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1. INTRODUCTION

Among the various subgrid scale parameterisations which must be included in
general circulation models, lateral diffusiom concerns the relatively well

defined problem of how the resolved scales are affected by the sub-grid scales

in the nonlinear processes of "horizontal" dynamics. Horizontal dynamics,
however, 'is a rather vague term, and should be preferably replaced by "isentropic"
dynamics, or '"quasi-geostrophic'" dynamics, which both have a coherent dynamical
meaning. Of the two definitions, the latter is easiest to use, because we can
then rely on quasi-geostrophic turbulence theories to formulate lateral diffusion
schemes. On the other hand, it is only an approximation, and we must eventually
go back to formulating lateral diffusion schemes in the primitive equation
framework : for this particular step, the isentropic formulation is most convenient,
because it is, as we shall show, particularly close to the quasi-geostrophic

equations.

We shall then proceed as follows. In section 2, we shall try to ciarify isentropic
dynamics and its relation to quasi-geostrophic dynamics ; in section 3, we shall
expand on the phenomenological theory of barotropic quasi-geostrophic turbulence

and its implications for lateral diffusion schemes ; in section 4, we shall address
the baroclinic problem in a similar way. In the course of our derivations, we shall
try to reach better understanding of the importance of lateral diffusion design :

in partiéular we shall demonstrate its crucial importance in low resolution

general circulation or quasi-geostrophic models, when it interferes with baroclinic
instability processes. The problem addressed here therefore concerns mainlyA
climate~ and long-range forecasting models, for which explicit resolution of

unpredictable transients is not a priori the best choice.
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2. BASIC EQUATIONS

2.1. General form of the primitive equations in entropy coordinate.

If we neglect the effect of moisture, the equation of state can be written in

the general form

h = H (s,p), . ‘ (N

where h is enthalpy, p pressure and s any function of entropy ; here the perfect

gas assumption has not necessarily been made. An equivalent form is
a = Hp (s,p), ; (2)

where o 1is specific volume and the index p refers to partial derivation with

respect to p at constant s .

In the hydrostatic case, for any vertical coordinate system, the horizontal

equation of motion may be written

DV
— + £ NxV+grad ¢ + a grad p = 0. (3)
Dt )

This holds because the hydrostatic geopotential-pressure force is horizontal

and therefore can be evaluated along any sloping surface.

The use of entropy as vertical coordinate yields some remarkable simplifications
of the primitive equations. Firstly, s is a lagrangian coordinate, since

in the absence of heat sources

§ = Ds/Dt = 0 ; | : )

therefore all vertical advection terms disappear. Secondly, from ( 2, 3), the
geopotential and pressure gradients can be lumped together in the horizontal

equation of motion, which reads

DV
— + f NxV+grad § =0 ; (5)
Dt
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The dry static energy

is sometimes named "Montgomery potential". The continuity equation

is readily written in terms of a "pseudo-density"

r = — 3p/3ds ~ (7

which must be always positive ; it reads

ELNY - @)
5¢ v (xv) = 0

(in this section div, grad and curl refer to horizontal derivation operators).
A further advantage of the entropy coordinate formulation is the very simple
form of (hydrostatic) Ertel's potential vorticity equation :

Dn/Dt = 0 (9

which is readily obtained from ( 5, 8 ) and the definition

n= (£ + curl V)/r. (10D

The rigid lower boundary must be prescribed as a moving boundary in the
s—coordinate frame of reference : Sg (x,y,t) 3 it moves

according to

DSB/Dt =0 (119

in the absence of heat sources. Rigidity is expressed by imposing a prescribed

surface geopotential op (x,¥)

¢ (XIYSSB (X’Yst)’t) = ¢B (x,y). (12)
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At the top we usually impose a free upper boundary with constant pressure Pp .
The top boundary is defined by the surface g = ST (%,7,t) , which moves

according to
Dsp/Dt = 0 (13)
again in the absence of heat sources, and over which we impose

P (X,y:sT(XsYst)at) = I_DT- ( 14)

Note that the governing equations in the inside of the fluid ( 5,8 ) are
two-dimensional equations formally similar to Saint-Venant's shallow water
equations — except that in the latter, S and r reduce to a single dependent
variable. Here r is a prognostic variable, and S is diagnostically obtained

by solving a one—dimensional (vertical) nonlinear elliptic problem, expressed by

boundary conditions ( 11, 14), and, in-between, the hydrostatic equation,

38/9s = Hg (s,p). (15)

The free surface boundary condition at the top ( 14) appears as a boundary
condition of Neuman type, while the rigid condition at the bottom ( 12) is of

mixed Dirichlet~Neuman type.

For a perfect gas, and the definition g = cpr_K , this vertical coupling

problem reduces to the very simple form

Fy e pT at 5 = ST ]
) .
- é% (%S) /e _ ¥ for sg <s < sp s (16)
(1 -8 ii) S = ¢ at 8 = 8, .
as B B
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The invariants of the problem are : the energy E
s
_ + fT(V2+h) d dxd
E = Pplg 7 rds | dxdy (17)
s
B

and the vertical distribution of any function of potential vorticity :

Py (s) = ff ' A (n,s) r dxdy. (18)

D' (s,t)
Here D is the spherical domain and
D' (s,t) = Df){(x,y)lsB (x,y,t)<s<s7 (x,y,t) }.

The most useful choice for (18) is the vertical distribution of potential

P (s) = [/f e axdy. (19)

D' (s,t)

enstrophy

Note that if the derivation of ( 18, 19) is straightforward from (8,9,11,13),
the derivation of (17) is on the contrary, rather delicate from (5,8,11-15) ;
it requires scalar multiplication of (5) by rV, multiplication of (8) by S,

adding the two and finally integrating by parts with meticulous treatment of

moving boundaries.

p, Hy It follows from what has just been said
_____________________ v,r,8 that the simplest finite difference models
of (5,8,15) based on figure 1, are
P, By . energetically consistent ; at the same
-------------------- v,r,8 time, they keep accurate track of Ertel's

potential vorticity dynamics. The

Figure 1. .
Zlgure ' fact that these two properties are

simultaneously obeyed is another

i

attractive aspect of entropy coordinate models (for a general discussion of this

topic, see Arakawa, 1984).

2.2. Entropy coordinate and the quasi-geostrophic approximation

The derivation of the quasi-geostrophic approximation is particularly straightforward
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in entropy coordinate because of its Lagrangian character, associated with

the simple form of Ertel's potential vorticity theorem.

Splitting all variables into sums of mean and perturbation values, viz : f = £ + f!

