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Introduction

This Tecture will represent a review of the properties of finite-

difference methods used for the linear advection equation

AUy o Bu 0; c = const. (1.71)

Here u(x,t) is a function of two independent variables; the independent
variable x will represent a space variable, and t time. fhus, (1.1)
will represent a one-dimensional Tinear advection equation. General-
izations to two space dimensions shall not be included, since no
fundamental problems have been noticed to arise in such generalizations.

It is now widely understood that the main computational problems in
the finite-difference solution of (1.1) are those encountered due to
space differencing. Thus, these problems will be outlined first; they
are the problems of the phase spéed error and of the computational
dispersion. Subsequently, the effect of time differencing shall be
analyzed.

Finite difference treatment of the linear advection equation is a
standard introductory subject of all review texts on difference methods
used in atmospheric models. As probably the most recent widely avail-
able text, the book by Haltiner and Williams (1980) can be mentioned.

In this lecture, I shall, for a presentation of the mentioned space
differencing problems, follow the earlier monograph by Mesinger and
Arakawa (1976). The analysis of the effect of time differencing will
be based mostly on a recent manuscript by Takacs (1984). The subject
of the linear advection equation will receive additional coverage in

some of the following lectures.



. Centered second-order space differencing: phase speed error and computational

dispersion

If the x axis is divided into equal space increments, and the space
derivative in (1.1) then approximated by a centered finite difference
quotient using values at the two nearest pbints,‘we obtaﬁn for the time

derivative

at 24 |
: (2.1)

The subscript here denotes the distance from the origin in space incfements;

that is, x = jaAx. We now want to have a look at the properties of (2.1)

which are due to the space différencing it contains. The solution of (1.1)

being known, a most logical and also a feasible way at our disposa] is a

comparison of the solutions of (2.1) against those of the differential

equation it approximates.

In this situation, it is generally found mqst instructive to consider

the solution in form of a single harmonic component

u(x,t) = Re\:U(t)ei kx:i.‘ (2.2)

Inserting (2.2) into (1.1), we find that it is indeed a solution of the

considered advection equation, provided that

‘-;% + kel = 0. (2.3)

In thié oscillation equation, kc is equal to the frequency v, and ¢ = v/k

is the phase speed of the wéves. It is seen that waves of all wave lengths
are propagated with the same phase speed, that is, the function u(x,t) is .
advected with no change in shape at a constant ve1ocity‘¢ along the x axis.

There is no dispersion.



For the solution of (2.1), we insert

uy(t) = Re[U(t)ei'ijx]s | - (24
which results in _

dy | . sin kax\ o, _

-CE + 'Ik(c——k"A‘)"('—) U = 0. : (2-5)

Thus, instead of the constant phase speed c, we see that waves now propagate
with the phase speed

sin kaAx

c*= ¢
: kax - (2.6)

This phase speed is a«fuhction of the wave number k. Thus, the finite

differencing in space céuses a dispersion of the waves; this effect is

called cémputationa] dispersion. As kax increases from zero, the phase
speed c* moﬁitonica]]y,decreases from ¢, and becomes zero for the shortest
resolvable wave Tength 24x, when kax = w. Thus, all waves propagate at a
speed that is less than the true phase speed c, with this decelerating
effect increasing as the wave length decreases. The two-grid-interval
wave is stationary.

The reason for the two-grid-interval wave beihg stationary is
obvious when we look at the plot of that wave, shown in Fig. 2.1. For

this wave u; 4 = Us_q at all grid points, and (2.1) gives a zero value

VARV

Figure 2.1. A plot of the "two-grid-interval" wave, with a wave
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length of 2Ax.



We have encountered two éffects here. Firstly, the advection speed
is less than the true adveétionvspeed. The consequence of this error is
a general retardation of the advection.process. Secondly, the advection
speed changes with wave number; this false dispersion is particularly

serious for the shortest waves.

