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leo INTRODUCTION

Horizontal differencing is one of the major problems in designing
finite-difference numerical models of the atmosphere. 1In order to
examine this problem in more detail, it is convenient to start from the
shallow water equations

%%+V-VUL +%g—£‘z - {J‘U':O’ %’+\v.vv+3%l—%+f“-=0,

(1.1)

2h -
S_’E"'V'L\V-—o'
Here, 4 and v are velocity components, ¥ is the wind vector and his
the height of the free surface. For simplicity, we have restricted
ourselves to the plane geometry. It should be noted that the problems
associated with horizontal differencing in this simplified system are
also present in multi-level numerical models.

Designing a finite-difference scheme we have to observe several,
often conflicting, criteria which can be summarized as follows:

(1) Simulation of dynamical processes;

(ii) Computational economy;

(iii) Programming considerations (such as storage requirements,
indexing, vectorization etc.).

Of course, the final decision is always a compromise between all these
requirements. However, the first criterion, obviously, deserves special
attention.

As pointed out first by Arakawa, an important decision influencing
the performance of finite-difference schemes is the choice of horizontal
grid. Several grids used in numerical models are shown in Fig. 1l.1.
Following Arakawa (e.g. Arakawa and Lamb, 1977) we have denoted them by
letters A to E. The A grid is often called "non-staggered" in contrast
to the "staggered" grids C and D. The grids B and E, with both velocity
components defined at the same point, we shall call "semi-staggered".

It should be noted that the only difference between grids B and E is
that they are rotated for an angle of 450 with respect to each other.
In addition to the rectangular grids A to E, attempts have been

made to use hexagonal grids (Sadourny and Morel, 1969).
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Fig. lol. Various arrangements of dependent variables on the rectangular
grid. .
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The problem that we are facing now is how to make a choice among
he grids discussed so far and some more that can be designed. The
pproach adopted here is to examine the impact of the grid type on the
imulation of important physical processes by second-order accurate
inite~difference approximations. We shall divide our analysis into two
arts. In the first part we shall review the problems present in the
inearized equations. Few comments on computational economy and
rogramming will be made as well. 1In the second part we shall discuss

ertain aspects of the problems associated with the design of the schemes
or non-linear advection terms.
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2o LINEARTZED EQUATIONS

2ol Geostrophic adjustment

Following Winninghoff and Arakawa (e.g. Arakawa and Lamb, 1977),
we shall here examine the deterioration of the frequencies of gravity
~inertia waves due to second-order accuracy horizontal differencing on
various rectangular grids. We shall assume that the distance d between
nearest grid points carrying the same variable is the same on all grids.
Taking the shallow water at rest with constant Coriolis parameter as the
basic state, upon linearization of (1.1), for the grids A - E we obtain

=-gdh +{v, g‘%='36§1_ﬁ - tu,
(2.1A)
%:-H(éxﬁx+3%;}\&) :
weog gl xpy, Wa-gsL-tu,
(2.1B)
— —xs .
oho= - H(EUY +8,T") 3
We-qdh o 4T R oqdgh -1,
. (2.10)
%: -HS,u *‘SZ"”;
Wo-gS L+ QU W -q5TY - TR
%_h. = - H((Sx-lzw‘“-k- S‘é'ﬁx‘d)-’
%%:-%Sx‘n +-+'U N %:—agah - 'euv o
(2.1p)

= -H(ouw + Suv)

o)loﬁ
cHs—

Here, the symbols 5x and.5% represent the most straightforward second
—~order accurate approximations to the horizontal derivatives, and the
overbar denotes the two point averaging operator or its repeated
application in the direction of coordinate axes indicated by the
accompanying superscripts. The mean depth of the fluid is denbted by H.

In order to isolate the horizontal differencing problem, the time
derivatives are kept in the differential form. In this way, the
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nalysis also applies to the time-staggered grids which reduce to the
'rids A -~ E in the limit as the time increment tends to zero. The

0 called Elliasen grid (e.g. Mesinger and Arakawa, 1976) consisting of
;wo time staggered D grids is an example of such a scheme. 1In this case,
n the limit we obtain the E grid.

Substituting into (E.lA)—(E.lE) the solution of the form

U d .

- L(kX+L -9
U = Re, 0y e 4 ,
h h

rhere (O , & and Q are amplitudes, k and { wave-number components and
) frequency, and introducing the radius of deformation

-
ye obtain the corresponding frequency equations
Q= + (A1) (Csinkd, + st td) (2.2,)
(\’1)2 { o+ A(a-) (c ”dsm ~,_d+caszk°‘ wt ) (2.25)
(%)Z:CO?% '9% (7‘) (sin % + SLV\Z%J) (2.2C)
(2—) = cod ‘“‘lcos2 M+4(7\ o 5_4,,,,, kd +cos* s.rlnzfd}: (2'2]))
%Q (&n1“L+swvmw) . (2.25)

'he ratios W}/{ calculated in the admissible wave-number ranges from
:2°2A)'(2‘2E) for %—:22 are shown in Fig 2.1 together with the ratio
orresponding to the continuous case (Arakawa and Lamb, 1977). In
contrast to the continuous case, for a fixed orientation of the wave
wnmber vector, the frequencies reach their maximum values at the points
lying on the dashed-dotted lines and decrease as the intensities of the
vave-number vectors increase in the shaded areas of the diagrams. Thus,
both the intensity and the orientation of the group velocity vector may

e substantially altered.
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Differential

Fig, 2.1. Non-dimensional frequencies Wi /f calculated using A/d=2
for various grids and the exact non-dimensionalized frequency as

funcgions of non-dimensional wave-number. (After Arakawa and Lamb,
1977
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On the C grid this occurs only at the points kd =7, {d =0 ;
d =0, ld =7 and kd=1, ld =7 where the group velocity vanishes.
lowever, a closer inspection of the frequency equation (2.20) reveals
hat in the case of higher internal modes, when A/d is small, the
‘requency will be seriously distorted in the overwhelming portion of the
1dmissible wave-number range.

The B and E grid diagrams can be obtained from each other by
otation of the k,{ axes. This is not unexpected since an analogous
oordinate transformation in the physical space shows that the systems
f2.lB) and (2.1E) are equivalent (Mesinger and Arakawa, 1976; Janjié,
979). As compared to the grids A and D, the shaded areas for these
wo grids are much smaller. Also, since there is no averaging of the
oriolis force terms, there is no distortion of the frequency diagram
or small A/d ratios. Nemely, if A/d is small, the Coriolis terms
ire dominating and the relative frequency error is even reduced.

From these considerations we conclude that for the external and
ower internal modes the C grid is best. However, the grids B and E are
vetter than the grid C for higher internal modes. As we shall see later
n, using a special technique, the difficulties encountered on the grids
3 and E for large N /d ratios can'be to a large extent reduced.

o 2 Rossby wave phase speeds

Following Mesinger (1979), we shall now examine the effect of the
rrid choice on the Rossby wave phase speeds. Namely, let us consider
he linearized shallow water equations in the B plane

oh _
2w 4 U 2 _(QQ+B«3)V+35§_ 0,

X
(2.3)

U U dh -

EL Us; -\-(%o+£$t1)u.+‘c‘aa‘d 0.
lere, U is the basic current. For each of the five lattices A - E we
shall again use the simplest centered second-order approximations for the
pace derivatives and the Coriolis terms. However, this time we are
nterested in the vorticity equation analogues that correspond to each of
'he five finite-difference systems. In order to form these analogues
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we want to follow the procedure of the differential case. It is,
however, not obvious in all of the five difference cases which operators
are appropriate to an analogous pfocedure. Namely, with the lattice A
differencing over a single grid distance and over two grid distances can
be considered. The former would lead to a more accurate definition of
vorticity; however, this more accurate vorticity would be subject to a
false generation by the pressure gradient force. The experience gained
with numerical models shows that, in general, avoiding the generation of
a physically important quantity for false reasons should be given
priority over the desire for a formal increase in accuracy. Therefore,
as an analogue of the Vorticity equation we shall consider a finite
~difference scheme achieving highest accuracy for the given lattice on
the condition that it contains no terms depending on geopotential %h .

With this requirement we obtain, as the vorticity equation

analogues

S

2 (So - Sputh U8, (SuT- Su )

I _ (2.4))
+ (¥o+(5|3)(c5,(u, +5‘dv )+/.Mr3'4 =0,
— ———————— X,
3 ( (va“’ - 53 w )+ T]JX(S,(U“‘— Jau,x)
L — _ (2.4B)
f (oreg) (Sule S v )T =0,
2 (S - (S%.L y +U S (S, v - J,w)* |
’ (2.4C D)
Xy 7 1YY 9
+ (4o + By) (Sxu +¢5-3'U') + BU =0,
2 (&v - dyu) + U S (Syv - cgabﬂ%
(2.4E)

+ (o + By) (Su + Sav) + aTl=z0,
As indicated by the subscripts of numbers identifying these equations,

the vorticity analogues obtained with lattices C and D are of the same
form. ' '
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Obviously, the analogues (2.4A)—(2.4E) imply that for considered
lattices one should define the vorticity by

¥ aéx.vx - S.au,u \ (2.5,)
$=8,0" -5 (2.55)
?E CS\X'U’ - gva U o . (E'EC,D,E)

Definitions of divergence consistent with (2.5A)—(2.5C D E) are seen
. ' Dy
to be

X

3

V;.wfz-é;u + Su (2.6,)
—y —

Veewvs 5, u° + Sav . (2.65)

Vev = Sy W+ 5.a1r . (2.6G,D 5

The vorticity and divergence definitions obtained for the A grid are

of the poorest accuracy, with no obvious compensation in some other
property of the system. Transformation of coordinates shows that the
vorticity and divergence definitions for the B and E lattice are, in
fact, equivalent; therefore they are of the same accuracy. However, in
contrast to the gravity-inertia waves, due to the R effect, the Rossby
wave propagation is not independent on the rotation of the grid, and,
therefore, we should expect different behaviour on the two lattices.
The vorticity and divergence definitions on the C and D lattice are of
the highest accuracy. However, on these lattices the vorticity and
divergence are not defined at the same grid points, and some loss in
accuracy results in the divergence term of (2.4C,D), owing to the
four-point averaging of the velocity divergence.