'p =p(s) + p', then r = ~ dp/ds, h = H(s,p) etc ..., the assumptions

£/ =0,

v [ E= o),

w/ Ezo or Ro = 0(e) , (20)
'/ T =00 or (RoRi)™ = 0(e),

where w' refer to linear eigenfrequencies and p' to nonlinear advective characteristic
frequencies, yield to first order in the small parameter e, the quasi-geostrophic

approximation :

V=N xgrad ¥, v = s'/f (21)
and

Dg _ _ ZB

E‘O s qg=f£f + v, (22)

with the definition

B- -

2273y (23)

RERLGY

The quasi-geostrophic potential vorticity q is just a first .order expansion
of Ertel's potential vorticity n, (22,23) being a straightforward expansion
of (9,10). Note that the vertical laplacian in (23) is just a linearization

of the nonlinear laplacian already mentioned for the primitive equationms.

The quantity q is often refered to as a pseudo-potential vorticity, because
it appears from the more classical derivations in z or p coordinate, as a pseudo-
invariant conserved only in the horizontal projection of the motion (e.g : Charney

and Flierl, 1981). It appears from the present derivation however, that q is
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actually a true lagrangian invariant of the full quasi-~geostrophic motion ; this is

another advantage of the entropy coordinate framework.

Boundary conditions (11-14) on the fluctuating surfaces gﬁ = EB + s&a(x,y,t),

Sp = Sp * sHj(x,y,t), are not directly usable in the quasi-geostrophic approximation.

They have to be approximated on flat surfaces sg = Eﬁ > Sp = E&, using the
assumptions '

SV

T 9p _ . at = s
P s 0(e) S T »
(24)

S'

___B _Eﬂ = at = -S_

5 s 0(e) 57 %p

Then the quasi-geostrophic boundary conditions read

T p—
%% =0 at s = 8q. , (25)
= (' = 91) =0 at s = 55 , (26)

where ¢'p is defined by ¢g (x,y) = EB oy (x,y) , and the pressure and
geopotential perturbations are obtained by
Y

i -
P =f—é‘§./us s (27)

I
Hhl

' - o9 Ny (28)
¢ (1 u/as 55 .,

The invariants (17-19) of the primitive equations have straightforward equivalents
in the quasi-geostrophic system :

St

—2 - - 2 "'fz Y2
E = l_“Z}r dxdy{f ¥2 /o + dstr (grad¥) + :-(Sgﬂ (29)
? |s=5, 3 *s

D .

B B

PA(S) =J/]A (g,8) dxdy , 30)
D _
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P(s) = '/]%2 dxdy , 31
D

respectively, the energy and the (generalized or quadratic) potential enstrophy.

The quasi-geostrophic system has however, two supplementary invariants

P, G = /]A(p') dxdy | (32)
-

- 12
P (ST) = /]%— dxdy , (33)
D
Pp(sp) = ff A (¢ - ¢g) dxdy , (34)
D
P (sp) = ff% (o' - ¢%) dxdy , (35)
D .

respectively the (generalized or quadratic) available potential energies on top
and bottom boundaries. All these invariants are, however, approximately conserved
by the primitive equations as soon as assumptions (24) - small fluctuations

of upper and lower boundaries around isentropic surfaces.— are made.

Coming now to the problem of lateral diffusion, one again finds a definite
advantage is using entropy as vertical coordinate, because of the simplified .
formulation of Ertel's potential vorticity dynamics. In fact, lateral diffusion
can be designed using the simple framework of quasi-geostrophic dynamics ;

its extension to the primitive equation case is then straightforward if the .
entropy coordinate is used, because of the similarity between Ertel's equation
and the quasi-~geostrophic vorticity equation. The siﬁplest,case of barotropic

flow is considered in section 3 ; section 4 deals with the general baroclinic case.
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3. QUASTI-GEOSTROPHIC TURBULENCE AND LATERAL DIFFUSION : THE BAROTROPIC
CASE

3.1. The barotropic equations

Strictly speaking, barotropicity is the supplementary conmstraint that all
thermodynamic variables are functions of s only. Adding this constraint to the
primitive equations yields div V = 0, because r = r(s) in the continuity equation (8) :
thus, barotropic flow is horizontally non divergent. Furthermore, grad S, because
of (15) becomes independent of s ; then V must also be independent of s if the
equation of motion (5) is to be satisfied. Thus barotropic flow is governed
by the two-dimensional Euler equation

Dg

) 2
i O (withg=£f+Vy, V=0~Nx grad¥) . (36)

and therefore, cannot react to bottom orography.

A less restrictive approach is to start from the general quasi-~geostrophic model

(21-23, 25-28), and assume that V departs only slightly from its vertical average

N x grad¥, (37)

1<
1

ET
= :—_—-J———.:_‘ jr Y ; ds. (38)
p(sp)-py :

Sg

=)
|

Then, to first order, D/Dt becomes independent of s and (22) can be integrated

vertically to yield, after use of boundary conditions (25-28)

~ 2 2. - i
q=£+ (V-LZ)DY +qg (39)

-1
where .Eo is the external radius of deformation

2= E [a(EB) (5(_53) - By )] (40)
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and aé is the normalized orography

n - - - - - -

ap = £ ¢g / [q (sp) (p (sg) - PT)] 41
Equation (39) may be called the qﬁasi—barotropic, quasi-geostrophic potential
vorticity equation.

Most parts of the discussion which follows concentrate
on the dynamics of the simplifiedlequation'

Dq _
Dt_o

. a= -y, (42)
are @

in the absence of inertial or topographic Rossby waves.
total energy

As usual the invariants

~ 2

E —% /] (grady) (43)
D

and (generalized or quadratic) potential enstrophy

P, = ffA(i) axdy , TS

D
e |

P 5 q

2.2
+ KOW dxdy ,

“dxdy. (45)
. . D
Expansion of ¥, ¢ in terms of real Laplacian eigenfunctions
Y =1 Wn An ,
a=171q, Ay, (46) -
2 2
VA== kn Ay

yield the energy and quadratic potential enstrophy expansions
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- __ 1=
E=LE , B =-¥
47
P=31pP =14
- a? Pn=7 9
with the relation
2 2
Pn—‘(kn+£0) E . (48)

The phenomenology of barotropic turbulence is mainly based on the invariance
of E and P in nonlinear interactions. How these invariants affect the energy

spectrum depends of course crucially on relation (48).