We now turn our attention to the group velocity. In the case of

the linear equation (1.1), we obtain for the group velocity Cq

_ d(ke) _
€9 = dk c. | , (2.7)

Thus, the group ve]oqity is constant and equal to the phase speed c. With

the differential-difference equation (2.1), however, (2.6) gives for the

group velocity

d(kc*

* = =

cg dk C Cc0S KAX. (2.8)
Thus, as kax increaSes from zero, the gfoup velocity ca decreases
monotonically from Cg, and becomes equal to ~Cq for the shortest resolvable

wave length of 2ax.

These results are summarized in Fig. 2.2. For the exact advection
equation (1.1) both individual waves and wave paékets( that is places
where superposition of waves results in a maximum amplitude of a group
of neighboring wave numbers) propagate at the same constant velocity
c = cg- Introduction of the Centered difference quotient 1n1(2.1) makes
both the phase ﬁpeed and the group velocity decrease as tﬁe wave number
increases. The error is barticuiarly great for the shortest resolvable

wave lengths; waves with wave lengths less
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Figure 2.2. Phase speed and gfoup velocity, in the case of the
linear advection equation, ¢ and Cq, and in the
case of the corresponding differential-difference
equation with second-order centered space differ-

encing, c* and-c§ (Matsuno, 1966)..

than 4ax even have a negative group’ve1oc1ty. This means fhat'wavé packets
made up of these waves propagate in the dfrection opposfte to the advéétion
velocity and opposite to the‘difection of propagation of individual waves.
It is possib]é to obtain an ana]ytic solution of (2.1), whichvcah be
used to ana]yze.its behavior for some gfven ih1t1a1 conditions of interest.

To this end, it is convenient to define a non-dimensional time variable

T zct/AX,



and, after dividing (2.1) by c¢/2ax; to write it in the form

2 4 uy(e) = IRIORIRIOE (2.9)

This can be recognized as the recurrence formula of the Bessel function

of the first kind of order j, Jj(r). In other words,

u(x) = 3;(x), | (2.10)

is a solution of (2.9). Several of these functions, of the lowest
order, are shown in Fig. 2.3. The figure illustrates more of these

functions than indicated, since, for any j,

Note, furthermore, that in (2.9) the subscript j can take any integer
value, since the location of the grid point‘for which we choose j=20

is arbitrary. Thus, a solution that is more general than (2.10) is

us(e) = Js_(n),

Figure 2.3. The Bessel functions J (<), J;(t) and Jo(7).



where p is an arbitrary integer. A still more general solution is a
Tinear combination of all these solutions, that is
u. =5 .
(1) =2 aj 5

- )

p(T): | (2~]1)
where ap are arbitrary constants. Now, for T = 0 all of the functions
Jk are equal to zero, except J , for which JO(O) = 1. Hence, substituting

=0 into (2.11) we obtain
uj(O) = a;- | (?.12)

Therefore the constants in (2.11) can be chosen so as tolsatisfy arbitrary
initial condifions u; = uj(O). In this way,_(2.11) is seen to represent
the general so]utioﬁ of (2.9), or (2.1). |
It is 1nstructive to look in some detail at the sO]ution‘Satisfying
the 1n1tfa1 conditions
1 for j=0
uj(O) = (2.13)
0 for j#0
the simplest solution of the -form (2.10), for different values of the
non-dimensional time. At the initja] moment the function uj consists
of a single pulse-Tike disturbance centered at the point j = 0, as shown
in the upper diagram of Fig. 2.4. We note thaté because of (2.9), duj/dT
is then equal to zero at all points except at j = -1 and j = 1, where it is
equal to -1/2 and 1/2, respectively. . | |
Thus, at the initial moment the distgkbanée,propagates at the same

rate in the directions of both the positive and the negative x axis.

Further propagation of the disturbance can be followed by the evaluation



of (2.10) for vahious,times; solutions obtained for r = 5 and 1 = 10 are

shown in the middle and lower diagrams of Fig. 2.4, respectively.