For a further analysis of the effects of truncation on the phase
speeds of the Rossby waves, we require

Ve = O, (2-7)
and accordingly

v_‘_oV: 0. (2.8)
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e Rossby wave phase speeds

We shall consider first the effect of the (3 term only, that is
the case

U=o. | (2.9)

In the differential case, substituting

[% ' R 07 thix-ct)
v] = Rell 4] ©

into the vorticity equation, we obtain, in view of (2.7) and (2.9)
C==-—— ‘ (2.10)

The analogous procedure, performed for difference cases gives the
phase speeds

&) kd
= 7T ed (2.11,)
_ 6 kd /2
C¥= T Tanvali (E‘llB,C,D>
3 kd /2 ,
= — | sinkd/VZ * (g'llE)

The values of the phase speeds (2.10) and (2.11A)—(2.11E) in non
—dimensional units, c/{scL2 , as the functions of non-dimensional wave
number kd/7 , are shown in Fig. 2.2. Since the true phase speed C is
negative, for longer waves, the lattices A and E are seen to have a
decelerating effect, and the lattices B, C and D an accelerating effect.
The relative phase speed errors of the lattices B, C, D and E are found
to be, in this wave-number range, about the same and approximately twice
smaller than those of the A lattice. Note that, with the lattices A and
E, when the wave length approaches the two-grid-intervals, the vorticity
defined by (2.5A) and (2'50;D,E) tends to zero. Thus, the unbounded
increase in absolute values of phase speeds, seen in Fig. 2.2, is

associated with the vanishing values of the finite-difference vorticity
analogues.
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Fig. 2.2. Phase speeds (2.10) and (2.11,)-(2.11 ) in non-dimensional
units ¢/Bd~ as functions of non—dimen81oﬁal wave—number kd/m. (After
Mesinger, 1979)
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be Effect of the advection terms
With advection terms included, that is
U# 0"

substitution of wave solutions into the exact and finite-difference
vorticity equations gives the phase speeds

C=(L.Ea (2.12)
and
Crrsinkd _ B kd '
c*=T Ed T Tnwd ° (2.15A)
C*= U $l..|ﬂl(d. — B kd/z 2.1
led. & tankd/Z ° (2:135,¢,0)
c* = U sinkd/Z B l‘ﬂl/‘rz .
kd/\T k¥ sinkd/V2 ? (2 lBE)
respectively.

The advection terms in (2.15A)—(2.15E) illustrate a familiar
decelerating effect of the centred second-order space differencing.
Furthermore, a notable difference is seen between the "parallel"
orientation of grids A, By, C and D, and the "diagonal" orientation of
grid E. The diagonal orientation for zonal advection is seen to result
in a smaller phase error.

For the wave lengths which are not close to two grid intervals, in
the expressions (2.15A) through (2.15E), the error of the advection term
will dominate over that of the 4 term when the non-dimensional ratio
U/8d? is much greater than 1. This ratio is indeed much greater than 1
for typical zonal speeds and grid sizes; for example, the values
U~10 m s~1 and d~ 250 km give the ratio U/ed* ~ 10.

One should, however, not overestimate the importance of numerical
details of the phase speed error of advection terms in (2.15A)—(2.15E).
Namely, various grids may have a different effect on the vorticity
advection when the Arakawa-type formulation is used for the advection
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erms — an approach that seems to be gaining in popularity.
N Summary

Summarizing, we may say that the non-staggered grid A exhibit a
listinct disadvantage in that the second-order vorticity analogue of the
1ighest local accuracy is associated with a spurious vorticity production
y the pressure gradient force. The next most accurate second-order
mnalogue, not suffering from this drawback, is of a poor accuracy
ompared to such analogues on the staggered and semi-staggered grids B,

!, D and E. |

The analysis of Rossby wave phase speeds, resulting from the
onsidered vorticity equation analogues, again shows a disadvantage of
he non-staggered grid. The phase speed error of the % term on the
1on-staggered grid is greater than on staggered and semi-staggered grids
ind is of the same sign as that of the advection terms - with difference
“ormulations such as usually used in atmospheric models.

As for the four staggered and semi-staggered grids considered
1ere, a simple general statement on the grid preference, as far as the
rorticity equation analogues are concerned, cannot be made. The
staggered grids C and D allow most accurate second-order vorticity
nalogues; however, in the divergence and the (3 term they require more
weraging than the semi-staggered grids B and E. The sign and magnitude
f the corresponding Rossby wave phase speeds depend on the flow and
solution parameters - advection speed and the zonal and meridional wave
wumbers. Considering the effect of the 8 term only, the relative.phase
speed error on these four grids is for longer waves about the same,
ypproximately twice smaller than that on the non-staggered grid.

%) Barotropic instability

Another dynamical process governed by linearized equations which
1as been investigated to increase understanding of the properties of
rarious horizontal grids is that of barotropic instability (Nickovié,
1979). The particular mechanism analyzed was that described by shallow
vater equations for non-divergent flow, with a constant Coriolis
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parameter, and linearized about a zonal mean wind If(g), Considering a
zonal profile with a constant shear dU/dy within a bounded domain
~€-<g<ﬁ , and no shear north and south of that domain (Fig. 2.%) Haurwitz
(194%3) obtains the phase speed of simple wave solutions

- - 1
- Ty li-2+L,0-€91% (2.14)
Here
wzokl , U=g(U+Ts), U,s

Examination of (2.14) shows the existence of unstable waves. Waves
longer than about one-fifth of the width of the middle layer are unstable
due to meridional wind shear. Thus, the narrower the middle layer, the
wider will be the instability wavenumber zone.

Nidkovié has reproduced this stability analysis for three types
of horizontal grids, A, C and E. He has left the time derivatives in
their continuous form, and he has used the simplest second-order
approximations to the pressure gradient force. For advection terms he
has used

for grid A - Grammeltvedt (1969) energy conserving scheme
(scheme E in his notation)
for grid C - Sadourny (1975) energy conserving scheme
for grid E - Janjié (1977) energy and enstrophy conserving scheme.

It is interesting to note that Grammeltvedt and Sadourny schemes reduce
to the simplest space-centred schemes after linearization. There is
also an equivalence between linearized forms of energy and enstrophy
schemes proposed by Sadourny (1975).

The resulting growth-rate functions computed assuming {-d rfor
grids A and C, and {-=d/VZ for grid E are presented in the following
figures. TFor grid E, very little difference between the differential and
the finite-difference growth rate was obtained (Fig. 2.4). A slightly
greater, but still quite small, was the difference obtained using the
grid C (Fig. 2.5, left half). For grid A, however, an additional region
of false instability was obtained for high wave-numbers (same figure,
right half).
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Fig. 2.3. Horizontal profile of the mean zonal wind. (After
Nidkovié, 1979)
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We; /Uy \ Fig. 2.4. Non-dimensional
growth rates wc. /Uyas
O.4 - functions of non-dinensional
wave-number kd/(N27) for
- differential case and grid E.
(After Nidkovié, 1979)
E
0.2 - diff.
. 0.0 T e EETICPTRTRD _ﬁ—
0.0 0e2 eos 1.0
kd/ (V217)
a)cim/U* R
Ocl'l' 1
' C
diff.
0.2 7
0.0 . |
0.0 0.2 0.8 1.0

xd/(V2m

Fig. 2.5. Non-dimensional growth rates wec. /Usx as functions of

non-dimensional wave number kd/(V27) for 1 differential case and
grids A and C. (After Nidkovié, 1979)
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Effects of this instability in actual numerical integrations
1sing the A grid may have been obscured due to usual damping applied
/ith the non-staggered grid. In that case instability would be expected
-0 increase the requirements for the intensity of damping, thereby also
ncreasing the undesirable effects of the damping on longer
neteorologically significant waves of the model. 1In additioh, an
increased intensity of damping of short waves distorts the effects of
short. wave forcing mechanisms that may and frequently are present in
tmospheric models. Thus, the appearance of false short-wave instability
an - certainly be considered as another disturbing property of the
on-staggered horizontal grid. |

L Technigue preventing grid separation on semi-staggered grids

As we have seen in Section 2.1, an unpleasant feature of the
semi-staggered grids B and E is that the frequency of the gravity-inertia
vaves 1s decreasing as we approach the shortest resolvable scales.

In this section we shall look at this problem in some detail and discuss
2 possible remedy.

For convenience, we choose the E grid for our analysis. As shown
in Fig. 2.6, this type of grid can be decomposed into two C subgrids
carrying circled and squared variables respectively. However, direcf
inspection of the system ‘

%‘%’ ='%5x“\ ; %%=_ra53\1 ’%-:!:=-H(5xu.+5\av}
roverning the propagation of gravity waves, reveals that a disturbance
on the subgrid with squared variables cannot be transferred to the
subgrid with circled variables and vice versa. Namely, the grid point
ot which the tendency is calculated and the grid points carrying the
variables needed to calculate it, belong to the same C subgrid. Thus,
the gravity waves defined on the two subgrids will propagate
independently. For example, two decoupled large-scale solutions, when
viewed together, will produce a slowly changing pattern with predominant
small scale features. In particular, two different stationary solutions
for h will be interpretted by the E grid as a zero-frequency two-grid
-interval wave.
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Fig. 2.6. Grid E decomposed into two C subgrlds carrying clrcled and
squared variables respectively. (After Janglc, 1979)

2
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Fige 2.7. Stencil used to define two different approximations to
Laplacian on the E grid.
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In the case of complete shallow water eguations, due to the
yresence of Coriolis and advection terms, there is a possibility of
interaction of the decoupled gravity wave solutions. However, this
interaction is slow compared to that due to gravity wave propagation,
and being incomplete it does not provide physically Jjustified
~ommunication between adjacent grid points belonging to different

subgrids.