3.2, Phenomenology of fully-developed forced barotropic turbulence

Let us consider now the somewhat idealized problem of a homogeneous, isotropic
turbulence on an infinite plane, forced at a given wavenumber kI with a stationary
energy injection rate € ; from (48), this also means a stationary potential
enstrophy injection rate 7 = (k]Z: + ﬂ(z))e. We assume that, for any given
wavenumbers K_,k+ (0 < k< kI < k+ < ®), we can integrate long enough to get

a statistically stationary flow in the spectral range (k_ , k+). We shall then

establish the phenomenology in the "fully-developed" limit k_ 0, k > =.

We denote by € _ , ™, the spectral energy and potential enstrophy fluxes towards

wavenumbers greater than k+, by €_, m_ the spectral energy and enstrophy fluxés

towards wavenumbers smaller than k_. The stationarity hypothesis yields

e, + €_ =€, (49)
T+t W_ =W,

On the other hand, (48) yields

2 S
’rr+Z (k++£0) €, 7 (50)
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or, with the help of (49)
2 (& + L))
T (k+ + o) €4t

" In the fully-developed limit, e, must tend to zero, because of the finite potential
enstrophy injection rate ; then, from (49) e_ must tend to €. This is the
well-known reverse energy cascade : in the fully-developed limit, all the energy

injected must cascade towards larger and larger scales.

Applying now (48) to the wavenumber range 0 < k < k_ , we get
2 : 2 2
Ko e_ S m_ S (k_ + Ko) E_ (51)

which yields in the fully-developed limit

2 . . .
T_ > ﬂoe » E_ 7 E. : (52)

This means that, at the other end of the spectrum

- (53)
L ki €, e, + 0.

(52,53) is a slight generalization of the classical two-dimensional turbulence

theory to a flow which possesses an external radius of deformation : (53) characterizes
the potential enstrophy inertial range (k > kI) where potential enstropgy cascades
from injection scale to smaller and smaller scales at a constant rate~kIE in the

fully developed limit ; (52) characterizes the energy inertial range (k < kI)

where energy cascades from injection scale to larger and larger scales at a constant
rate e. Energy is not allowed to cascade towards small scales, but a portion Ega

of the potential enstrophy injected does follow energy in its reverse cascade.

The classical phenomenology of two dimensional turbulence has been derived by‘
Kraichnan (1967, 1971) in the slightly restrictive case Ko = 0. To get a closer

look at the inertial ranges we need a phenomenological estiméte,of the characteristic
time scale 1(k) associated with nonlinear interactions. Now, turbulence occurs
because a particular structure gets distorted or strained by velocity gradients

arising from the existence of larger structures. This leads us to the estimate
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k. A - 1/2 ‘
(k) ~ / —2—?"—2 E (p) dp . (54)

0 P +£o
In (54), E(p) is the one—dimensional spectral energy density :
E = / E(P) dP » A
(55)
0 .

the integral being a measure of the kinetic enstrophy (a quadratic measure of
veiocity gradients) lying in scales larger than k_1. Now, the energy and potential

enstrophy cascade rates can be estimated as

_=kE (k) / 1(k) (k= k), (56)

™
il

W E®) [ Tk) 2z k), (57)

3
]

and it remains to eliminate T(k) between (54,56) or between (54,57) to get the
energy spectrum E(k) in each inertial range. In the potential enstrophy inertial

range, the result is

= 2 2/3 -3 k —1/3 : . (58)
B = ¢, (g P17 @ g,
and in the energy inertial range
2 2 _1/3
E(k) = c_52/3 Z;2/31(—1 <g%__ Ln (1 + 5?)) ) (59)
ya .

o
(58) is equivalent to Kraichman (1971)'s classical form with logarithmic correction
in the enstrophy inertial range of two-dimensional turbulence ; for lo =0,

(59) reduces to the classical energy inertial range spectrum. If £, < ky , (59)

can be approximated by

2/3 .-5/3

E(k) vC_e™"7 k (£ <k < k), (60)

E(k) ~ 21/30_ e2/3 12/3 773 (k < £). (61)
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it £, > kI the intermediate range (60) disappears. Thus the effect of an external

radius of deformation is to steepen the spectrum in the energy inertial range.

Going back to the estimate (54) of t(k) and replacing E(p) by its expression (58)

in the potential enstrophy inertial’range, we observe that the integrand is dominated
by scales much larger than k. This means that the structures which are most efficient
at straining a given scale are those whose scale is much larger (in fact, close

to the injection scale). This property is expressed by saying that, in the

potential enstrophy inertial range, nonlinear interactions are "momlocal" in
wavenumber space. It is readily verified from (59,54) that the reverse is true
within the energy inertial range. The final estimates for t(k) using (58,60,61)

are as follows

T, (k) ~ (In £§0_1/3 (k > kI) . (62)
k—2/3 (£o<<k<kI) R (63)
_ (k) ~ {
g213 43 (kkf , k<k.). (64)
o o I

Another effect of the radius of deformation is therefore to slow down nonlinear

interactions at larger scales.

The time it takes for a structure at wavenumber k1‘t0 significantly affect
(or be affected by) another structure at wavenumber k2 > k1 can be phenomenologically

estimated as

ky
T (kI, k2) =/ (k) dk. _ (65)

Ky

In particular, the quantity t(k,~) can be interpreted either as a regularity

time (the time it takes for structures initially confined at wavenumbers < k

to excite infinitesimal scales) = or a predictability time (the time it takes for
perturbations initially confined at infinitesimal scales to significantly perturb
wavenumber k). It follows from (62,65) that t(k,~) diverges for barotropic
turbulence. Barotropic quasi-geostrophic turbulence therefore appears as regular
and indefinitely predictable from simple phenomenological arguments. The fact

that mathematical analysis indeed confirms the regularity property (e.g. Kato, 1967)

is a strong argument in favour of the phenomenological approach.
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3.3. Truncated inviscid model flows : statistical equilibria.

In numerical models, excitation cannot propagate into the sub-grid scales :
therefore, the potential enstrophy cascade is blocked at the cut-off wavenumber,

and the flow tends to become organised in a quite different way.

Let us consider a strictly inviscid model with N degrees of freedom,
and assume that this model is a spectral model or a finite-difference model
of Arakawa (1966)'s type, which therefore conserves energy and potential emstrophy
exactly. Then, the image M = {xn},
2 2,1/2-
x = (kn + Ko) P

n’

of a particular solution in the N-dimensional phase space, remains on

the intersection C of the energy hypersphere

N
n=1

and the potential enstrophy hyperellipsoid

N
T2+ aDx% o p

n [s] n .
n=1

We now demonstrate that the motion of M is nondivergent in phase space.