Figure 2.4. The analytic solution of (2.1), for the initial conditions
: shown in the uppermost of the three diagrams, for two
subsequent values of the non-dimensional time t (Matsuno, 1966).



The three diagrams present an example ofrfhe-computational:dispersion
of the second-order'céntered space differencing. - Expansion of a‘single grid
point pulse-like disturbance as a cosine Fourier integral shows that it
consists of all harmonic components, present with an equal amplitude.
According to Fig. 2.2, its various Fourier components are advected with
different phase speeds, bringing about a dispersion of the disturbance.

'w1fh the non-dimensional time chosen here, we see from (2.9) that the
physical advection ve]dcity shouid keep the pulse Tocated at the point

j = 1. Because bf the space difference approximation, however, all the
phase speeds are less than the physical advection velocity. The main
disturbance, as seen in Fig. 2.4, is adveCté&.at a“Speéd'on]y sTlightly
Tess than the physical oﬁe; obviously ft is formed mostly of the Tonger
wave components, which have an advection speed not much different from the-
physical advection ve]oéity.' Howévef, it is.seeh'td‘be diffusing away
with time, which is again a result of the dispersion.‘ We also observe
propagation of a gréup of short wavesyin:the diréction gpposite to that of
the physical advection. Since the appearance‘of tHese waves contradicts
the physical properties of the advection equation, such waves are called
parasitic waves.

For a more saiﬁsfactory difference so]ﬁffdnA}ﬁ fhé;d;sé ofﬁﬁﬁlgé;ffke
initial condition, with no change in the séheme uged;‘df’dOU?gé more grid
points across the disturbance are needed. Rather than looking at results
which can be échieved in this way at this point, it is more appropriate
to analyze properties of other difference approximations that may appear

attractive for the solution of (1.1).

10



3.

Upstream first-order space differencing

With the considered initial condition, obviously, no panasitic waves

can be created when using the upstream scheme for the space derivative

au. i Jj-1
._aJ..|.(;___.._._..=()’1:0|—(:>00 (3o1)

at Ax

This choice is certainly appealing from the point of view of the direc-
tion of the propagation of the disturbance according to the differential
equation we want to approximate.

The analytic solution of (301) can be obtained in a manner entirely
analogous to that just used in the case of centered differencing. As
the solution satisfying the single grid point pulse~like initial
condition of the precedihg sectfon, one obtains the Poisson frequency

function

c 't for j > p,
uJ. (T) = W (3-2)
0 - for j < p

This being a frequency function, it encloses an area equal to unity for
all values of . As the non-dimensional time T increases, the shape of

the histogram defined by (3.2) changes in such a way as to have its mean

position
E (j=p) CjTTJ-p =T
j=p=0 (3=

move at a constant speed, equal to the physical advection velocity.
Finally, during this advection process, no false negative values are

created.

11



A linear combination of all possible solutions (3.2)

oo =T3P
J p=—w P (3-p)!

for T = 0 reduces to -

.(0) = a,
.PJ( ) aJ

Thus, this is the general solution of (3.1).

(3.3)

Ah example of the solutions (2.11), for centered differencing, and

(3.3), for upstream differencing, for the initial disturbance

1 for j = -1,0,1

0 for 3 # -1,0,1

is shown in Fig. 3.1, If the grid distance is of the order of 150 km,

. -1
and ¢ is about 15 ms ', we can see that

Figure 3.1.

1.0 T =25
0.5
0] RSN
~15 -0 -5/
1.0 =10
0.5

1.0 T =15
0.5
- A
0 N i Syt ! N

= N0 s A 10015 20 28

(W4

Analytic solutions of the exact advection equation (heavy
solid line), of the equation using centered differencing
(dashed line), and of the equation using upstream differ-
encing (thin solid line), for three different values of

the non-dimensional time T

(Wurtele, 1961).
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10 units of non-dimensional time approximately correspond to the
physical time of one day. Thus the damping effect of the first-order

upstream differencing is seen to be quite severe,

4, Centered fourth-order space differencing

An alternative attempt to explore the possibilities for an improvement
"~ in the overall properties gf the difference solution can be made by
increasing the order of accuracy of the space differencing. The simplest
way of achieving a higher order accuracy is tHe use of the fourth-order
accurate '"four thirds minus one third" approXimation to‘the space

derivative. This results in the scheme

au 4 Y3+1 = Uy-1 (4.1)