Damping or chopping of the small-scale part of the spectrum
(Gerrity and McPherson, 1970; Shapiro, 1970; Haltiner, 1971) has been
traditionally used in numerical models to remove the small scale noise
resulting from the grid separation. However, an alternative approach was
broposed by Arakawa (1972) and Mesinger (197%3). Their idea was that
instead of attacking the consequences of inadequacies in a simulation of
2 physical process, it was generally advantageous to look for a method
that would achieve a physically correct simulation of the process, and
thus eliminate the cause of the difficulty (Mesinger and Arakawa, 1976).

In contrast to Arakawa'’'s (1972) "time-alternating-space-uncentred!
(TASU) scheme for the B grid, the technique proposed by Mesinger (1973)
strictly preserves second order accuracy of the spatial differencing.
This technigue has been applied to a number of time differencing schemes
(Mesinger, 1973, 1974; Mesinger and Arakawa, 1976; Janjié, 1974, 1979).
Following the papers by Janji¢ (1979) and Vasiljevié (1982) we shall here
demonstrate its application and examine the properties of the resulting
scheme using the example of the forward-backward time integration

proéeduree
8.e Derivation of the scheme

To indicate the procedure which can be used in the case of complete
shallow water equations, we start from the system

W= uT- Dbg S, h™ 1ol +at Ay,
M‘“zvf-ﬁfgéaHnd+AtC%+AﬁAU', (2.15)

W = W= 0k [ Ve Ched 1%
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Here A, and Ay, and Cy and Cg are the x and Y components of the
advection vector Ay and the Coriolis force @,'xespectively. There is

a number of space and time differencing schemes which can be used for
these terms in combination with the forward-backward scheme. However,
since they are irrelevant for the present considerations, there is no
need to restrict the generality of the analysis by any particular choice.
For this reason, the schemes for the advection and Coriolis terms are not
indicated here. The symbol hy denotes the value of h at a velocity
pointAwhatever its definition may be.

~
We define the expression [V,-(h¥)le by
,
L9 (e ]hs (T + 9, - LlhymHOv ] (2.16)

To define(ﬁaovii we use the finite-difference divergence equation of the
form ‘

(%205 = (- —atgLO-w) G2 + w 75 W7

(2.17)
+at Vo€ o+ 0t Vi Ay

Here, at point O in Fig. 2.7, the finite difference Laplacians appearing
in (2.17) are defined by

27 = Gunr Syg)z = LitZar ZexLushLe

O _ Zs+Ze+Za+Ze~4LZ,
vxz= 5 GCL:- 8 ll

and the symbol w denotes a weighting factor.

It can be easily verified that when w > O the approximation (2.17)
allows the gravity waves to propagate through the entire E grid,
Namely, the approximation to the Laplacian is responsible for excitation
of disturbances in the divergence field, which in turn disturb the
height field. Since with the present definition of the Laplacian in
(2.17) we calculate the divergence taking into account the c¢hanges due to
the disturbances in the height field at both elementary C subgrids, it is
guaranteed that a disturbance excited at any of the grid points will be
transferred by the gravity waves throughout the E grid. It should be

noted, however, that the definition (2.17) implies that there is no
50



separation at the time level 7-—1;
From the first two of Egqs. (2.15) we obtain

(772 (G972 abg O20T

- (2.18)
+MV € + AL Ay,
On thé other hand, rearranginé (2.17) we may write
(T4 =( Ty V™= g 2K
+4tv,..C ;Atv,,- Ay (2.19)
- stwqlvf -v2] ' |
Combining (2.18) and (2.19) we obtain
(TpwTy = (Vyow) - atwq [w2-v2 10 ~ (2.20)
Substituting (2.20) into (2.16) we may write
[ (heW]L = H( Ty )74 G [y WIVTT-atuwghlw -2 I (2,21)
and finally
W =1 -k Gyr Chy ) + (0T g H LT - VRN, (2.22)

The only change resulting from the modification is the presence of the
last term on the right hand side of (2.22). This term takes on a
non-zero value only when finite difference Laplacian is not invariant
with respect to rotation for an angle of 450,

Having derived the modified scheme, let us now turn our attention
to its properties.
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b. Stability and phase speed of grav'ity waves

For simplicity we shall first consider the pure gfavity wave part
of the shallow water equations, l1e€ou,

w2 yT - atg 8, LT
vf”sz—At%53w4’ (2.23)
W 2 BT ot H o7 e T 4 (P wghlvR-g2 1N,
Defining
-LYAt

AzINeTT Xekd/Z; YeldVZy pzat/d

2

and substituting into the system (2.23%) a solution of the form

r ~
if = Re ?; Keb (e i) (2.24)
W h

we obtain
DR +LNZpMgsinXh=0 |
('A—l)'ff+i.7\‘l'i/ug sinlh =0 , ‘ | (2.25)

A

in/n HeinX ik +LVZmHsin Y7 + [A¥l+2w%HpA2(c°SX-césY521L\= 0.

The three solutibns for A , obtained from the requirement that the
determinant of the system (2.25) vanish, are

A=l

and

A=1- (A+w) 2 V(A+wBP-2A (2.26)
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Here,
A= 2,...2 L2 = 2 -
= a‘“‘/\'\ (sin™X +sin Y) . Bs 3H{" (cosX cosY) o

Inspecting the system (2.25) we find that the neutral and
stationary solutions with non-zero wave-numbers are allowed in the
velocity field, but not in the height field. Namely, if AN=1,
ﬂMQXA-+ SWFY'#C), the amplitude f  cannot take on non-zero values.
Similarly, if A =1, sin*X + sin*Y =0 and (cosX - Cos YY) £ 0 , i.e., the
two-grid-interval wave is considered, ?\ must again be zero. This is
not the case when the conventional forward-backward scheme is used.
Then the (cosX -cosY)* term is absent and false neutral and stationary
solution with arbitrary amplitude may exist.

The analysis of the amplification factor Nl corresponding to
the non-stationary solutions (2.26) shows that, provided W does not
exceed .25, the modification has no effect on the stability of the
scheme (e.g. Janjié, 1979).

Figure 2.8 shows the maximum of the two amplification factors
calculated from (2.26) with w=.25 and ngﬂ==.7l, Since the roots (2.26)
are symmetric with respect to the lines IX\ = \Y! and X andY axes, to
avoid repetition, only the triangular domain between the positive X axis
and the line X =Y is shown. Along the line X =Y the term B in (2.26)
vanishes and the scheme is neutral. However, along the X axis the
damping effect of the modification is most pronounced.

From the definition of A and (2.,26) we find that when
(A+wpY- 24 < 0, the relative phase speed is given by

c_ . \ aia“{\/ZA—(A+wB)z
gk MVZgH(XT+ YD) | - (A +wE)

2
If (A+wB)-2A20, A is real and the relative phase speed is zero.

The relative phase speed calculated with W=.25 and Vaﬁﬁ\=.7l is
shown in Fige. 2.9. Again only one part of the admissible wave number
domain is shown. In the shaded area in Fig. 2.9 the relative phase

speed is zero. However, in this area the gravity waves are strongly
damped.
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c. Geostrophic mode

An interesting problem which has not been discussed so far is the
effect of the modification on the geostrophic part of the solution.
Introducing the Coriolis terms into the system (2.23) we may write

W =u:I'_A.bCASKh‘T-H + ot .F_:I,:(vT.,.vT-H) .
VS uT- Ak S ™ - At E R U e (2.27)
W o= T - MHV ey T+ e waHloli-72] h™
= +° d x TVt .

Here, the trapezoidal time-stepping scheme has been chosen for the
Coriolis terms (Janjié and Wiin~-Nielsen, 1977; Janjié¢, 1979).
Substituting a solution of the form (2.24) into (2.27), and requiring
that the determinant of the system obtained in this way be equal to zero,
we arrive to the equation

[A- 4+ F e 2] (M=t + 2wB)+ (A=1ON2A =0, (2.28)

Here,

Fzlopae)?

AR
4

Since the roots of (2.28) are symmetric with respect to the line

Xl = 1Y¥Y| and to the X and Y axes, we shall again restrict ourselves
to the triangular domain between the positive X axis and the lines
Y=X and Y =T-X. The values of constants appearing in (2.27) which
will be used in our analysis are: 4 =.0001 s—l,Axt =450 s, V@ﬁﬂ\=.7l
and W=.,25,

In the continuous case, the linearized shallow water equations
with constant Coriolis parameter allow three solutions. Two of these
are the gravity-inertia waves, and the third one is stationary,
geostrophic mode. Analogously, dealing with the finite-difference
equations, we shall consider the stationary solution as being the
geostrophic one, no matter whether its amplitude is damped or amplified.
Having in mind the definition of A s, we find that the solution will be
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stationary provided A is real and positive, i.e.,
A=IN .
Note that this implies that Vv=0.

The analysis of the equation (2.28) shows that for the shortest
waves, including the two-grid interval wave, A is real and negative,
and therefore, the geostrophic solution is non-existent. However, there
is a region within the large wave-number range in which all three roots
are real and positive, and hence, in this region the geostrophic solution
cannot be identified applying our criterion. The values of the
amplification factor of the geostrophic mode are shown in Fig. 2.10.

In the lightly shaded area in the figure all three roots are real and
positive. The isolines shown in this area correspond to the maximum of
the three roots. In the heavily shaded area the geostrophic mode is
non-existent.

Tet us now examine the effect of the linear diffusion as a
possible alternative remedy for the low frequency short-wave noise
resulting from the grid separation. TFor this purpose we shall use the
second and fourth degree linear diffusion of velocity. Namely, in the
case of the second degree diffusion we shall introduce into the
equations of motion the terms KWV,w' and K‘%f v7. On the other hand,
we shall assume that the fourth order terms have the form K“%f(vfuf)
and KKZSCVfﬂqj . Of course, we shall switch off the modification by
setting Ww=0 in the continuity equation.