The spectral transform of the potential vorticity equation (39) reads

dx
.

ac A w X v Xy, (66)

nn'n' "n' "n

i~ =

n'=1
n''=1

An eigenfunction An is a statiomary solution of (39) ; therefore
A, _=0. _ (67)

On the other hand, the "triadic'" forms of energy— and potential enstrophy

conservation read

’

2,2 2 2 2 2 ~
(kn * ﬂo) Ahln'n" * (kn' * ﬂo) Ahfn"n ¥ (kn" * Eo) Ad'an =05
(68)
A +A,+A,=0.
n n n
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From (67,68) we have

or in other words

dxn
2 (?t—)/axn = Q0.

Nondivergence means that the stochastic process defined by (66) and Lebesgue's
measure on C is stationmary. Then, if we assume that two successive states
of the system become uncorrelated for large enough time lags, we can apply

Birkoff's first theorem (e.g. Khinchin 1949) which says that the time averages

T
=T _ l
En = Tj; En(t)dt

converge almost surely towards the expectations Eg. These can be evaluated
by volume integrations along the hypercurve C (the so-called micro-canonical
ensemble) ; these integrals are easier to calculate if we approximate Lebesgue's

measure by a Boltzmann distribution around C :

atb (k2+£2) \ 1/2
P(xn) = (—————EL—:1~> exp (— %— <a+b(k§+ﬂ§)) E J> (69)
which yields
E = + b(k2+£2) B ‘ | (70)
n  \2 n o ' :

For a complete discussion of such statistical equilibria, originally derived

by Kraichnan (1967), the reader is refered to Sadourny (1984). What can be

said roughly is that the inviscid numerical solution tends to reach an
equipartition of potential enstrophy among small scale modes, and an equipartition

of energy among large scale modes (figure 2, from Basdevant and Sadourny 1975).

This long-term behaviour of numerical solutions is totally unrealistic and
does not improve when resolution is increased (figure 2). Asymptotically,
(70) yields one-dimensional energy spectra in k—1, instead of k—3 for physical

flows : this is because potential enstrophy, being unable to reach the sub-grid
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min

2
k is indicated by black triangles (logarithmic scales). The figure

can also be seen as describing the influence of resolution, for k
fixed and varying kmax' (Adapted from Basdevant and Sadourny, 1975).

Figure 2. Equilibrium spectra for various values of k = (P/E)1/2, £y =0 3
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scales, accumulates in the vicinity of the cut—off.+

3.4. Lateral diffusion : a review.

Let us assume we consider a numerical model with a cut-off wavenumber in the
potential enstrophy inertial range. If we want to eliminate the trend towards
artificial statistical equilibria described in §3.3., in favour of a more
realistic simulation of the inertial range, we have to parameterize the potential -
enstrophy cascade across the cut—-off wavenumber. This can be done — with

variable degrees of efficiency — by a number of lateral diffusion schemes.

3.4.1. Early formulations.

The simplest formulation of lateral diffusion is the linear laplacian which
mimicks molecular viscosity, but at the cut—off scale. This is of course

a very crude approach ; it introduces a wide artificial dissipation range

in the vicinity of the cut-off wavenumber kc’ and does not really simulate

the dynamics of the inertial range. We know from §3.2 that only potential
enstrophy should leave the resolved scales : energy should be strictly conserved.
The linear laplacian behaves very badly in this respect, since the ratio of
energy dissipated, to enstrophy dissipated is larger than k;z. Smagorinsky (1963)
introduced a nonlinear artificial viscosity, in which the viscosity coefficient,
instead of being conmstant, is proportional to local deformation ; Leith (1968)
makes it proportional to the magnitude of the local vorticity gradient. With
such formulations dissipation is concentrated in regions where we expect a strong
nonlinear activity ; however, the choice of a nonlinear dependency>is to a large
extent arbitrary. These nonlinear viscosities still dissipate energy and create

artificial dissipation ranges in the vicinity of the cut~off.

3.4.2. Spectral formulations.

A more convincing approach is to try to base the formulation of lateral

diffusion on a direct analysis of the sub-grid scale dynamics. Leith (1971)

The situation is of course much worse for finite-difference models which
conserve only energy. The same argument shows that in that case the solution
tends, in the long run, to equipartition its energy among all modes, which

. +1
corresponds to energy spectra in k .
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makes a statistical evaluation of the effect of the cut-off on nonlinear transfers,
assuming a k_3 energy spectrum, from which he deduces a universal form for
artificial viscosity v(k, k.). The interesting points are that v(k, k.) is
negative for k « k,—a "negative viscosity" effect which ensures global

energy conservation, and that it increases strongly in the close vicinity

of k., with a cusp-like behaviour. The formulation proposed by Basdevant, Lesieur
and Sadourny (1978) is more elaborate although similar in principle : in this
approach, a statistical closure model of two-dimensional turbulence is actually
coupled with the truncated deterministic model to actually simulate the statistical
effect of the sub-grid scales. When this parameterization is translated in terms
of artificial viscosity, the same properties as before : negative viscosity at
large scales, cusp—like behaviour near the cut—-off, are indeed observed. Both
methods turn out to be extremely efficient — as one should expect — if one

only looks at integral and spectral properties : energy is conserved, no artificial
dissipation range appears in the energy spectrum. The situation is quite different,
however, if we look at the flow in physical space ; in both cases, lateral diffusion
cannot be interpreted as a local derivation operator : a disturbing consequeﬁce

is that the spatial coherence of structures tend to be damaged. Another defect

of these two approaches is that they are too dependent on the classical phenomeno-—
logy described in §3.2. Therefore, all mechanisms which would tend to disturb

this phenomenology — 1like, for instance, intermittency : see Basdevant, Legras

and Sadourny ; Béland 1981 ~— will be inhibited, the classical phenomenology being

imposed on the flow by the dissipation scheme.

3.4.3. Superviscosity.

"Super" viscosity is a very simple linear formulation using an interated
laplacian eventually modified by a radius of deformation : = vp (Zg - v3)P,

Since it is linear (the coefficient v, is a constant), it is a fast and efficient

p
scheme when computed in spectral space. Scale selectiveness increases with p :

the dissipation range geéts narrower and the ratio of energy dissipated to potential
enstrophy dissipated decreases as (ki + ﬂi)—p. Therefore the simulation of the
inertial range gets more and more realistic as p increases ; there is a limit,
however, to how large p can be for a given resolution : there seems to be

an increasing function pc(kc) such that, if p > P, for a cut—off wavenumber kc,
dissipation becomes inefficient. In other words, pc(kc> is the optimal value

of p for the cut—off wavenumber kc ;5 for a resolution 128 x 128, p = 8 seems

reasonable. Also, note that superviscosity, being a local operator in physical

space, does not tend to destroy the spatial coherence of the flow. In fact, it may
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very well be the best and fastest lateral diffusion scheme at hand.