- RPE 3
ot 3 20x 3 4Ax

Inserting here a tentative solution in form of a single harmonic

component, (2.4), we find the phase speed

*% (g sin kAx

o - e _ sin 2kAX) o (4.2)

1
3 kiAx 3 2kAx

This phase speed as a function of KAx, along with that obtained with
second-order centered differencing, is shown in Fig. 4.1, The figure
illustrates the very substantial in;rease in accuracy of the phése
speed for large-scale and medium-scale waves. However, as the wave
length approaches its minimum value of 2Ax, the increase in phase speed
obtained by fourth order differencing diminishes, until, finally, the

wave with wave length 2Ax is again stationary.

13



Phase
speed

Figure 4,1 Phase speed for the Tinear advection equation, c, and -
for the corresponding differential-difference equations
with second order {c*) and with fourth order (c**)
centered space differencing. '
Moreover, for short waves the slope of the phase speed curve is. greater
than with second-order differencing, and, therefore, the computational
dispersion of these waves is greater.

The group velocity resu]tﬁng from (4.2) also shows a substantial
improvement for longer waves. Some improvement is also achieved for
medium-scale waves, so that the.kegion of'negative group velocities
is reduced. The shortest waves, however, have ahlarger group velocity

error than with second-order differencing.

Explicit two-Tevel time differencing

While all of the features considered so far are important and mdy
and/or have been the subject of special additiona]-efforts, the issue
of the bhase speed accuracy stands out as the dominant issue of the
Tinear advection equation schemes used in fihite?differenée Weather:
prediction models, Thus, significant improvements have been repofted
in the performance of compkehensive atmospheric models resulting from
the use of fourth-order schemes for the hdrizonté] advection or for
all space derivative tefms. Nevertheless, the systematic phase speed
retardation due to space differencing has remained a matter of much

concern.

14



A simple possibility to improve the situation is offered by time
differencing. Time differencing can have an accelerating effect, and
thus, under favorable circumstances, can alleviate the phase
speed problem due to space differencing. This is the basis of numerous
efforts in constructing difference schemes for the linear advection
equation, with results published in meteorological (e.g.,

Crowley, 1968; Molenkamp, 1968; Anderson and Fattahi, 1974) as well
‘as other literature. We shall here, following a manuscript by Takacs
(1984), present a systematic analysis of the situation arising when
an explicit and -two time level scheme is used for the time derivative.
This can be considered as the simplest class of time differencing
schemes; with attractive features of the least possible storage

requirements, and of the absence of the time computational mode.

For a general approach, we consider the scheme

n+1 n _ ; .
uj f) apuj'l'p 7 P = 01 -11 —2, XY (5-1)
with superscripts denoting the time level of the difference variable,

and ap the coefficients defining the scheme.

Conditions can be imposed on the coefficients ap necessary to
satisfy a desired set of requirements, By the Taylor series expansion
about the joint jAx,nAt, it can be shown that for the first-order

accuracy, in both space and time, we need
Ya =1, L pa =, (5.2)
p 1% P

where u is the Courant-Friedrichs-Lewy (CFL) stability parameter

- cAt
W= Rx

15



Second-order accuracy, in addition to (5.2), requires

2

Ipla_ =u
p (5.3)

P

For mth-order accuracy, there are m+1 requirements, beginning with (5.2)

and ending with

z pmap = (<" ' (5.4)
p
A scheme satisfying the requirements (5.2) through (5.4) is mth-order
accurace in both space and time, A familiar example is the second-

order accurate Lax-Wendroff scheme,

Some insight into the properties of (5.1), as a function of the
number of accuracy requirements satisfied, can be gained by a comparison
of its wave solution against that of the continuous equation. For a

wave solution of (5.1) we insert

ug = Re (ﬁnelijx) (5;5)
defining, at the same time,

a™ = g \ = rel?
we obtain

Rel¢ =1 apelkPAX (5.6)