Instead of (2.28), this time we shall have
LA + L2+ F Q2T+ (A=t + LYA2A =0 , (2.29)
In the case of the second degree operator

L

J&{ffgl—-([-COSXcogY) y

while

AV T 2
L= T (1 = coaXcosY) .

56



if the fourth degree operator is used. Let 4¥at/d* Dbe equal to
0057096 and let all other parameters except w have the same values as
before. This would correspond to a rather modest value of the diffusion
coefficient K=lO5 n® st
the diffusion coefficient corresponding to the fourth degree scheme, we

for the grid size of about 180 km. Concerning

choose

l=l2d?

K'=g K

Then the second and fourth degree diffusion terms will give the same
rate of velocity change in the case of the two-grid-interval wave.

Again, we shall assume that the real and positive root of (2.29)
corresponds to the geostrophic solution. The values of the amplification
factor of the geostrophic mode are shown in Figs. 2.11 and 2.12 for the
second and fourth degree linear diffusion, respectively. As we can see
from the figures, at the point X=7, Y =0 we obtain the value N=l.

By inspection of the system of equations that we have started from, we
can see that we have independent solutions for the equations of motion
and the continuity equation. These two independent solutions correspond
to damped inertial oscillation and the stationary two-grid-interval wave
in the height field. The root A =1 is associated with the latter one.
Otherwise, the geostrophic mode is damped in the entire region of the
admissible wave numbers. As one may have expected, the fourth degree
scheme is less dissipative and more scale selective.

Comparing Figs. 2.10-2.12 we can see that the modification in
the most of the domain yields better results. Namely, the modification
damps the geostrophic mode much less intensively in the smaller wave
-number range. Moreover, by contrast to the modification, the diffusion
terms applied in the equations of motion are ineffective in eliminating
the two-grid-interval wave in the height field.

d. A numerical test

To demonstrate the effect of the modification, two comparative
24 hr integrations starting from the 23 August 1975, 00 GMT data were
made using the HIBU (Hydrometeorological Institute and Belgrade
University) model. The integration domain extended from 55°w to 40°E
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Fig. 2.10. Amplification factor of the geostrophic mode in the case of
modified forward-backward scheme. In the lightly shaded area maximum
amplification factor is shown. In the heavily shaded area the
geostrophic solution does not exist. (After Vasiljevié, 1982)
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Fig. 2.11l. Amplification factor of the geostrophic mode in the case of
the second degree linear diffusion. (After Vasiljevié, 1982)
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Fig., 2.12. Amplification factor of the geostrophic mode in the case of
the fourth degree linear diffusion. (After Vasiljevié, 1982)
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Fig. 2.13.
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(After Janjié, 1979)
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and from BOON to 66°N. A realistic steep topography was included. No
lateral diffusion was used in the interior of the integration domain.
Only modest lateral diffusion was allowed near the boundaries. The
linear diffusion coefficient did not exceed the value which is usually
used with the mesh size of 1.5O in the longitudinal and 1° in the
latitudinal direction.

The predicted sea level pressure fields are shown in Fig. 2.13.
The isolines are situated along the borders of the shaded areas. The
shading interval is 2.5 mb. The value of pressure corresponding to
the isoline located at the border of the field of fours toward the
neighbouring field of threes is 1020 mb.

In contrast to the predicted sea level preésure in the experiment
with w=.25 shown in Fig. 2.13 (above), the sea level pressure field in
the no modification experiment shown in Fig. 2.1% (below) is contaminated
by the noise which makes it difficult to recognize the pattern of the
significant weather processes. In addition to that, considerably higher
values of the sea level pressure are predicted in the no modification
experiment in the centre of the cyclone over Italy.

2.5 Computational economy and programming considerations

With equal resolution, i.e., with equal wave-length of the
shortest resolvable wave, all rectangular grids require about the same
computational effort per time step. Namely, the total number of
tendencies of the dependent variables that has to be calculated does not
depend on the grid choice. However, on the grids which require more
averaging in order to calculate the pressure gradient force énd
divergence terms, the gravity waves are decelerated, and consequently,
longer time steps can be used with the explicit time differencing

schemes. - Unfortunately, higher economy is thus achieved at the expense
of reduced accuracy.

The computational efficiency can be improved by a suitable choice
of the time integration scheme. Today, there are two widely accepted
procedures offering about the same economy. These are semi-implicit and
split-explicit approaches. The former is almost exclusively applied on
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the C grid. It should be noted, however, that the economy of the sémi
—implicit scheme is achieved by decelerating the fastest gravity waves.
In this way, some of the favourable features of the C grid with respect
to the simulation of the geostrophic adjustment are lost. Also, there is
some theoretical evidence that the geostrophic solution left behind will
be distorted (Janjié and Wiin-Nielsen, 1977). However, numerical
experiments indicate that these effects do not visibly modify the fields
obtained in actual integrations.

On the other hand, B and E grids are commonly used in combination
with the split-explicit approach based on the forward-backward scheme
discussed earlier (Gadd, 1974; 1978; Mesinger, 1974; 1977/; Mesinger and
Arakawa, 1976; Janjié and Wiin-Nielsen, 1977; Janji¢, 1979). On this
type of grid trapezoidal time integration scheme can be easily applied
for the Coriolis terms.

Another very promising possibility with respect to increasing the
efficiency of the calculations has been recently proposed by Bates
(198%4a; 1984b). In his scheme the semi-Lagrangean approach for the
advection terms (Bates and McDonald, 1982) is combined
with the alternating-direction-implicit method for the gravity-inertia
terms. Successful shallow water equation integrations on the E grid
have been reported requiring less than a half of the CPU time needed
with the forward-backward scheme.

Concerning programming, it is rather straightforward for all
rectangular grids except the E grid. An unpleasant feature of the
E grid is that in a limited, rectangular domain, indices of the grid
points surrounding the grid point at which the calculation is performed
cannot be calculated by simply adding or substrécting a constant
increment to/from the indices of the current point. Namely, the value
of the increment will depend on whether the indices are even or odd.
This makes programming for vector machines particularly difficult.
However, this problem can be easily eliminated in hemispheric or global
models by using indexing as schematically represented in Fig. 2.14.
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Fig. 2.14. DPossible indexing on the E grid in hemispheric or global
domains.
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e NON-LINEAR ADVECTION SCHEMES

3.1 General approach and principles

As can be easily verified, it is poésible to construct an infinite
number of different non-linear advection schemes on any grid type.
Thus, the main problem here is again to establish criteria for choosing
the most suitable one. We have already discussed some of these, such as
local accuracy, stability, phase errors, computational economy. However,
all these criteria have been applied within the frame of the linear
theory.

A common problem with the non-linear advection schemes is that
they erroneously tend to accumulate energy at the smallest resolvable
scales. Attacking this problem, Arakawa (1966) proposed that certain
important integral properties of the continuous equations be preserved
in order to achieve better simulation of the energy spectrum. Being
related to the non-linear interactions among various scales, the Arakawa
approach falls beyond the limits of the linear theory. In this way a
sound theoretical basis has been established in the field in which an
empirical approach previously dominated.

Following Fjdrtoft’s (1953) theory, as the integral constraints,
Arakawa suggested that energy and enstrophy be conserved in the case of
non-divergent flow. The energy conservation seems to be an obvious
choice and has been used before. However, concerning the simulation of
the energy spectrum of large-scale quasi-two-dimensional atmospheric
motion, its relative importance has been challenged by some experimental
and theoretical results (e.g. Arakawa, 1966; Arakawa and Lamb, 1977;
Sadourny, 1975; BRasdevant and Sadourny, 1975). Namely, it appears that
the enstrophy conservation is much more important in this respect and,
at the same time, it guarantees almost exact conservation of energy.

The Fjgrtoft’s theory applies to the flow governed by the
non-~divergent vorticity equation

2 +J(y,3)=0 .,
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Here, J represents the Jacobi operator and Y and % are streamfunction
and vorticity, respectivély. Arakawa (1966) discussed a number of
finite difference approximations to the Jacobi operator, and found one,
Ja » which together with some other properties of the Jacobi operator,
conserves energy and enstrophy. Dealing with the primitive equations,
however, we have to find such approximations to the momentum advection
terms which in the case of non-divergent flow reduce to the equation

3% LT (v,$) =0,

Here, # is the finite-difference vorticity analogue. However, this is

a non-trivial problem which does not have a unique solution. Usually,
the trial and error approach is applied leading to a number of different .
schemes. The conservation properties of the scheme obtained in this way
are then proven a posteriori, going back to the finite difference
vorticity equation.

Following the pioneering work of Arakawa, a number of energy and
enstrophy conserving schemes has beeh'developed for the grids C
(Grammeltvedt, 1969; Arakawa — in Arakawa and Lamb, 1977; Sadourny - in
Burridge and Haseler, 1977) and E (Janjié, 1977; 1984; Mesinger, 1981).
Recently, Arakawa and Lamb (1981) proposed a more elaborated scheme
which conserves potential enstrophy and energy. A scheme which conserves
potential enstrophy, but not energy, has been earlier designed by
Sadourny (1975). In the case of non-divergent flow, however, the
Sadourny scheme does not reduce to the Arakawa Jacobian, but rather to
its more accurate enstrophy conserving component Jacobian approximation.