3.4.4, The anticipated potential vorticity method (APVM)

The anticipated potential vorticity method or APVM (Sadourny and
Basdevant 1981) attempts to parameterize the statistical effects of subgrid
scales by returning to the very first principles of the phenomenology : potential
enstrophy must be dissipated because it should cascade across the cut-off
wavenumber, but energy should be exactl& conserved because there is no energy
flux along the potential enstrophy inertial range in the asymptotic limit. These
two constraints (energy conservation, potential enstrophy dissipation) yield
a diffusion operatof which acts on the potential vorticity equation in the

following way :

D4 _ giv (6{/ ci?({l.grad El)>= 0 (71)
Dt _
where 6 is a time scale andg?e1nondimensional positive symmetric linear

operator. Since V is non divergent (71) is equivalent to
3q ~ ~ ) _ '
rai V.grad‘<q eg? (V.gradq)) =0 (72)

In the simplest case3?==1, the diffusion term appears as a simple up-wind
correction, anticipating the advected field a by a time lag 8. This choice

is easiest to implement, but not very realistic ; a realistic correction must

be scale dependent : most intense near the cut—off while vanishing at very large
scales. We shall then define Bg? by its spectral transform Gn(kn), a matrix

of scale-selective time lags with a cusp-like behaviour in the vieinity of kc,

and Gn ~ 0 for kn « kc. For instance, we may use .
- 24P 1."2P :
P = vHP P (73)

Figure 2 (from Basdevant & Sgdourny 1983) shows two energy spectra obtained
from a 128 x 128 spectral barotropic model ; one with the APVM (p = 8), the
other with the superviscosity method (also p = 8). There is hardly any
difference except close to the cut-off : there the APVM is better in the sense
that it does not produce any artificial dissipation range. This was also the
case with the spectral methods of Leith(1971) and Basdevant, Lesieur &

Sadourny (1978) ; but here the spectral shape has not been prescribed a piioii :
note that in figure 3 the slope 1s significantly steeper than -3, probably

due to intermittency effects.
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Figure 3. Comparison of energy spectra for forced barotropic turbulence, using
superviscosity (discontinuous line) or APVM (continuous line).
Logarithmic scales.
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4, QUASI~GEOSTROPHIC TURBULENCE AND LATERAL, DIFFUSION : THE BAROCLINIC CASE.

4o1. "Internal' versus "external" quasi-geostrophic turbulence.

Baroclinic quasi-geostrophic flow in its full generality is described by
equations (22-23, 25-28). If one compares with barotropic flow, the main
complication here is the coupling between "internal" dynamics — the advection

of potential vorticity inside the fluid, described by (22-23), and "external"
dynamics — the advection of geopotential or pressure perturbaticns along the
bottom and top boundaries, described by (25-28) : our present theories of
baroclinic quasi-geostrophic flow have alWays considered the two problems
separately (Charney 1971 ; Salmon 1978, 1980 ; Blumen 1978 ; Herring 1980 ;
Hoyer and Sadourny 1982 ; Sadourny and Hoyér 1982) ; the coupling problem remains
open. |

The "pure" internal problem is defined by setting p' = 0 at the top boundary

and ¢' = Q-l~ at the bottom, or :

— =0 at s = s (74)

(75)

il
n

(E;— E‘é%)w =0 at s

instead of (25-28). The problem then reduces to advection of potential

vorticity (22-23) between dynamically neutral boundaries (74,75).

Conversely, the "pure" external problem is formulated by setting
q' = 0 inside the fluid domain, or
2 Els 1 2 |
T .

ds — 9s
Gg

instead of (22-23). This time the problem reduces to advection of pressure and
geopotential perturbations on top and bottom boundaries (25-28), the two advections

being dynamically coupled through Laplace's equation (76).

For our present purpose — derivation of lateral diffusion operators consistent
with quasi-geostrophic dynamics, a complete theory involving the full

quasi-geostrophic set of equations (22-23, 25-28) is probably not needed.

TWe shall from now on discard orographic effects by setting ¢é(x,y) = 0.
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It is likely that an adequate formulation for lateral diffusion in the potential
vorticity equation can be obtained from the sole consideration of internal dynamics,
and on the other hand, an adequate formulation of lateral diffusion in the

pressure and geopotential transport equations on boundaries, from consideration

of external dynamics only.

In connection with this splitting of quasi-geostrophic dynamics into internal
and external problems, the energy invariant (29) can be rewritten in the more

convenient form

—

Sp
E = g-ff[eg V'), + (Evp"), —f Tiq ds] dxdy, an
D S
or —_—
. ) ST .
E = —-;- /]dxdy f Tyq ds ' (78)
D

g

in the internal case, and

E = —;—ffdxdy [ (é 1P¢')B + (fl!)p')T:I ; (79
- .

in the external case.

A spectral formulation of the .nteanal problem involves expanding ¥ in terms
of eigensolutions of the elliptic problem1ZBw = g, with boundary conditions
(74,75) at top and bottom ; we shall admit that these eigensolutions do form

a complete discrete orthonormal set :

W(X,Y,S:t) =1 IPH(I!I‘-I) An(X,y) Zm(s) >
(80)

q(X9YaS’t) =1 qn(ItI:l) AH(X,Y) ‘ZIII(S) s

with
2,2

Yam © (kn * Km) lpnm > , (81
where - Km (m = 0,1, ...) are the eigenvalues of the vertical elliptic problem
corresponding to eigenfunctions Zm(s) : 0< Ei < ﬂ? < ... We shall refer to

Zo(s) as to the "barotropic" mode, and to Zn(s) (n 2 1) as to the n-th baroclinic
—1 s -
mode ; to ZO as to the external gcale of deformation, and to ﬂh(n 2 1) as to the

n-th internal scale of deformation. Orthonormality of the set of eigenfunctions
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(with respect to the mean pseudo-density ) yields the spectral energy and

total potential enstrophy expansions

= -1
E=1E ’E - <2¢nmqnm’

” (82)
= 1.2
P=2P > Pom =7 9pp

p = g% .
nm nm nm
(83)
K2 = k2 + 4”,2 .
nm n m

For the external prdblem, we first expand in terms of horizontal harmonics

A(x,y), then solve the differential equations which correspond to (76) :