Introducing, for brevity, the non-dimensional wave number

6 =kAx,

16



this can be written as

2 . 21k
= I )
R [(g apcos pe) + (PaP51n P ) ]

o = tan_1 [(Z a_sin pe) / (Z a_cos pB)] (5.7)

p p
: p p

On the other hand, the wave solution of the continuous equation can

be written in the form

RF/Atﬁ

e i(kx+¢t/At)] (5.8)

u (x,t) = Re[ (o)

with

R, = 1, @T = -p@, ‘ (5.9)

representing the amplitude amplification factor, and phase change per

time step, respectively, of the true solution,

For a comparison of (5.7) and (5.9), R and ¢ being wave number
dependent can now be expanded into Taylor series about 8 = 0, The true

solution gives

R,

1,

T
(o]
M M 5.10
(d°R,/d0") =0, M=1,2,3... , ( )
and
¢T =0,
o
~H, =1
N N .
d as = .
(d7¢,/a00, 0, N=2,3,4,... , . (5.11)
with subscripts 0 denoting values at 8 = 0, The discrete solution,
however, results in
R =1 a
o P p
M M
(@' rR/a87) =0, M= 1,3,... , (5.12)

17



and

it
-—

N N L
(d ¢/de )o = P pap/g apl N
(5.13)
o, N

2,4,...

For even derivatives of R and odd derivatives of ¢ complicated
expressions are obtained, involving the coefficients ap. It can be

shown (Takacs, personal communicatjon)‘that by choosing the coefficients
following the order of accuracy requirements more and more derivatives

of R and ¢ can be made to vanish., This is summarized in Table 1, The
table supports the impression that may have been obtained from a
comparison of the results of the preceding sections, in that improvements

in the amplitude properties of the scheme can be obtained by going for an

Order of Minimum Amplitude conditions Phase conditions
accuracy number of satisfied: satisfied:
grid points : R, = 1, and (dd)/de)o = -y, and
T ]
needed (dM'R/dGM') =0 (dN ¢/d6N )y =0
o o
for M' = M,1,3,... for N' = N,2,4,..
1 2
2 3 M= 2
3 4 M= 2 N=23
4 5 M= 2,4 N =3
5 6 M= 2,4 N = 3,5
Table 1 Amplitude amplification and phase characteristics of two time

level schemes as a function of the order of accuracy.

18



odd to the next higher even-ordered scheme, while improvements in the phase
properties can be achieved by going from an even to the next higher odd-

ordered scheme,

However, given the number of grid points one is considering for use
within the advection.scheme, it does not necessarily follow that satisfy-
ing the maximum number of the order of accuracy requirements éhould give
the best result. For an analysis of this issue, we again follow Takacs
(1984), in considering the case of the four point scheme. With three
points centered and the fourth point upstream (p =1,0,-1,-2), Takacs
has chosen to

i) impose the second order accuracy requirements;

ii) have the coefficient of the extra upstream point depend on u so

that for y = 0 or 1 the scheme is exact;

iii) impose an additional restriction on this coefficient requiring

that the scheme be stable;

(iv) make an experimental study of this family of stable schemes with a

view to minimizing some measure of error,

Step i) of this procedure restricts analysis to the scheme

n+1 n n n n )
= + ., . +ta _u, ; (5.14)
uj a1uj+1 f aouj a_1uj_1 —2%5-2

a, = p(p-1)/2 - a_,
ao =1 - u2 + 3a_2 r
a_1= B (u+1)/2 -3a__ -

2
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The requirement of step ii) is achieved by

a

-2 F ap(u-1), (5.15)
The stability restriction of step iii) is found to be

0sasl/2:  (5.16)

