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7. INTRODUCTION

From 1950, and the first barotropic models used in numerical weather
prediction, thefe has been a steady increase in the sophisticétion of
mathematical models of the behaviour of the atmosphere, with both a
progressive reduction of the approximations used in deriving the equations and
a progressive refinement of the resolution of the models. Since these
developments héve been closely linked with increases in computing power, they
have been beyond our control to a certain extent. In parallel thefe has also
been a steady increase in sophistication and accuracy due to improvement of
the numerical techniques used to discretize the continuous egquations of the
mathematical models. This has been the result of a major research effort
carried out in many countries and recognised as a major component of the GARP.
The weight of these efforts bore on both spatial and temporal discretisaﬁion
techniques. We shall here concentrate on the former. Until 1972 almost all
numerical models were based on finite-difference (grid-point) techniques and
much of the effort was spent on them. Other techniques were regarded more as
mathematical recreation than as realistic potential alternatives for
operational forecast or general circulation models. However, in the last
twelve years there has been a renewed interest and a rapid development of
other techniques, and in particular of two of them, namely finite-element
methods (which have been widely used in many other sectors of fluid dynamicé)
and spéctraltmethodé (which also have been used in several fields of

theoretical and applied physics).



The use of spectral methods in numerical atmospheric models can be traced back
to 1942 in the USSR, wheré Blinoya made proposals for long range forecasting,
using a linearised model baséd on expansions using sphericél harmonics. In
1952 Haurwitz and Craig also .proposed representing atmospheric flow patterns
using similar expansions, and in 1954 Silberman solved the non-divergent
barotropic vorticity equation with the help of spherical harmonics. Several
theoretical studies and applications followed, bringing a number of attractive
properties into light;'but-also unfortunately major drawbacks: the amoﬁif of
computatidn and the size of the storage required was rapidly becoming
prohibitive wheﬁ resolution was increased. This was a consequence of the
method (interaction coefficients) used to compute the non-linear quadratic
terms. Computation of other non-linear terms (division, or more than
quadratic products) was quite impracticable. Another major drawback was the
inclusion of the so.called~"physical processes" (convection, precipitation,
etc) which did not seem possible. The general feeling was thus that spectral
models could be attractive and accurate tools for some limited categories of
theoretical prdblems, mainly those using very coarse resolution (the so callea
"Jow order" models) but that they could not be competitive for routine
operational numerical weather forecasts. A step forward was made in 1966 when
Robert showed how the storage problem could be eliminated by decomposing the
expansion functions into simpler elements. However, all other major drawbacks

remained as strong as before.

The real breakthroughbﬁas the adaptation of transform methods to numerical
spectral models worked out independently by Eliassen et al. (1970) and Orszag
(1970): the idea is to evaluate all main quantities at the nodes of an
associated grid where all non linear terms can then be computed as in a

classical grid point model, thereby making possible the inclusion of physical



processes in a straightforward way. The method also considerably reduced the
requirements for storage and computations, and i£ then became ppssible to
envisage spectral models with subétaﬁtially higher resolutions and an
efficiency at least comparable with that of the most efficient grid point
models of equivalent accuracy. Aftef some preliminary attempts (Eliassen et
al. 1970, Boﬁrké, 1972, Machenhauer and Rasmussen, 1972) sevefal groups
developed more complex multi-level hemispheric or global spectral models:
Machenhauer and Daley (1972,1974), Bourke (1974), Hoskins and Simmons (1975),
Daley et al. (1976). This activity led to the implementation of spectral
models for routine forecasts in Australia and Canada in 1976. Now spectral
models are used operationally by many weather forecasting centres: in USA
(NMC) since 1980, in France since 1982 and in Japan and ECMWF since 1983..
Several research groups involved in general circulation studies also use
spectral models since this technique has now proved most efficient and easy to

implement for long global integrations.

So less than a decade after the introduction of the first primitive equation
milti-level spectral model (Bourke 1974) this technique has become the most
widely used numerical tool for treating the horizontal part of the equations
in hemispheric or global problems. However this does not mean that theyA
represent the ultimate step in numerical techniques for weather prediction:
other techniques are being developed, or may be developed in the future, which
could turn out to be more efficient methods for a comparable accuracy when the

associated technical problems have been mastered.