2

)
38 ¢

YN

2 )y -
3% = % ¥ (84)

Qlld

5

with boundary conditions wn(gi> = Vg, » wn(—ﬁ) = an'

If we define the normalised pressure and geopotential perturbations

=—_' -_-.i_a_w_ =g
dp fp = e at s = Sy s
s (85)
— ) —
£ : . —
=i ¢ =La-22y at s =5, ,
o B o o : .

the solution of (84) determines a positive symmetric linear application
T : (an, an) -+ (an, an), with orthonormal Slgenzectors Ano = (ATno’ ABno)f
An1 = (ATn1’ ABn1)’ and positive eigenvalues Kno’ Kn1 : 0 < Kno < Kn1. As for
the internal problem, we shall refer to Ano as to the barotropic mode and

to An1 as to the baroclinic mode. We shall also define for the external problem

external and internal scales of deformation, respectively'£;1, £;1 , with

£ =1im K

2

°© kso M '
" (86)
£1 = lim
k +0 K ,.
n ni

278



Total energy : E, and total available potential energy on boundaries P

P = P(Ei) + P(Eé), can be expanded as

1
E=12 (Eno * En1)’ ' Enm' i'wnmqnm’
87)
-1 2
P=1 (Pno * Pn1)’ Pnnf- 2 9o
where wnm’ qnm are the spectral expansion componentg of (wT, ¢B),
(qT,qB) along the Anm basis ; Enm and_an being related by
- x2 = : (88)
= K E , m=0,1.
nm nm nm )

Note that, as soon as we choose a spectral approach, we loose track of

all invariants except the global quadratic ones : thus we loose track, mot only

of the genenalised invariants P,(s), PAﬁE&), PA(Eé), but also, of the

detailed quadratic invariants P(s), P(E&), P(Eﬁ), which are not easily describable
in spectral space. The fact that our phenomenology — which follows — is

based on the invariance of E and P only may be seen as a rather severe restriction.

4,2, Phenomenology of fully-developed baroclinic turbulence.

We consider now a horizontally homogeneous, horizontally isotropic, internal
or external quasi-geostrophic turbulence over anm infinite horizontal plane.

In this section therefore, wavenumbers will take continuous values and will be
denoted by k instead of kn. We assume thermal forcing at horizontal scale

k£1 and vertical scale Zij (I-th baroclinic mode, with of course I = 1 for

the external problem) ; we also assume a stationary energy injection rate g,

. .. . 2
corresponding to a P-injection rate w1 = KIE.

Like in the barotropic case, we shall assume that excitation propagates in the
energy spectrum of the flow in such‘a way as to produce an ever-increasing
horizontal wavenumber band (k_, k+) within which the flow is statistically
stationary. From this assumption we shall try to establish the phenomenology

of quasi-geostrophic turbulence in the fully developed limit k_ - O, k+ > o,

Like in section 3.2, we denote by €,> T, the spectral fluxes of E and P towards
horizontal wavenumbers greater than k+ ; and by e_, m_ the spectral fluxes of
E and P towards horizontal wavenumbers smaller than k_. It is easily seen that

relations (49) are still valid :

(89)

279 .



However, in order to go further, we need to know at least the qualitative behav1our
of the eigenvalues K (k) -— generalisation to the k-continuous case of the
eigenvalues Kim lntroduced in 4.1. These are sketched on figure 4a for the
internal case, and figure 4b for the external case. At low horizontal
wavenumbers, the internal and external problems are roughly equivalent. In

both cases the limits of Km(k) as the horizontal wavenumber approaches zero

are the successive deformation wavenumbers. Furthermore, expanding the left-hand
side of (84) shows that, at low horizontal wavenumbers, 3/9s is of the order

of k2 ——-Whlch means that, in the external problem, the departure of K (k)

from ﬂ is of the order of k2 like for the internal problem. At large
horlzontal wavenumbers on the contrary, the internal and external problems

depart significantly from each other. In the external case, for fixed m,

K (k) is of the order of k (this again follows from (84), which yields 3/3s

of the order of k for large k); in the internal case, it is asymptotic to k*,

Then the equivalent of (50) :

3
w
3

[1\%

Ki &) e, | (90)

yields e, 70, e_~>ce¢ in the asymptotic limit. Thus the existence of a reverse
energy cascade is established for both internal and external quasi-geostrophic
turbulence . The question which remains open, is how this reverse energy cascade
is partitioned between the various vertical modes (this partition will in turn
determine how much P is carried to infinitesimal scales). For answering this

question we now need a more detailed analysis.

Like in the barotropic case the straining of a particular structure is effected
by velocity gradients with horizontal and vertical scales larger than its own.
The straining time scale for a structure at wavenumbers k, Km can then be

estimated as

-1/2
- =2 ,
T, () (mém T (k)) ) (31)
with -1/2
T (k) ~ f E (p)dp > ’ (92)
m ) 2 m .
o} Km(p) v

(91,92) are a straightforward extension of (54) to the baroclinic case, ?m(k)
refering to the time scale of the straining effected by the m~th baroclinic

component alone. We can expect that in the asymptotic limit (k - 0) of the reverse
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Figure 4. Disbribution of eigenvalues K (k) in the internal case (a) and
external case (b). (1ogarithmTc scales, asymptotic slopes
indicated). P~flux diagrams in black arrows, E-flux diagrams
in white arrows. Black and white triangle shows thermal injection
scale.
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energy cascading range,
Em(k) < Em'(k) for m>m' ; (93)

this decrease of energy with increasing vertical wavenumber is reasonable
and sustained by statistical equilibrium arguments (see section 4.3). Further,

in the same asymptotic limit,
2 22 . 52 . '
Km(p) - ﬂm > Lm' for m>m', (94)

Then we see that, because of (93,94), ?;Z(R) will be the dominant term in (91).
In other words, the most efficient straining in the energy inertial range will be

due to barotropic structures which carry the largest amount of kinetic energy.

From this it follows that all baroclinic modes (m > 1) are essentially passively
advected by barotropic flow in the energy cascading range. Therefore, baroclinic
energy will be drained, like a passive scalar, towards smaller scales. In other
words, the reverse energy cascade will be concentrated in the barotropic modes :

in the fully developed limit,

T_ > Zi £ , E_ + g,
(95)
2 2 '

T, > (KI - Eo)e, e, > 0.
This double cascade scheme is illustrated on figures 4a, 4b. Note that in K-space,
the situation is exactly reminiscent of the barotropic case, energy flowing
from KI to the lowest K, while P mostly flows from'KI to infinite K. Also note
that the P-cascade towards infinitely small horizontal scales will be eventually
carried by all vertical modes, since the m first baroclinic modes are in practice

undistinguishible from the barotropic mode as soon as k gets larger than ﬂm.