Within this range, for & = (u 4 1)/6, the scheme becomes third-order
accurate; and for @& = 0.25, it reduces to the 9zero average phase speed
error scheme" of Fromm. | _

As step iv), Takacs has performed and analyzed experiments similar
to those of a number of previous studies: a cone-shaped disturbance, of
a base-width of 10 grid points, was advected over a distance of 70 grid
points. This initial condition, at the same time the true solution at

the verification time, is shown in Fig. 5.1. Three error measurements

1.2}- .
1ok : -
0.8~ =
0.6 A
0.4 - ' —

0.2 |- ~

! ! Il 1 ! - .
o] 10 20 30 40 S0 60 70

DISTANCE

Figure 5.1. The initial condition of Takacs' one-dimensional advection
experiments.

20



were taken; one was the MS error, called the total error,

E = (u -u.)2
J .

TOT T (5.17)

The bar here denotes the arithmetic average over all the 70 grid points.

A straightforward manipulation of .(5.17) leads to

_ i 2.~ -2
Epop = [0(ug) - 0] + (- 5% + 201-p) o(uy 9(a ), (5.18)

where 02 represents the variance of a quantity, and p the correlation
coefficient of Ur and'uj.v’Thus, if ur and uj are exactly correlated,
all of the considered error will be contained in the first two terms of
the right-hand side of (5.18). Takacs, therefore, defines the sum of

these two terms to represent the ''dissipation error"

- _ 2 = =2 (5.19)
EDISS = [U(uT) G(uj)] + (uT-uj)
and the third term, present only for p # 1, the 'dispersion error
- _ (5.20)
EDISP = 2(1-p) G(uT) G(uj).

The three error measurements obtained in advectiqn experiments for
various values of o and u are shown in Fig. 5.2, The numbers in the
figure are scaled by the maximum MS error, and by the number of time
steps required to advect the cone the 70 grid point distance. . Thus,
these are errors per time step, as functions of the scheme, and the
Courant number used.

Minimization of the total error is seen to occur along the third-
order accuracy line. Compared to the Lax-Wendroff scheme (o = 0) the
extra grid point can substantially reduce the total error. Dissipation

errors obtained are about an order of magnitude smaller than the total error.
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They are not much affected by the extra point added to the second-order
scheme. Reduction of the total error 'thus, to a very farge extent ,
represents the reduction of the dispersion error. Note that,

for the third-order scheme, this should have been anticipated on the
basis of results shown in Table 1.

The appropriate choice of o in a comprehensive atmospheric model
apparently depends on the effective Courant number used. Explicit
time differencing in grid point mddéis tends more and more to be
associated with splitting, so that large time steps are used for
adyection steps. The value of @ = 0.25 then may be appropriate. With
no splitting and small effective Courant numbers, a smaller value
should be better.

Results of experiments performed by Takacs in which the initial
condition of Fig. 5.1 was advected two translations over the 70 grid
point domain are shown In Fig. 5.2.. Fig. 5.3 shows the results
obtained for u = 0.2, and Fig.5.4'those for ¢ = 0.7. In each figure,
results are shown obtained using the first-order forward-upstream
scheme (panel a), Lax-Wendroffscheme.{(b), considered four-point scheme
with a = 0.20 (c), Fromm scheme, obtained for o« = 0.25 (d), fourth-
order space diffefencing with leapfrog time differencing (e), and the
third-order scheme (f). Noté that for u = 0.2, the four-point scheme
with o = 0.2 is, in fact, the third-order accurate scheme. In each
plot, the total error, dissipation error, and dispersion error, as
defined previously, are also presented; again scaled by the total
number of time steps.

The phase error problem of the second-order scheme is indeed
seen to be eliminated to a very large extent by going to the four-

point schemes. The Fromm scheme for u = 0.2 has even resulted in
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TOTAL ERROR
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0.0 1 Il 1 i [
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DISPERSION ERROR

o

Figure 5.2. Total MS error, dissipation and dispersion error as defined by (5.19) and (5.20),
' respectively, per time step, and in percents of the maximum MS error. Values
are obtained after advecting the initial condition of Fig. 5.1 over a distance
of 70 grid points. The straight line in the upper panel shows the third-order
accurate scheme. (Takacs, 1984).
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Fig. 5.3. One-dimensional advection experiments, for u
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0.2. See text for details.