Mainly following the paper by Janjié (1984), we shall here examine
the properties relevant for the simulation of the non-linear interactions
of several representatives of the C grid and E grid momentum advection
schemes based on the Arakawa approach. . However, in order to do so, we
shall first review certain important implications of the definition of
the J, operator.
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3.2 General remarks on the Arakawa Jacobian

a. Definition and properties of the Arakawa Jacobian

If two variables, say A and B, are both defined at the grid
points of the stencil shown in Fig. 3.1, the Arakawa Jacobian applied at
the central point of the stencil has the form

a (A,B)=E':L-,_ [CA-Ag)(By-By) = (Ap-A)(B, - By)
+By(As-A)-B,(Ag-A)- B, (As-Ag)+B3(Ac-As) (3.1)

-+ A\(Bs - 53)‘As(B;‘B‘;)‘Ag(as‘Bg)'\'Aq(Bg'B;)l

(Arakawa, 1966; Mesinger and Arakawa, 1976). It has been demonstrated
by Arakawa (1966) that

TL(A,A)=0 | (3.2)
J’A(A,B)=-J'A}(B,A) , (3.3)
T, (A, B)=0 (3.4)
AT, (A,B)=0 , (3.5)
BI,(A,B)=0 . | (3.6)

Here the overbar denotes the area mean taken over a domain with cyclic
boundary conditions. In addition to that, as can be inferred from the
definition (3.1), we may also write

A J,(A,B)= T, (dA,B) =T, (A,dB), d=const , (3.7)
T, (A+R,C) = Jp(A,0) +7,(8,C) , (3.8)

Yet another important feature of the Arakawa Jacobian can be readily
deduced. Namely, as we can see from (3.1), this operator may be
formally regarded as a weighted sum of products of the wvalues of its
arguments. On the other hand, if & is an arbitrary coordinate
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Fig. 3.1l. Stencil used to define the Arakawa Jacobian.

Fig. %.2. Schematic répresentation of the application of the Arakawa
Jacobian as a more general quadratic form. (After Janjié, 1984)
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xis,
T =3
8§, (AB) =A*S,p + B°S,A . (3.9)
‘hus, we may write

Sy Tn(A,B) = Ty (A, 8,B) + To(5,A,B°) . (3.10)

Finally, as suggested by Janjié (1984), in certain applications
.t is convenient to consider the Arakawa Jacobian as a more general
juadratic form than it is usually done. Namely, normally, both arguments
f this operator are defined at each of the nine points of the stencil
shown in Fig. %.1. The J, operatof is then applied at the central point
»f the stencil. However, a somewhat different situation is also
soncievable. Namely, let the values of the arguments of Ja , say A and
B, be defined on two nine-point stencils which are displaced with respect
;0 each other, and with respect to the nine-point stencil on which the
\rakawa Jacobian operates. Prior to the evaluation of the expression
(3.1), the values of the arguments are "fetched" from the points of their
~espective stencils to the points of the stencil associated with the J,
perator. This situation is schematically represented in Fig. 3.2. The
chin lines in the figure indicate the "routes of transportation" of the
ralues of the.arguments A and B. |

To -indicate the possibility that the stencils corresponding to the
arguments are displaced with respect to each other, we shall use the
r0tation

Ty (Ay 4 Bg) ~ ' ~ (3.11)

vhere the additional subscripts & and 8 define the locations of the
entral points of the two stencils. Note that the location at which the
sxpression (%.11) is evaluated is irrelevant and, therefore, we cannot
say that the J, operator applied in this manner is associated with any
rarticular geometrical position.

As we shall see in Section 3.4, the symbols A and B in (3.11)
nay represent the same physical quantity, such as streamfunction, for
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example. However, in contrast to (3.2), because of the displacement,
e.g. the expression I,(Aq,As) will not be identically equal to zero.
As and Ap can of course be considered simply as new variables,
different from A, defined at the arrival grid points after the
displacement has been performed. In this way one can see that the new
use of J; represents merely a more'general notation, which introduces
no changes in the previously stated properties of T, .

bo Arakawa Jacobian as an advection scheme on grids C and E

In the case of non-divergent flow, to which the Arakawé—Fjﬁrtoft
theory applies, the streamfunction is sufficient to describe the wind
field. Therefore, if we want to apply the Arakawa Jacobian on a grid
used for primitive equations, we have to define the relation between
the velocity components and the fields of streamfunction ¥ and velocity
potential % . Namely, consider the distributions of variables G and B
shown in Fig. 3.3. We shall assume that the distance between two nearest
grid points carrying the same variable < is the same in both cases.

The coordinate systems x",y" and x,y associated with the two grids are
also indicated in the figure. The differencing operators along the
coordinate axes of these two coordinate systems we define by

| SA = AB+As/2)- A(S -04/2)

\ )= (3.12)

Here, the increment A5 takes on the value d or V2d depending on
whether ¢ stands for coordinate axes x"and y°, or x and y.

Using (%3.12) we define the velocity components on the C grid by
We-Sy ¥ +8,%, v':c?x,\,"‘+55:.%, - (3.13)
and on the E grid by
t;:-Snw + & X, v=&Y 8, (3.14) -
With these definitions the grids 0 and £ viewed in terms of the height

and velocity-component points become identical to the grids C and E,
respectively.,
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Fig. 3.3, Distributions of variables C and E with the associated
coordinate systems. (After Janjié, 1984)
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Fig. 3.4. Relative positions of the coordinate systems %,y and x,
associated with the grids C and E respectively. (After Janjié, 1984§.
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Having defined the relation between the velocity field and the
fields of streamfunction and velocity potential, we shall now turn our
attention to a special class of advection schemes. Namely, consider
the equation of the form |

=0, (3.15)

il
N

Here 7Z is a function of horizontal coordinates and time. If the flow is
non-divergent, instead of (3.15) we may write

L, |
22 - -J(¥,Z) . (3.16)

Seeking a finite-difference advection scheme, we may approximate the
Jacobi operator appearing in (3.16) by the Arakawa Jacobian. As has been
pointed out, the definition (3%.1l) requires that both arguments of the
Arakawa Jacobian should be defined at the same grid points. However,
discretizing the advection equation (3.16) on a given type of grid, we
may find that the grid points carrying the streamfunction and the
quantity which is being advected do not coincide. To allow for this
possibility, replacing the Jacobi operator in (3.16) by the Arakawa
Jacobian we shall write

Z --T,(V, Z) . (3.17)

Here, the symbol ¥ denotes a linear averaging operator which is used
to define the values of streamfunction at Z grid points. Of course,
if Z and ¥ are located at the same points this operator should be
ignored.

Prior to their use in primitive equation models, the advection
schemes of the form (3.17) must be generalized to include the divergent
part of flow. In principle, this can be accomplished by replacing the
rotational velocity components by the actual wind (e.g. Arakawa, 1972;
Arakawa and Lamb, 1977). However, in order to do so, the rotational
velocity components must be present in an explicit form in the expression
on the right hand side of (3.17). Depending on whether they have the
form of the rotational velocity components in (3.13), or in (3.14), we
shall consider the scheme as being defined on the C or on the E grid,
respectively.
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In this sense, the Arakawa Jacobian is both the C grid and the
E grid scheme. To show this, let us assume that the coordinate systems
x’,y* and x,y are rotated with respect to each other through an angle

of 450 as indicated in Fig. 3.4. Furthermore, let a two-point averaging
operator be defined by

A® =L TA(s+A%/2) + ACS-a8/)] , (3.18)

where 4 and A4 have the same meaning as in (3.12), and, as before,

let the repeated application of the operator in the direction of 4, and
4, be denoted by ~ %®2., Then, as can be verified by direct
inspection, if we replace A and B by —‘47* and Z s, respectively, the
definition (3.1) can be rearranged to take the form of either of the
following two expressions

T 2= 58 IR a ¥ -5 Z 1k [Ty P + 50 v ) 201
T —x’ T —y (3.19)
VS [(-8p¥ ) Z7] + 8y LS v T

?

T, (5 2) =4 {8 L(&v) Z'1 + 8,1 G¥) Z°1}

I vy (320
s2 {5 LR ESvas ) 21 8 LR Sy +dw) 271,

Within the brackets on the right hand side of (3.19) we_recogﬁize the

C grid rotational velocity components as defined in (3.13). Thus,
Ju(¥%, Z) is indeed a C grid scheme. On the other hand, in (3.20) only
the E grid rotational velocity components are present. Therefore,
Jo(¥,Z) is an E grid scheme as well,

3.3 Conservation of energy and enstrophy and the non-linear energy
cascade on grids C and E

Following a procedure similar to Fjgrtoft9(1953), Janjié (1984)
examined the impact of the conservation of energy and enstrophy on the
grids C and E. Here, we shall present his analysis.

Separating the time derivative of the rotational component of
velocity and the contribution of the pure non-divergent part of advection,
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the shallow water equations of motion in plane geometry may be written
in the form

b4
a%("g—)=-:r<‘if,-§—§')+R , (3.21)
20 HW)=-gey, Ho+s (3.22)

To keép the main problem isolated, we have grouped together the terms
which are not relevant for our present considerations and denoted them
by B and $. TFor simplicity, we shall assume that the Coriolis
parameter is constant.

Ao Grid C

On the C grid, the non-divergent advection terms in (3.21) and
(3.22) may be approximated using the Arakawa energy and enstrophy
conserving scheme (Arakawa and Lamb, 1977), i.e. we may write

(-8, W)z -T (P8 ¥) 4R, (3.23)

2 (8o ¥)=-Tp (¥ So¥)+S . | (3.28)

Using (3.2), (3.3), (3.7), (3.8) and (3.10) together with the identity
%ZJASOAF?A—A :

after some algebra, from (3.2%) and (3.24) we obtain the vorticity
equation of the form ' '

2 (Ve ¥)=- T,(¥, VE¥)+8,8"- 8, R

Here, using the notation of the grid points introduced on the left hand
side of Fig 3.3, the operator v,> is defined by

VY= Su e +dp(dpyy= Dttt :‘L'%; Yy =4 Yo (3.25)

Finally, assuming that the flow is non-divergent, and taking into account
that the Coriolis parameter is considered constant, we arrive to the

finite-difference approximation to the barotropic non-divergent vorticity
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equation

& (Vr¥)=-3, (¥, 9y, (3.26)

From (3.26) we find that due to the properties of the Arakawa
Jacobian (3.5) and (3.6),

YRUEY =0 (3.27)
and
VIR VW =0, | (3.28)
However,
~AVEB = 8, A8 R +SpASy B (3.29)

and, therefore, instead of (3.27) we may write

Sy ¥ F Sy W) +30¥ Z (0 ¥)=0 ,

Thus, as in the continuous case, the mean kinetic energy

K =3 L8 )* + (S0 wF] . (3.30)

and enstrophy

(3.31)

are conserved.