The last point in phenomenology concerns the derivation of spectral laws for
energy distribution. Here we proceed like in section 3.3. ‘Looking‘first '

at the larger scales in the reverse energy cascading range, we may recall our
earlier remark that the internal and external problems are rgughly equivalent
there ; also, the reverse cascade is confined within barotropic modes. Then, all
the results of section 3.2 hold and the barotropic energy distribution follows

(60,61) since thermal injection ensures Ko < KI :

2/3 k-5/3

E (k) v G_ e (£ <<k ) (96)

E (k) 21/3c_ e2/3 £§/3 /3 (k< 2) A (97)
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In the P-inertial range, we do not need to separate the different vertical

modes. (91,92) are equivalent to

: k 2 : -1/2
JI(k) v [/. P E(p)d?] . (98)

(o}

in the intermal case, where K;(k) N kz, and to

o

k 4 -1/2
P E(p)dp] (99)
[o]

in the external case, where Ki(k)-w k. Here

E(k) = £ E (k).
o

On the other hand, the P-cascade rates are estimated as
3
T, =k E(k)/t(k) (100)
in the internal case, and

T, = KEGR) /1 () (101)

in the external case. (98,100) yield

' 2/3
E(k) v C, <(K% - J&i)a) 3 (In %‘—)"”3 ; (102)
I

thus the P-inertial range of internal quasi-geostrophic turbulence behaves
exactly like the P-inertial range of barotropic turbulence. In the internal
case the situation is different ; (99,101) yield

9 5 2/3 -8/3
E(k) ~ c, ((KI - J&O)e) k . (103)

Note that, since P(k) ~ k E(k) at large wavenumbers,the P-spectrum which
correspond to (103) obeys a -5/3 power law : this is only matural, since

we may remember that P in the external case is indeed an energy (available
potential energy on boundaries) which cascades towards infinitesimal scales ;

thus (103) corresponds to an energy-inertial range spectrum.



4.3, Remarks on baroclinic insfability.

We have now a general picture of (internal and external) quasigeostrophic dynamics
which can be summarised as follows. When thermal energy is injected in the

mI—th baroclinic mode, it cascades back in K-space until it reaches values

of K smaller than the first deformation wavenumber £1 ; afterwards the reverse
energy cascade is concentrated in the barotropic modes and propagates along

ever increasing horizontal scales. Simultaneously, a‘portion ﬂis of the
potential enstrophy (or available potential emergy on boundaries in the external
case) also cascades back to barotropic large scales ;kthe remaining part(Ki—Ki)e

cascades down to infinitesimal scales.

This general picture requires that thermal (in other words, potential) energy

is converted into kinetic energy in the horizontal-wavenumber band (ﬂo, KI) : this
is the well known process of baroclinic instability, which keeps feeding the
barotropic large scales. The phenomenology derived in 4.2 demonstrates its
existence, and describes its generating mechanism as the combined effect

of energy trapping at large K's, and the draining of P towards small K's.

boh, Truncated inviscid model flows : statistical equilibria.

As in the barotropic case (section 3.3), truncation blocks the cascade processes
at the cut off wavenumbers. Discrete models which formally conserve E and P
evolve towards statistical equilibria
E_ = (atbkZ )7 (104)
nm nm . :
in absence of dissipation and forecing. (104) is formally identical to (70)
and is derived in exactly the same way, provided we admit (like in 4.2) that
the detfaifed conservations of P(s), P(ET), P(Eﬁ) do not play a significant
dynamic role compared to the global conservation of P. Also, note that (104)
indeed shows that the quasi-geostrophic nonlinear dynamics tend to accumulate

energy in the smallest K's, an assumption already used in the phenomenology
of (4.2).

The trend of truncated inviscid model flows towards statistical equilibria reflects
a realistic tendency of nonlinear dynamics to propagate E towards smaller K's and P
towards larger K's. The final distribution, however, is strongly biased by the

truncation effect, which replaces inertial range spectra by equipartition spectra.
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Numerical models therefore need lateral diffusion operators designed to simulate

accurately the cascade processes across the artificial upper cut-off wavenumber kc'

4.5, Lateral diffusion, or the parameterisation of baroclinic

instability in low-resolution models.

We consider now numerical models of quasi-geostrophic flow thermally forced

at the generalised wavenumber K We have seen in 4.2 that all the thermal

I
energy injected, after being converted into kinetic enmergy by baroclinic
instability processes, eventually shows up in barotropic large scales :

therefore, we must require that lateral diffusion operators strictly conserve

the total energy E ; but we must also require that they dissipate the proper

amount of the invariant P, in order to ensure appropriate conversions of
potential energy into kinetic energy. These two requirements will be the
main guidelines for proper parameterisation of sub—grid scale baroclinic

instability in numerical models.

The problem is easiest to solve for high resolution models. By high resolution
model we mean a model whose cut—off wavenumber is significantly larger than

the generalised thermal forcing wavenumber : kc2>K . Then, from section 4.2

(see figure 4), we know. that barcclinic instabilit; will naturally keep the
energy away from the cut-off scale : in that case, any diffusion operator

like, for example, super—viscosity, will essentially dissipate P and not E.
In other words, this is the case where resolution is high enough to resolve

the main processes of baroclinic instability.

Now, for low-resolution models (kC hS KI), truncation occurs within the
natural baroclinic instability wavenumber band (11, KI)’ or, in other words,
within the natural path of the energy cascade (figure 4). In that case the
parameterisation of baroclinic instability becomes a crucial problem which

determines the design of diffusion operators.

As an example of ordinary diffusion operators, let us look at the behaviour
of super-viscosity in the low-resolution case. The governing equation for

q(s), drs dp reads

Dgq

=9 —v2yP _ _
ot * Vp (-v9) " q=0 (105)

if super-viscosity is defined in terms of the horizontal laplacian ; or
Dq - P,
pe + I a=0 | (106)
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for the internal case, if we define super-viscosity in terms of the three-

dimensional laplacian ZB, and

Dq P -
—]E + \)p T q = 0 (107)

for the external problem (see section 4.1 for the definitionm of T). The two
formulations (105), (106-107) may look different at first sight, but are indeed
equivalent in the vicinity of kc ~ KI’ where dissipation is concentrated.
On (106-107) we see that the ratio of E-dissipation to P-dissipation is,

-9 .

in the super-viscosity case, of the order of KI H

SE 2

Assuming that &P is "tuned" to the right order of magnitude (95), we get
2,2
SE n (1 - EO/KI) €. (109)

Thus superviscosity induces, in the low-resolution case (kc g KI)’ an energy
dissipation of the order of energy injection. This means a very low efficiency
of the numerical model in simulating the large scale barotropic modes ;

the reverse energy cascade which normally feeds these modes is significantly

hindered by dissipationm.