2. GENERAL PRESENTATION

2.1 Basic description of the spectral method
This Section is partly inspired by the presentation by Machenhauer in

publication No.17 of the GARP.series (1979).

The equations used in numerical weather prediction can without loss of

generality be written:
3o A (Fy) j=1,00e, J (1)

where J is the number of prognostic variables Fi:
F, = F,(x,t) ’ (2)
i i o

with x representing the 3~-dimensional space coordinate, and

t the time coordinate.

For all meteorological applications the Fi are supposed to be as smooth (in

the mathematical sense, i.e. differentiable) as needed, at least away from the

boundaries.

The Ai are operators, generally non linear and involve usually partial spatial’

derivatives as well as possibly spatial integrals.

When finite~difference ('grid-point') techniques are used, an ensemble of grid
‘points (xp, tq) is chosen in both space and time and the continuous operators
5 ' '
3% and Ai are replaced by discrete analogues, the complexity of which depends

in part on the accuracy required.



It is then possible to replace the system (1) by a new set of evolution
equations at the wvarious points_.xP with the initial conditions Fi(xp,o)

supposed to be known.

As an alternative the fields.Fi at any time are smooth functions of x and as
such can be considered as elements of some vector space H (for example the

space of all continuously differentiable functions).

If £ and g are two functions of H it is possible to define a scalar product:

[

(£,9) = [ fg* ax (3)
S

where g* is the complex conjugate of g,

and a norm:
e = {f |f|2 ax}tt (4)
A

With this scalar product and this norm H becomes a so called "Hilbert" space.

Let us now assume that we know an "Hilbertian basis" of H, that is an ensemble
of elements {e (x)} of H, orthonormal (ie. (e _,e_ ) = 0 for n#¥m and (e_,e }=1)
m m n m m

which is such that any element F of H can be expressed as

F= ] F e (5)
meM

It is not a basis since in general M is not finite.

m
The F are the orthogonal projection of F on the sub space generated by the

e - In other words:

F'= (F,e) = | Fe * ax ‘ (6)
m m

S




In order to avoid unnecessary complications, we shall now present the basic
principle of the method for a single variable

F = F(x,t).

"~ The sYstem‘(1)‘reducés to the following equation:

B_F — ' ’ 7
g = A(F) (7)
with the initial condition F(x,0) = £(x) (8)

Since we cannot cope with an infinite number of components we have to project

F on a finite dimensional sub space H of H (a truncation procedure).

F is thus approximated by

M
Fo(x,t) = ) F(t) e (x) (9)
m=1

It is worth noting that this approximation corresponds to a least-square

minimisation:

M
Let us compute F" such that F(x) = z F em(x) ‘ (10
m=1
. R . ~ ~ 2
minimises J(F) = f (F-F) dx
s
A necessary and sufficient condition is
9J
—— = (0 for m=1,---,M (11)
~m
oOF
~ 3~*
& FF) L ax =0 for m=1, ...M (12)
s F : ‘
m
8‘\’
and since SF_ e (x) v {13)
~m m ,

oF

as a consequence of (10), this condition is equivalent to



] (P e*(x) ax = 0 - | (14)
s ,

Since the,em are orthonormal

) ETF = [ Ferx) ax (15)
. S ;

which is precisely the definition of Fm (cE (6))
Thus

F=F g.e.d

The next step is to solve equation (7) for F

3F -
5 = AF) (16)

I

This would correspond to a perfectly valid and possible evolution problem with

the initial condition

F(x,0) = F(x,0) ' (17)
Unfortunately this is almost always impossible since F belongs to H (the
truncated subspace) and in general

A(E) does not

So we are going to replace equation (16) by

F _ =
3¢ = A(F) , (18)

that is we truncate A(f) so that it belongs to H too. (18) is called the

truncated equation

From (6) it is easy to see that (18) is equivalent to

.
&= (am)” - £A(E) e*(x) dx (19)

e ——————



It is now clear that the method is a Galerkin method with the em used as test
functions. We have thus obtained a set of simple ordinary time differential
equations, the right hand sides of which can be evaluated by some qﬁadrature

procedures.