Let us now examine the impact of these conservation properties.
For this purpose lét us consider the flow in a square domain with cyclic
boundary conditions. Let the linear dimensions of the domain be Nd
where N is an even integer, and let an expansion of the form

sk x! +bny’)
Y= &g €t i | (3.32)
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be considered inside the domain. Here,

m’n =05t\-):25u.3i\3/2 (3‘55)

and the amplitudes aﬂnn and & are the complex conjugates of each

-m-n
other. The components of the wave number vector are defined by

3

]
l{ =m2

m N

|

» by=nll © (3.34)

o

Note that the negative values of H and C/ are also allowed. As can
be inferred from (3.3%) and (3.34), the wave length of the shortest wave
present in (3.32) is equal to 2d/MZ . If the wave number vector is
oriented in the direction of the coordinate axes, the wave length cannot
be smaller than 2d.

We shall determine the values of the amplitudes a;mn by requiring
that at the ¥ grid points the expression (3.32) takes on the values
identical to those of the streamfunction. Then, at any particular grid
point

Lk %'+ ")
V=3 &€ . (3.35)

mmwn

Applying the operator ‘73 to (3.35) we obtain the expansion for
vorticity which is analogous to that for the streamfunction, i.e.,

A L(l;mx'-t-ﬂ:,.td')

s |
v}w:-v_th N Qo . (3.36)
Here,
N = 22.(5in" Kpel /2 #sir o 12) C(3.37)

are the eignevalues of the finite difference Laplacian (3.25). The
values of the non-dimenional function d?Nﬁhn are presented in Fig. 3.5.
Since this function is symmetric with respect to the lines |K 1 =1L}

and K and U axes, to avoid repetition, we have restricted ourselves
to the triangular domain between the positive H axis and the line

K =L’ . As can be seen from the figure, %mww is an increasing
function of each of the two wave number components.
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'ﬂ'/d‘ L 8,

Y

m/4

Fige 3+5. Eigenvalues of the finite-difference Laplagian %, The
valuis are non-dimensionalized by multiplication by d=. (After Janjié,
1984
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As in the continuous case, we can now express the mean kinetic
A
energy and enstrophy in terms of the amplitudes &, and the eigenvalues
Nwn o Namely, using (3.29) we may write

K'=-3 ¥ ¥ . (3.28)

Substituting (3.35) and (3.36) into (3.38) we obtain

A L\-_(\c +K ! + (L +CI)‘4
3> Aka, i e

. (3.39)
1’:7—:" 5

As in the continuous case, we can further simplify the expression on the
right hand side of this formula. Namely, note that even if (Vp+¥r)

and (ﬂ;+‘€;) exceed the maximum allowed wave numbers, due to aliasing
they will be misinterpreted by the grid as if they belong to the
admissible wave number range. Therefore, this particular case does not
require separate consideration. Also, it can be verified in a
straightfroward manner that the grid point values of the considered

exponential function and its averages over the C grid grid-box area are
related by

o, ' wd xed 0, 1,
eL(kx+l.'3') - k%';: L’% L e : e“k“w)otx'd !
sin k% SLV\U% 0['2 i_d X'd' 2
-7 °T%
and consequently
d ud
: N-i N'z‘ - ! ] 'I
ke nlyy o % t'$ Ll )y L (3o
e -smk'Z smﬁ d? ¢ ng + ¢ )
-Nd -Ng |
2 z

Taking into account that we have prescribed the cyclic boundary
conditions, from (3.40) we obtain that, unless k=0 and EE(),

eL(k'x’+(;'g') -0

Thus, the only terms which remain on the right hand side of (3.%9) are
those corresponding to the case $=-%, q=-3%. Then the exponent vanishes
A

A
and the amplitudes a,, and Q44 are complex conjugates of each other.
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Thus,

K= 7 Nl Bl * (3.41)
mn

Analogously, for the mean enstrophy we obtain

Z')\mn mh\z . : (3.42)

In analogy with considerations that have been done in the
continuous case, we shall rewrite (3.41) and (3.42) in the form

! L )
K = % Kp N : (3-45)

P ’
=§X1K,, : (3.48)

Here, the kinetic energy and enstrophy contributions have been reordered
in the ascending order of the eigenvalues. The multiple eigenvalues
have been assigned the same subscript 4 , and the energies K@ are
defined by

IZA 2

Kh = 7~ N Vol (3.45)

12 o412
Ly

leeey, l(% is the total energy associated with the scales defined by"Ni.
The symbol P denotes the total number of different values that the
eigenvalues take. Comparing (3.43) and (3.44) with the corresponding
formulae for the continuous case (Fjgrtoft, 1953), we can see that this
time the sums (3.43) and (3.44) are finite and the eigenvalues (3.37)
increase slower with increasing wave numbers. Note that the slower
increase of the eigenvalues means that more energy is allowed at smaller
scales. As a further difference, one may note that the meaning of the
eigenvalues ﬂf has to some extent changed. Namely, since the contours
of R? (Fig. %.5) are not circles of constant values of the
two-dimensional wave number, a given scale, defined by the intensity of
the wave-number vector, now is not associated with a single value of W% .
Instead, it spreads over a range of values of ﬂ%, the extent of this
range depending on how much the contours differ from the circular shape.
In other respects, full analogy is preservéd. Thus, if energy and

enstrophy are conserved, the non-linear rotational energy cascade on the
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C grid will be subject to similar limitations as in the continuous case.

b Grid B

As can be inferred from the definitions (3.13), (3.14) and (3.25),
the C grid rotational energy (5.50) and enstrophy (3.31) cannot be
calculated directly from the velocity components on the E grid. The
definition of E-grid velocity components (3.14) leads to different
definitions of energy and enstrophy and, therefore, we may expect that
the conservation of these two quantities will not have the same meaning
as in the case of the grid C.

A non-divergent advection scheme‘conserving energy and enstrophy
on the E grid can be designed by analogy with the scheme (3.23)-(3.24).
Namely, we may write

5 (-3y¥)=-T (PL-8,¥)eR | © (3.46)
2 | rrie .
SEC W)= T (Y, &¥I+S | (3.47)

Similarly as before, in the case of non-divergent flow, from (3.46) and
(3.47) we obtain

F =T, TEY) (3.48)

where, using the notation of the grid points introduced on the right hand
side of Fig. 3.3, the operator V7 is defined by

VEVES, (5,1 +8y(Syw) s ittt ¥ rbmute o (5.49)

As before, using (3.5) and (3.6); from (3.48) it follows that the mean
kinetic energy |

K=L)W ==L VY, | (3.50)

and the mean enstrophy

=% (WP (3.51)
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are conserved.

Further examples of the E.grid energy and enstrophy conserving
schemes which reduce to the form (3.48) in the case of non-divergent flow
are those discussed by Janjié (1977) and Mesinger (1981).

Comparing (3%.48) and (3.26) we can see that the only difference is
the definition of vorticity. However, it will be demonstrated shortly
that this difference may profoundly affect the non-linear energy cascade
simulation. Namely, let us again consider the flow in a square domain
with cyclic boundary conditions. Let the linear dimensions of the domain
be J4/V2Z , where T is an even integer. For the streamfunction we shall
use the representation analogous to (3.35). Namely, we shall assume that
at any grid point the value of the streamfunction can be calculated from
the formula

A E(kmx+t )
V=24, ", (3.52)

where m and n are integeré and
Iml +inl& J/2 .

This time the components of the wave-number vector are defined by

2T 217

=M— =
S X Y
The amplitudes aq“n and a_m_n are again complex conjugates of each other.
They are determined from the requirement that the formula (3%3.52) should
be valid for a given streamfunction field.

An analogous expansion for vorticity we obtain by appiying the
operator V& to (3.52). 1In this way we find that
) 2 a il +y)
VY == 2 Ny Oomn® . (3.53)
]
where the eigenvalues of the finite-difference Laplacian ‘Vf are defined
by
2 20 do 29 d
A = a"l_‘z(““ Kinifg + sin thiz) - (3.54)
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7/(T24) 4

T/(V24d) \21/d "k

‘Fig. 3.6. Eigenvalues of the finite-difference Lapﬂécian th. The

valuis are non-dimenionalized by multiplication by d“. (After Janjié,
1984
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The values of the non-dimenional function d*X@n are presented in

Fig. 3.6. Since this function is symmetric with respect to the lines

lkl =181 and k and { axes, to avoid repetition, we have restricted
ourselves to the triangular domain in between the positive k axis and the
line k={ . Within this domain, however, there is an additional axis of
symmetry, the line k=7/VZd. As we can see from the figure, the values
of the function (3%.54) to the left of this axis have their exact
counterparts to the right of it. At the same time, while to the left of
this axis the eigenvalues generally increase with increasing intensity
of the wave-number vector, the opposite is true in the rest of the
diagram. This is fundamentally different from the situation on the

C grid.

Similarly as before, substituting (3.52) and (3.53) into (3.50)
and (3.51), we find that the mean kinetic energy K and enstrophy "
may be written in the form

K=t 2 Now 18 panl* (3.55)
=% 2 R T (3.56)

As in the case of the C grid, here we have used a formula stating that
the integral over a grid box of an exponential function of the form

ei(kx+63) (3.57)

is proportional to the value of the function in the middle of the grid
box. Of course, it is possible that due to multiplications in (3.50)

and (3.51), the wave-numbers k and { in (3.57) exceed the maximum
allowed ones. However, again they will be misinterpreted by the grid as
if they belong to the admissible wave-number range. Therefore, the
relation between the value of the function (3.57) in the middle of a grid
box, and its integral over the grid box, will remain the same in this
special case as well.