(Takacs, 1984).

24



1 ¥ i 1 | Ll 1 1 1 1 1 i

1.4} ' a . Laef- b -
TOTAL .0232 TOTAL ,.0158 ~
1.2 DISS. .0l21 - 1.2 DISS. ° .0005 ' .
pisp. .0Olll ‘ DISP. . .0153
1.0}~ - 1.0~ -
0.8 ‘ - 0.8} ’ -
0.8 |- - 0.6}~ -
0.4 1~ -1 0.4 |- —
0.2 \ - 0.2 N
"o 0 VA
-0.2f — -0.2 |- \-7 —
-0.4 , — -0.4 | -
1 ! 1 ! 1 ! . ] | ! ] i ] :
0 10 20 30 40 50 80 70 o 10 20 30. 40 50 60 T
DISTANGE v DISTANCE
i 1 1 i 1 1 I LIS I i i 1
14 C 1.4 d —
TOTAL .0041 TOTAL .0022
.2}~ DISS. .0003 ~ 12~ DISS.  .0003 —
DISP. .0038 DISP. .0019
1.0 - - 1.0 _
0.8} - 0.8~ ' -
0.6 |- - 0.6l -
0.4 - 0.4 - -
0.2 - 0.2 (- -
° AV T ~ =
-0.2 |- ' - -0.2 - . -
-0.4 - ~0.4 .
1 ] 1 [ 1 1 : L J 1 J I !
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 7
DISTANCE DISTANCE
T T T T T T T T T T T T
1.4 e - 1.4 . f
TOTAL .0257 TOTAL .0018 :
1.2}~ DISS. 0 -] 1.2} DISS. .0003 .
‘ DISP. .0257 ' DISP. .0015
1.0 .
0.8} -
0.6 |- .
0.4 |- ‘ .
0.2 -
o B N
-0.2 .
-0.4 4
. 1 ! ! I 1 |
0 10 20 30 40 50 80 70 ) 10. 20 30 40 50 60 70
DISTANCE DISTANCE

Fig. 5.4. One-dimensional advection experiments, for p = 0.7. See text for details.
(Takacs, 1984)
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an advection_of the main disturbance faster than that of the true
solution. This has occurred also in the case of the space fourth-
order accurate scheme for ’ﬁ =0.7, but at‘the cost of a much too
large dispersion error, A scheme with some dissipation, such as that
developed by Gadd (1978) might have given a better result in that

case ,

For results of additional experiments, including consideration
of the two-dimensional case, the reader is referred to the paper by

Takacs (1984),

Concluding remarks

The subject of the finite-difference solution of the linear advection
equation is a vast research area, of interest in many fields of fluid
dynamics. Thus, many more techniques have been developed than has been
possible to review in this introductory lecture. In addition to fhe phase
speed objective, techniques have been developed also aimed at préserving
other special features of various fluid dynamics problems. As an example,
the problem of advecting a non-negative quantity can be mentioned (e.g.,
water vapor, thickness of potential temperature layers in isentropic
coordinate models); or that of preserving a discrete analog of an iﬁtegra]
quantity considered to be of importance for an advection problem, For
additional reading on these and other techniques, the reader is referred to
Smolarkiewicz (1983); Arakawa and Lamb (1977); to related lectures
published in the present volume, and to papers on advection equation
methods published in proceedings of the 1983 AMS-SIAM Summer Seminar on
Large-Scale Computations in Fluid Mechanics, in American Mathematical

Society's series Lectures in Applied Mathematics, 1984, Finally, the
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finite element as well as spectral methods can and are successfully
used for the linear advection equation, as also discussed in other

lectures in the present volume.
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