The Anticipated q — method (AgM) is a generalisation of the Anticipated Potential
Vorticity method to the (internal, external, or coupled) baroclinic case.

The generic equation reads

D
D—‘tl - V. grad(@ ci? (V. gradq)): 0, (110)

applied to q(s), dps e Here energy is exactly conserved and P(s), P(Ei), P(Eﬁ)'
are dissipated : the reverse energy cascade remains realistic in spite of low-order
truncation, which means proper conversions of potential energy into kinetic energy.
The AqM appears therefore as an efficient dynamical parameterisation of subgrid
scale baroclinic instability. It has been tested by Sadourny and Basdevant (1984)

on thermally forced two-level baroclinic flow, with £1 = KI = 15.

Figure 5 shows the energy spectra for three test-cases : (a) high resolution
(£1= KI<<kC= 61) control case ; (b) low-resolution (£1= KI = kc = 15) with
superviscosity (p = 8) ; (¢) low-resolution (Z1= KI= kc = 15) with AqM (3? given

by (73), p = 8). The AqM parameterisation appears to be quite efficient
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Figure 5. Barotropic (EnO) and baroclinic (En1) energy spectra of two-layer

internal quasi-geostrophic turbulence thermally forced at k.= 4
(vertical arrow). Continuous line : control experiment

(kmax = 61) truncated for display at koo = K1 = 15). Dotted line :

super—-viscosity, low resolution (k = K. = 15). Discontinuous line :
. max I
AgqM, same low resolutionm.
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in simulating the expected level of excitation in both barotropic and baroclinic
modes, in spite of severe truncation. This means that the proper amount of thermal
energy is actually converted into kinetic energy by the diffusion operator, and
cascaded back into larger scales. Superviscosity, on the other hand, is
significantly less efficient : it underestimates barotropic energy, and
overestimates baroclinic energy ; thus, in the super-viscosity case, only

a part of the thermal energy injected is actually converted into kinetic energy —
another part is spuriously dissipated, while a third part artificially remains

in the baroclinic modes, in accordance with the phenomenological theory of

Sadourny and Hoyer (1982).

The AgM seems therefore a very promising approach for designing dynamically
efficient, low—order models. Its extension to the primitive equation case

is straightforward, provided the equations are writtenm in entropy coordinate

form. (110) can be directly applied to Ertel's potential vorticity equation, and
to the transport equations of Sp and g 3 it can also be translated into
momemtum form :

DV
— + (f - eg?.y. gradn)Nxv + gradS = 0, (1D
Dt

for the inside flow.

288



5. REFERENCES

Arakawa, A., 1966 : Computational design for 1ong—terminumerical integration
of the equations of fluid motion = two—dimensional incompressible
flow. J. Comp. Phys. 1, 119.

Arakawa, A., 1984 : in same volume.

Basdevant, C. and R. Sadourny, 1975 : Ergodic properties of inviscid truncated
models of two-dimensional incompressible flows. J. Fluid Mech., 69, 673.

Basdevant, C., M. Lesieur and R. Sadourny, 1978 : Sub-grid scale modeling of

enstrophy transfer in two-dimensional turbulence. J. Atmos. Sci., 35,
1028. )

Basdevant, C., B. Legras and R. Sédourny 5 M. Béland, 1981 : A study of
barotropic model flows : intermittency, waves and predictability.
J. Atmos. Sci., 38, 2305.

Blumen, W., 1978 : Uniform potential vorticity flows : Part I. Theory of
wave interactions and two—dimensional turbulence. J. Atmos. Sci.,
35, 774.

Charney, J.G., 1971 : Quasi-geostrophic turbulence. J. Atmos. Sci., 28, 1087.

Charney, J.G., and G.R. Flierl, 1981 :
in : Evolution of Physical Oceanography, M.I.T. Press, 504.

Herring, J.R., 1980 : Statistical theory of quasi-geostrophic turbulence.
J. Atmos. Sci., 37, 969.

Hoyer, J.~M. and R. Sadourny, 1982 : Closure modeling of fully-developed
baroclinic instability. J. Atmos. Sci., 39, 707.

Kato, T., 1967 : On the classical solution of the two—diménsional non stationary
Euler equation.
Arch. Ration. Mech. Anal., 25, 303.

Khinchin, A.I., 1949 : Mathematical foundations of information theory. Dover,

Kraichnan, R.H., 1967 : Inertial ranges in two—dimensional turbulence.
Phys. Fluids, 10, 1417.

Kraichnan, R.H., 1971 : Inertial ranges in two- and three-dimensional turbulence.
J. Fluid Mech., 47, 525.

Leith, C.E., 1968 : Diffusion approximation for two-dimensional turbulence.
-Phys. Fluids, 11, 671. ’

Leith, C.E., 1971 : Atmospheric predictability and two-dimensional turbulence.
J. Atmos. Sci., 28, 145. '

Sadourny, R., 1984 : Quasi-geostrophic turbulence : an introduction, In : Turbulence
and Predictability in Geophysical Fluid Dynamics and
in Climate Dynamics. Societd Italiana di Fisica, in press.

289



Sadourny, R., and C. Basdevant, 1981 : Une classe d'opérateurs adaptés a la
modélisation de la diffusion turbulente en dimension deux.
C.R. Acad. Sci. Paris, 292, II, 1061.

Sadourny, R., and C. Basdevant 1984 : Parameterisation of barotropic-baroclinic
instability in low-resolution quasi-geostrophic models.
In preparation.

Salmon, R., 1978 : Two-layer quasi-geostrophic turbulence in a simple
special case. Geophys. Astrophys. Fluid Dyn. 10, 25.

Salmon, R., 1980 : Baroclinic instability and geostrophic turbulence. Geophys.
’ Astrophys. Fluid Dyn. 15, 167,

Smagorinsky, J., 1963 : General circulation experiments with the primitive equations.
I. The basic experiment. Mon. Wea. Rev., 91, 164.

290