Defining
) | (3.58)
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instead of (3.85) and (3.56) we may write

K= o Km" 3 » (5°59)
) ‘
1= 2 ANon K  (3.60)

: 2

Similarly as before, only the magnitudes of Aw, are relevant for the
purpose of our analysis. Thus, instead of (3.59) and (3.60) we shall
write

P-!

K=§'KP = const (3.61)
Bl o

'\‘%MKV Fone (3.62)

Here, we have reordered the kinetic energy and enstrophy contributions
in the ascending order of the eigenvalues in the area where they
generally increase with increasing intensity of the wave-number vector,
i.ee, for lkyl <7 /NZd) and {L,1& T/(WZd.); and in the descending order
in the remaining area, where the reverse is true. The same subscript
‘has been assigned to contributions associated with multiple eigenvalues
within a single one of the two areas. The symbol P denotes the total
number of contributions resulting from the described reordering. Finally,
K@ is the sum of energies associated, through this reordering, with a
single subscript. It should be noted that there can be no rotational
energy in the sense of formula (3.58) at the very shortest resolvable
scales. Namely, according to (3.54), the corresponding eigenvalue is
equal to zero. For this reason, the subscript $ does not exceed P-!
in (3.61) and (3.62).

Tnspecting the formulae (3.61) and (3.62), and the corresponding
formulae for the C grid, (3.43) and (3.44), we can see that the situation
is now fundamentally different. Namely, since the eigenvalues A take
on same values in both the large and small scale ranges, an unlimited
exchange of energy between these two ranges is possible without violation
of the constraints (3%.61) and (3.62). Thus, the conservation of energy
and enstrophy as defined on the E grid does not guarantee that there can
be no systematic transport of energy towards smallér scales.
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) o L+ Advection scheme for semi-staggered grid with controlled

non-linear energy cascade

Lo Derivation of the scheme

As we have seen, the conservation of energy and enstrophy on
semi-staggered grids cannot provide efficient control over the non-linear
nergy cascade. Instead, Janjié (1984) suggested that energy and
nstrophy as defined on the staggered grid C be conserved. Here, we shall
yresent his derivation of an E grid scheme starting from the C grid scheme
(3.2%)=(3.24). Being simply the transformed C grid scheme, the Janjié
scheme will also conserve the C-grid energy (3.3%0) and enstrophy (3.31).

Deriving the new scheme we shall again assume that the coordinate
systems x7,y” and x,y, associated with the grids C and E respectively,
are rotated with respect to each other as indicated in Fig. 3.4. This
~otation, we furthermere assume, is performed with both coordinate
origins at Y points, so that after the rotation, the ¥ points of the
swo grids coincide. ‘Thus, after some algebra, from (3.23) and (3.24)
ve obtain

3-89 [T, (PE, 5 ¥) - 3, (P t) 1+ B(r -5 ") (3.63)
— x! — .al‘ ._l_xr —_—t
S C8¥)=-2[ 5, (VY- 8,0w) + T, (T %) 1+ FRT S (3.64)

)n the left hand sides of (3.63%). and (3.64) we recognize the time
lerivatives of the E grid non-divergent velocity components.

The remaining, more difficult problem is to transform the
1on-divergent advection terms. Namely, in (3.6%) and (3.64) these terms
are calculated using the C grid velocity components. On the E grid,
they must be expressed in terms of the E-grid rotational wind. However,
lue to non-linearity of the operators, this cannot be done in a
straightforward manner.

Let us first examine the advection term on the right hand side

83



of (3.6%). Using the notation introduced in Fig. 3.7, at the point O,

SBLI(TY Sp) - T (TN S,y 1=
Fem . . . (3.65)
== LI (V-6 ¥), + TR (W -4y V), - Tu(F) Sy ¥Dy= TV, S, 1.

The first term in the square brackets on the right hand side of (3.65)
may be rewritten in the form

T (T Spw) =T e, Ky

Here, the combination of additional subscripts 5 and 6 indicates the
central points of the nine-point stencils corresponding to each of the
two arguments. In this case the two stencils coincide, their central
points being located in between the points 5 and 6, i.e. at the point 1.
Having in mind (3.7) and (3.8), and taking advantage of the notation
(3.11), we may further write

—y !
T (W -8y ¥), = S [T (8 1) - T, 08 ) + T, (4% = T, (4, %01
However, due to the properties of the Arakawa Jacobian (3.2) and (3.3),
which, as stated, are not modified by the present more general notation,

the first and the last term in the square brackets must vanish, and the
remaining two terms with displaced arguments may be written as

T (-0, ), = T, W) == F Talte, %) . (3.66)

J

Ule-€
X
o€ o:%— o]
W X
~9-€

X

N

Fig. 3.7. Notation of grid points and coordinate systems used %o derive
the E grid scheme which conserves energy and enstrophy as defined on the
C grid. (After Janjié, 1984)
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An analogous procedure applied to the remining three terms in square
brackets on the right hand side of (3.65) yields

T(FE -8 ¥)y = 1 T (%, )= -1 Tt Ye) (3.67)
TP 8a¥)y = T, (%,Ww-;}grkc%,w,- - (3.68)
ST, Se¥), = kT, )= - S TalVe, ) © o (3.69)

Combining (3.66) and (3.69) we obtain

Ik(ﬁﬁ'-sanw), -I,,(TP’;'S,(.W)‘1 = 4 (Y, %) (3.70)
Similarly, from (3.67) and (3.68) we find that

Ty (P48, - T, (W), = LT,0H, ¥, (3.71)
Substituting (3.70) and (3.71) into (3.65) we arrive to the formula

R (P89, + 3, (FE -S04, T, (P e ¥)r :A(IP’;' §p¥), 1=
(3.72)

- j-A(‘ys-\-"Vq-,‘l’% Vg ) .

As can be seen from Fig. 3.7, the arguments of Ja on the right hand
side of (3.72) are defined on the same stencil, its central point being
located at the point zero. Therefore, we can again use the usual
notation. Thus, generalizing the result (3.72), we may write

aa—t(‘gzlP) = ’IA<.“—IK"(S‘3W)+§(E‘°§;3)‘. (5'75)

Starting from (3.64), an analogous procedure would lead to the scheme
— —l eyl

3 (5¥)= - T (P8 ¥)+ G (RFTY, (5.74)

Under the J,. operator sign on the right hand sides of (3.73) and (3.74)
we recognize the E-grid rotational velocity components as the quantities
which are being advected by the non~divergent wind. Thus, having in
mind the E-grid representation of the Arakawa Jacobian (3.20), we find
that we have arrived to an E-grid non-divergent advection scheme. Since

85



this scheme is only a transformation of the scheme (3.63)-(3.64), it will
conserve the Crgrid energy and enstfbphy. In addition to that, due to
the properties of the Arakawa Jacobian (3.6) and (3.4), the scheme will
conserve the rotational E-grid energy and momentum.

It is interesting to note that the E-grid equivalent of the
Arakawa (1972) B-grid non-divergent advection scheme is the arithmetic
mean of the schemes (3.46)-(3.47) and (3.73)-(3.74).

So far we have not discussed the terms R’ and &' appearing in
(%3.7%) and (3.74). Apparently, we must use independently developed
schemes for these terms which better fit the E-grid structure. By doing
so we cannot alter the favourable features of the non-divergent advection
schene.

bs Properties of the scheme

Following Janjié (1984), let us now examine the restrictions
imposed upon the non-linear cascade of the E-grid rotational energy by
the C-grid enstrophy conservation. In order to do so, note that due to
different orientation of the coordinate axes, the eigenvalues of the
finite-difference ILaplacian (3.25) on the E grid take the form

12

Noun = %5 (1 = coskp @ costpd )

Thus, from (3.42) we find that in the x,y coordinate system associated
with the E grid '

' = .;_-.Z_ [ (‘ "Coskmd'cos"hr)] la‘mnl

Taking into account (3.54) and (3.58), we shall rewrite this formula
in the form

f[' = %ln Azmn KWm

where
, :
_A?— ) 7\’wm B 2 (1 — goskm% cosﬁn%) .
mn "~ 7\2mn T oAt siv kg d + siu? e“% (3.75)
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Fig. 3.,8. The analogues of the eigenvalues of a finite-difference
Laplacian for a scheme which conserves E-grid energy and,C-grid enstrophy.
The values are non-dimenionalized by multiplication by 4. (After

Janjié, 1984)

he non-dimensional function dﬁjg;" is presented in Fig. 3.8. To avoid
epetition, we have again restricted ourselves to the triangular domain

n between the positive ¥ axis and the line k=0 . As can be seen from
he figure, this time the "eigenvalues" (3.75) generally increase with
nereasing intensity of the wave number vector, and even tend to infinity.
his singularity reflects the fact that there can be no E-grid rotational
nergy at the shortest resolvable scale. Comparison of Figs. 3.5, 3.6

nd 3.8 reveals that the amount of energy which can be transported to

he short-wave range is subject to much severer restriction than it was
he case with the other energy and enstrophy conserving schemes.

° Generalization of the scheme to include the divergent part of flow

Following a procedure similar to that of Arakawa and Lamb (1977),
anji¢ (1984) derived the approximations to the advection terms of the
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shallow water equations which in the case of non-divergent flow reduce
to the scheme (3.73)-(%3.74), and analyzed the conservation properties of
the scheme thus obtained. Here, we shall reproduce his results.

Multiplying, e.g., (3.7%) by the height of the free surface, which
for a while we shall assume to be constant, and taking into account the
definition (3.20), we may write

NP 8,0 = 113, [TC8 9 (3,97 1+8, (T8, (5,91}
. _ ., (3.76)
+ LIV B0+ 8,1)" (5y) 168y (R BGv+ 51 G5

Tf we define the mass fluxes in the directions of the coordinate axes

X, ¥y X', ¥ by

U=hw ,
Vehlv
, (3.77)
U/=T\xlz:(u_+’\f) )

.\/-’=I‘is -Vz—?—'(-u.'i-'l)')

and replace the non-divergent velocity components by @ and v,
respectively, instead of the expression on the right hand side of (3.76)

we obtain
\

SL8(T) + & (Fran]+ 30, (U a8y @ ad)] . (3.78)
Using this "isotropic" approximation we may write
3 Chuw)= - {5 L8, (T a) + 8, (7 an)] + 5 [Sp (T @)+ Sy Tafe e (3.79)

Here, we have written explicitly only the flux form advection term.

