the continuous equations. There are, however, differences
introduced by the step-likevground surface.‘ One is a. simple point of noting
that in the pressure tendency equation the vertical integration is to be
performed from top to the lowermost value.of n, ns, now not necessarily 1.

(And, furthermore, to the lowermost of the values of ns, along the sides of

mountains).

Another difference is the need to consider horizontal discontinuities in
(prf(zs) - pT)/(ps-pT), resulting from dicontinuities in ground elevation.

Thus, the N surfaces, as defined by (9.1) will in fact also be discontinuous.

This difficulty, as also pointed out by Mesinger, can be overcome by assuming
that the values of (prf(zs) - pT)/(ps-pT) in (9.1) are not the actual values,
but rather values interpolated in such a way as to achieve the continuity of n
surfaces. An additional property to be required of the interpolation
aléorithm is that these interpolated values tend to the actual values as the
distance from the horizontal sides of the ground surface approaches zero;

this is necessary in order to maintain the property of n surfaces to stay
fixed to (and define) the horizontal sides of model mountains. It is not
difficult to construct an interpolation algorithm having these two properties;
however, there is no need to actually do it here, since the details of this
algorithm will not be needed by the differencing scheme. The finite-
difference'scheme, in fact, can be considered to imply an interpolation

algorithm with the very same properties.
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Consequently, following Kasahara (1974) and Simmons and Burridge (1981), the
governing equations for frictionless and adiabatic motion can be written down

as follows.

av

;+kaV+V¢+BEVp=O (9.3)

dt =7~ p !

daT KTWw

A RAL Lo, 4

T S =0 (9.4)

3_(3p dpy . 3 (r 3py _

om Ge) + V- g vy g =0 (9.5)

3¢ _ _RT 3p

an~ " p o’ (9.6)
dp k 3p

ws= 2= - £ V. (v Bn) an + V.Vp , (9.7)

n

op s

s _ _ p

e = {) v.(y_an) an , (9.8)

° 3p 3 _ 3p

n3n=-at-fV;(zan)dn. (9.9)

The subscripts of the del operator have here been omitted; and, boundary
conditions were assumed p=const at the top boundary n=0, and n=0 at n=0 and at

horizontal parts of the ground surface, n=ns.

The blocking approach, as outlined here, has not yet been tested in actual
integrations using comprehensive atmospheric models. However, two groups are
presently involved in developing models of this type; thus, some experience
in the performance of such models is likely to be available in a reasonably

short time.

10. CONSERVATION OF ANGULAR MOMENTUM

For an analysis 6f the angular momentum and also the energy conservation
feature wé shall’here use the notation of Egs. (9.3) to (9.9) and Fig.15 of
the preceding sectioh. 'Note that these equations did not actually depend on
the specific definition of eta apart from the stated boundary conditions(

which are the same as those used with terrain following coordinates. Thus,
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this system as well as the figure can be considered as rather general,
covering both the terrain following coordinates, which will have no step
mountains, as well as the system including the presence of step mountains in
case that eta is defined to be a coordinate of the type (9.1). We shall here
present the analysis of Mesinger (1983), which in turn to a very large degree
follows that of Simmons and Burridge (1981, hereafter referred to as SB; also
Simmons and Striifing, 1981). 1In addition to permitting a more general choice
of the vertical coordinate, it departs from their analysis i) in not making a
decision of the finite-~difference analog of the hydrostatic equation; and ii)
in considering, from the start of the analysis, the effects of the horizontal
discretization along with those of the vertical discretization - since in the
case of thelstep mountains a separation of these two discretization effects
would not seem appropriate. To save space, Mesinger has restricted his
consideration of the horizontal discretization to longitude only. Further
generalization to two horizontal coordinates should in most cases present no

difficulties.

In the continuous case, we want to evaluate the integral of the pressure
gradient force with respect to pressure, and longitude, A,

n
2m ]
d d 9
-/ £ H+ER P aa, (10.1)

having in mind a possible existence of step-like mountains as shown in Fig.15.

After use is made of

9 9p _ 3 . %%y _ 3 . 9py , 3¢ 3p
% 3n = ox 0 30) - (05 * 5 ar

of the boundary condition p = const along the surface n = 0, and of (9.6), we

obtain

3p
£ ¢ 3o ds - (10.2)
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Here s is defined to foliow the ground surface at the considered latitude,
increasing eastward; and up the western and down the eastern sides of step
mountains in case a choice of eta of the type (2.1) is beihg used. Thus, the
contribution of the pressure gradient force to the change of angular momentum

will be a "mountain torque"™ term proportional to (10.2).

To have no false production of angular momentum due to the finite-difference
scheme, the analog to (10.1) has to be chosen so that it results in an analog
to (10.2). Following SB, the analog to (10.1) is considered to be of the

form

3 —A
-7 8,0, + (gl = 13, M. (10.3)
u k '

The summatibn here refers to all u points having u as a time-dependent
variable; thus, it does not include the mountain side u points. Also as in
8B, geopotential is carried at interfaces, and ¢k is defined by
= + o RT, . 10.4)
by T Oppy T o BT ( ’
This definition would appear to permit a rather gemeral class of the pressure

gradient force (and hydrostatic equation) schemes; for example, it includes

the family of schemes proposed by Janjié'(1977).

Transformation of (10.3) with the help of
-\ —A

5A(AB)-—A SAB+B SAA,
results in a term with contributions from T points which all cancel except fox
those from T points next to the mountain sides. Further transformation of the
second term obtained in this way, with the help‘of (10.4) and another general
rule

A, .6, AB. = A(AS.B - AA. 8B

gy On BBy = A(RO;BY = ARONBL 4

similarly gives terms which all cancel except for those from u points next to
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the ground surface. In this way, it is seen that (10.3) gives

—
Loty Sipy M -1 ot + 14y oy
u T,w

’ €

(10.5)

k Pk aAJk fpy ] &

—A —A RT 9 —A
-5 [5e" 6 - §, ap, + (=B
u .
Here the first three pairs of summation subscripts denote that summations are
to be performed over all the u points immediately above, T points immediately
west, and T points immediately east of the ground surface, respectively. With
the grid as shown in Fig.15, the first three terms in (10.5) are in this way
readily recognized to represent the simplest possible analog to the mountain
torque integral (10.2). Thus, for a given definition of A¢k and ak, the

angular momentum conservation will be achieved if within the analog to the

pressure gradient force it is chosen

ARy - (5 s
P k Apk

Q

—
k SiProy ~ % RTS8y Apk) , (10.6)

so as to make the expression in the square bracket of (10.5) equal to zero.

The requirement (10.6) reduces to that obtained by SB, their Eq. (3.14), for a
special choice made by SB of the finite-difference analog to the hydrostatic
equation. Thus, the more general definition of the vertical coordinate,
permitting inter alia a step-like representation of mountains, has been seen

to have had no effect on the angular momentum conservation requirement.

Using the sigma coordinate defined as

P - PT
9E T ST I - ey (o-7)

and considering the vertical differencing only, Arakawa and Suarez (1983) show
that the vertically integrated circulation feature (1.6) will be maintained

when the pressure gradient force is of the form

A(Cfd>)k

1
- V¢k - [¢k - *—ZE;— ] Vm . (10.8)
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It can readily be demonstrated that the one-dimensional version of (10.8) is
one member of the family of schemes obtained by removing the horizontal
discretization from (10.6). Namely, the vertical differencing scheme thus
obtained reduces to the one-dimensional version of (10.8) for the special

choice of the vertical co-ordinate, (10.7), used by Arakawa and Suarez.

11. CONSERVATION OF ENERGY

The rate of kinetic energy generation by the pressure gradient force, due to
eastward motion, in a vertical plane located at latitude ¥ and bounded by the
surface N=0 and by longitudes l1,A2, per unit distance in meridional direction

is equal to

A, M
2 s
[ ] — (8, RT3y g g (11.1)
Y
]

a cosy A  p 9A‘7 9n

Q |-

Here u is the eastward velocity component, and a the radius of the earth. As
it was done in the preceding section, this consideration is also restricted to

one horizontal coordinate only.