The remaining terms represented by dots are not interesting for our
present considerations. The symbol h, denotes yet undefined value of h
at W points. With the aid of the identity

)

5, (BA®) = AS,R + BS,A
A [}
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/here 4 is an arbitrary coordinate axis, (3.79) can be further
transformed to take the form

ey R =

=

1+ 2T G Tdpuhl]

L QL‘M_
hoSt *wSp=-{

-

(3.80)

‘ X
~LEGaU 8, V) + 20U+ 8y V] + .,
Je have now arrived at the point where we have to specify the continuity

cquation approximation. Having defined the mass fluxes by (3.77), it is
natural to choose the "isotropic" form

3= (L G+ 8« 2T V] (3.81)
Comparing (3.80) and (3.81), we find that we must require that
hy=h .

With this definition of h, we obtain the advection scheme for the w
component of the form '

LT S TEO+ 2 (T 8w + T Syu) 1+ .., (3.82)

-
3t T‘\.

Starting from (3.74), a similar procedure would lead to the scheme

— — gy’ X' xr’ 5’
We -4y (T Vo) g (TG0 « VS ) 1+ (5.83)

Thus, the approximation (3.82)-(%.8%) represent the E-grid advection
scheme that we have been looking for.

TLet us now examine the properties of the scheme (3.82)-(3.83).
The conservation of momentum follows immediately from (3.79). To prove
the energy conservation we shall use the identity

4
ABS,A =-LASB + S,(BLAR) | (3.84)

. vﬁ : . N
where the symbol AA  denotes the product of the values of the variable
A at two neighbouring grid points located on a coordinate line oriented
X
in the direction of the coordinate axis 4 . Multiplying (3.82) by hw ,
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with the aid of (3.84) we find that

=)
n-l o
Nl-

Ji [%(SXU +53V) + % (8o U'+ ja,vz )]x
, , (3.85)
~ {08, (T ) + 8y (Vg + [ (TP W)+ Sy g W + ..

However, taking into account the continuity equation (3.81), (%3.85) may
be rewritten in the form

s (W pu)=- {408, W ww) + 8y (V *Luud)]

o _ ' (%3.86)
+ L[S (T3 ud) + Sg'(v"}ma )]-S‘r -

When the summation is performed over a closed domain, or a domain with
cyclic boundary conditions, the contribution of the right hand side of
(%.86) vanishes, and therefore, the advection scheme (3.82) does not
allow false generation of ?x%!kz . Similarly, from (3.83%) we find that
there can be no false generation of 'Ra%ﬂrz either. Thus, the scheme
(3.82)-(3.83%) is indeed energy conserving.

d. Experimental results

In order to illustrate the effect of different definitions of the

"eigenvalues" (3.54) and (3.75) in long term integrations, we shall here
reproduce some experimental results of Janji¢ (1984).

In his experiments, the shallow water equations were integrated
in a square domain with constant Coriolis parameter. The mirror image
boundary conditions were specified. Physically, this experiment design
corresponds to a "rotating flat square earth" with the solution on one
side being the mirror image of the solution on the other.

Tn the main experiment the advection scheme (3.82)-(3.8%) was
applied. In the control experiment, this advection scheme was replaced
by the scheme obtained by exchanging places of the averaging operators
with respect to x and Y% applied to the mass fluxes appearing in
(3.82)~(3%3.83). In the case of non-divergent flow, the scheme obtained
in this manner reduces to the scheme (3.46)-(3.47) which conserves energy
and enstrophy as defined on the E grid. Except for the advection terms, ’
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Fig. 3.9. Helght field after 10000 time steps in the main experlment.

The shading interval is 160 m, (After Janjié, 1984) -
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the main and the control experiment were identical.

The initial height field consisted of three wave components and
the initial wind was calculated from the height field using the
geostrophic relation. The leapfrog scheme with time filter was used for
time integration. The experiments were terminated after 10000 time steps,
or approximately 116 days.

The 10000 time steps "forecasts" of the heightAfield obtained in
the main and the control run are shown in Figs. 3.9 and 3.10 respectively.
The field obtained using the scheme (%.82)-(3.83) shows well preserved
wave-like structure, although energy is shifted towards larger scales as
compared to the initial situation. WNote that the small scale noise is
almost completely absent. Presumably, the shift of energy was made
possible by the loss of energy due to the damping of the gravity-inertia
waves that has happened through the use of the time filter in the course
of integration. On the other hand, in the control run, the energy is
shifted to both large and small scales resulting in a rather noisy
"zonal" flow pattern.

As another illustration, the eVolution of the quantity

?\ﬁ, : + (9% w)2 £ (Ve v)?

K

normalized by its initial value is shown in Fig. %.11l. In (3.87) the

(3.87)

symbol K represents the total mean kinetic energy including the divergent
part. As can be easily vérified, this expression has the dimension of

%m and represents its weighted mean. Note that in contrast to
enstrophy, 'ﬂﬂ is not sensitive to the variation of the total kinetic
energy. The solid and the dashed line in the figure represent the
results obtained in the main and the control run, respectively. As can
be seen, in the case of the E-grid energy and enstrophy conserving scheme,
ﬁm shows a generally increasing trend indicating that a significant
amount of kinetic energy is transported towards smaller scales. By
contrast to that, in the main experiment this quantity remains close to
unity, and therefore, unrealistic redistribution of kinetic energy is
successfully prevented by the scheme (3.82)-(3.83).
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5 Conclusions and summary of the main results

We have examined three non-linear advection schemes. One of them
as a representative of energy and enstrophy conserving schemes on the
taggered grid C, while the other two were defined on the semi-staggered
rid E.

It has been demonstrated that due to different definitions of
otational wind and vorticity, the conservation of energy and enstrophy
n the two grids does not have the same meaning. In contrast to the
:rid'C, on the B grid these constraints do not guarantee that the
ransport of energy towards smaller scales will be limited.

However, using a new approach to the application of the Arakawa
acobian, Janjié (1984) derived an E grid scheme which exactly reflects
he Arakawa theory for the non-divergent flow. This was achieved by
onservation of energy and enstrophy as defined on the C grid. These

wo quantities cannot be calculated directly from the dependent

ariables on the E grid, and thus, in a way, may be considered to belong
o the sub-grid scales. It has been demonstrated that the amount of
nergy which can be transported towards smaller scales is more restricted
han for any other scheme of this type on both C and E grids.

In order to summarize the properties of the schemes with respect
0 the simulation of the non-linear energy cascade, it is convenient to
se the mechanical analogy of Charney (e.g. Mesinger and Arakawa, 1976).
'or this purpose, we shall introduce the "average wave-number squared"
hich is defined by the ratio of enstrophy and energy. Thus, for the
—grid scheme (3.23)-(3.24), we have

W2 = “K', = ZMK? . ~ (3.88)
> K

>1m11arly, for the schemes (3.46)- (3 47) and (3.73)- (5 74) we obtain,
espectively,

— e K
N = ‘2 :‘E‘: LA (3.89)
) ? F
= 2
— I A, K . '
mon Ehete (3.90)
O,
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Fig. %3.12. Mechanical analogies of the constraints imposed on the
non-linear energy cascade in the continuous case, in the case of the
C-grid energy and enstrophy conserving scheme, in the case of the
E-grid energy and enstrophy conserving scheme, and in the case of
the scheme due to Janjié (1984).
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Here, K', #', K and Ky are defined by (3.43), (3.44), (3.61) and (3.62).
The relations (3.88)-(3.90) can now be rewritten in the form

— -2, :

N K'=§7‘; Ky | (3.91)
— P-1 o )

P K =2 M Ke : L (3.92)
—_— Pl .

N K =§A2,PK?. (3.93)

Of course, an analogous relation is valid for the continuous case (e.g.
Mesinger and Arakawa, 1976).

Let us now imagine a suspended weightless rod representing an
ideal balance. Let a weight equal to the mean kinetic energy be suspended
to the left of the point of suspension of the rod, at a distance equal
to the mean wave-number squared, and let the weights equal to the kinetic
energies associated with each eigenvalue be suspended on the right hand
of the balance at the distances equal to the corresponding eigenvalues.
The relations of the form (3.91)-(3%.93) then can be considered as the
requirements for mechanical equilibrium of such a system. Such
mechanical analogies for the continuous case and the three considered
schemes are schematically represented in Fig. 3.12. The superscript c
denotes the quantities corresponding to the continuous case. The
interchange of mass between the weights on the right hand sides of the
balances is permitted, but only in such a way as to maintain the
equilibrium. As compared to the continuous case, the "distances" 7Vi
corresponding to the C grid are shorter, more and more so as the smallest
resolvable scale is approached; and the right hand of the balance is of
limited extension. Thus, if initially there is little energy in the
shortest scales, as normally would be the case, a subsequent false
energy cascade into the shortest scales will not be as strongly restricted
as it should according to the continuous equations. Considering the
E-grid energy and enstrophy conserving scheme, the fact that the
eigenvalues X% are not monotonically increasing with increasing the
wave-number is schematically represented in the figure by bending the
right hand of the balance. Apparently, in this situation, relatively
weak constraints on the exchange of energy among the modes are imposed.
Finally, in the case of the Janjié¢ (1984) E-grid scheme, the distances
xf?are longer than those of the continuous case, and very much longer
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for the shortest scales, with the "eigenvalues" tending to infinity as
the shortest resolvable scale is approached. Thus, if again we consider
the situation where initially very little energy is present in the
shortest scales, a subsequent systematic energy cascade into these scales
will be even more restricted than with the continuous equations. The
shortest resolvable scale is moved to infinity, in some resemblance to
shortest, infinitely small, scale of the continuous case.
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