The geopotential gradient part of the integrand of (11.1) can with the help of

the two-dimensional version of (29.5), and (9.6), be transformed into

S SR : SO S S POPE:) - RS ] RT 3p  +3p , 3p
Toosy ax W)ty bGe gl S GEen gy e

The first term here integrates to zerc for a closed region, and for the
present boundary condition. With p=const at the top boundary n=0, and n=0 at

the top as well as at the lower boundary, the second term integrates to give a

contribution
AZ ]
: P
1 ]
- - — dA, . .
5 { ¢, 5o @ (11.3)
1
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The third term of (11.2) and the pressure gradient part of (11.1) are

compensated by the terms arising from the thermodynamic equation
A, n A, m |

[ T W R I S IS I
" 5 p p on g3 ' ot an  a cosy 9 an :
1 B

Q [=

o

(11.4)
‘To have no false production of energy in transformations between the kinetic
and total potential energy this compensation has to be achieved in the

discrete case as well.

In parallel with (10.3), we consider the analog to (11.1) to be of the form

) %k

a cosy

1 RT 3p, 1A
=) (8,0, + < ) e, M | (11.5)

As it is to be used to determine an analog to KTuw/p, carried at T points, we
transform each of its two parts to a sum over T points. Considering the

geopotential gradient part, note that

A

EU5P=—ZPA5AU
u T )

for variables U and P defined at u and T points, respectively, of a staggered
grid a shown in Fig.15, bounded by u points at which U=0. Thus, the
geopotential gradient part of (11.5) is transformed into

$ .
1 k —A
g é a cosy GX (ukApk) A, (11.6)

which accomplishes the equivalent of integrating to zero the first term of
(11.2). Further transformation of (11.6) in the manner of (11.2) requires use
of the finite-difference analog of the continuity equation. We choose

1 —\
AWk + a cosy 61 (ukApk) =0 , ‘ (11.7)

where, for brevity,

=% , 3
W= ot + 1N an
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Making, in addition, use of

AB = A ; -
Ak Bk (AB)k + (A + (Ak A )

k-4 _‘Ak)Bk—! Kk+3 By’

and of the boundary conditions on p and on N, we see that (11.6) is

transformed into

dp

1 —S -1 - -
-5 g by 3e M- g % [(hr_y = 00 Wiy + (b brpy Wy 184 (11.8)
S

containing, as its first term, an analog to (11.3).

Writing the analog to (11.4) as

KTW

; .
1 —). Ap. A\, 11.9)
g é cp ( p 'k Py (

we recognize that the expression in the square bracket of (11.8) is to define
one ("vertical") part of the analog to KTw/p. This part

1 |
e 0p, [y = 000,y + (0 = b u ] (11.10)

making use of (10.4) and (11.7) we see it can also be written as

k-1

Y 8, (u ZEA) - o RT, 6. (u ZEA)] . (11.11)
=1 A r r k "k Ak Tk

1
A
cp p,a cos ¥

(8¢,

Regarding the pressure gradient part of (11.5), note that, again with U=0 at
boundary points, we have
=X -
Y up” =) pu.
u T

Thus, it is found that the required cancellation will be achieved if the
remaining ("horizontal") part of the analog to KTw/p is chosen to be of the

form

e
1 RT dp
c a cosy uk(p BA) ’ (11.12)
P k

where the analog to (RT/p) 9p/dA is the same as that used in the momentum

equation.
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Alternatively, if this analog to (RT/p)dp/9dA is restricted to the usual sigma
system form

RT) &
k *p

as chosen by SB, the transformation to the sum over T points can be done so as

+to obtain, instead of (11.12),

Ty —x 1 5
—_— A - 2B . .
Apka cosy “k “Px (p Bk)k (11.13)
Thus, it is seen that in this case some freedom remains in the choice of the

analog to KTw/p.

The result (11.10)/(11.11), and (11.12) or (11.13), has no differences
compared to that given by SB except for those reflecting the absence of a
specific choice of the hydrostatic equation and the inclusion of the

horizontal differencing in the analysis given here.

Restricting the pressure gradient force to their result (10.8), Arakawa and
Suarez find that in order to conserve energy KTw/p in the thermodynamic’

equation must be of the form

1 K
e [ 4 = he ) 35t Y- V)n
P X
1 . .
g (MO 0 -0 )+ o) ey - 9] (11.14)

As in the previous section, it is readily demonstrated that the one-~
dimensional version of (11.14) is a special case of the scheme obtained by
removing the horizontal discretization from the sum of (11.10)\and (11.12) or
(11.13). The scheme thus'obtained reduces to the one-~dimensional version of

(11.14) after insertion of the vertical coordinate (10.7), used by Arakawa and

Suarez.
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