As already mentioned, since A(f) does not belong to ﬁ

3F
ot

Il

" R(F) - A(F) is different from 0.

The equation solved, (18), is such that

R(F) = A(F) - A(F) | (20)
which is a least squares minimisation of the general residual R(F) as already

shown.

Another trivial consequence of (20) is that, since the em are orthogonal, R(E)
belongs to the complement of H (i.e. H - ﬁ) and therefore is orthogonal to all

elements of H and in particular to F.

In other words:

/] R(F) F ax =0 (21)
S

This property will prove very important for some applications.

Since the set {em} form an Hilbertian basis, it can be shown that for any

element F of H we have the Bessel-Parseval equality:

1El2 (22)

2
i.e. Z IFm‘
meM ‘
In particular, since F belongs to H
M .
I |e]% =l | (23)
m=1

which means that when H converges to H, F converges uniformly to F and‘R(f)



converges uniformly to zero. So if the initial state F(x,0) can be
represented by any finite expansion, the truncated solution converges to the

exact solution when H converges to H.

m ‘
In conclusion let us mention that the Fform the "spectrum" of F, hence the
name -"spectral" method.

»

2.2 ..Choice of the expansion functions and basic properties

In practice, since the atmosphere is highly anisotropic, it is often
convenient to ﬁse different techniques for the horizontal and vertical parts
of the equations. Most spectral models use a truncated expansion only in the
horizontal, the vertical being treated with classical finite difference
tedhniques. A few however are combined with a finite-element treatment in the

vertical,

In this Section we shall therefore restrict ourselves to the application of

the spectral technique to the horizontal part of the equations.

Since we are dealing with élobal or hemispheric problems on the earth, it is
desirable to choose expansion functions suited to spherical geometry. It is
also further desirable to choose functions simplifying the operator A in.
equation (7):

2 e
As mentioned earlier, A includes space differential operators (horizontal and

vertical derivatives, horizontal Laplacian), non linear terms and possibly

some vertical integrals.

Such a simplification is achieved if the expansion functions are

eigenfunctions of some sub-operators of A.



This is the case with spherical harmonics

™ (2,0) = ™ P(sind) : (24)
n n .

’>whefe A is longitude and 8 is latitude. m is the zonal wavenumber and n is
often called the 2-dimensional index or total wavenumber.‘Pi(sinG) is the so
called "associated Legendre" function of the first kind, of order m and degree
n, a solution of the Legendre equation (see Appendix). There are several

analytical forms for the‘P:. A classical one is given by the Rodrigues

formula:

if ¢ = sinb,

Inl
@-mor (=) 2, amla2n

) ‘ “nd
(n+ m' ) PR a un jm]|

Pi(u) v (2n+1) (25)

m _ .
The Yn are eigenfunctions in particular of the 2-dimensional Laplacian on the

sphere:

v2 Y= n(nt+1) .

n n
r2

(26)

r = radius of the sphere

This is an obvious consequence of equation (A5) in the Appendix.

Note for the sake of rigour that this holds only in pure spherical geometry
(A,8,r). If another vertical coordinate (0 for example) is used, it is easy

m -n(n+1 m
to see that,VZo Yn # ——i—;—l Yn since r is not constant on a 'horizontal’

by

(0 = constant) surface. It remains however a very good approximation to make,
and an approximation consistent with others made in the derivation of the
'primitive' equations usually used in numerical weather prediction and general

circulation studies.



The spherical harmonics are also eigenfunctions of the zonal differentiation

operator.

oy

n R . - :
o - imy N

This is a direct consequence of (24).

Amongst the other important properties of the Legendre functions and spherical

harmonics, let us mention

1
[ P™P", au =0 if n#n'
-1 n n

N =

(28)

1 if p=n'
This is a consequence of the fact that the Pi are solutions of the Legendre
equation (equation (A.10) of the'Appendix) and of the particular normalisation

chosen in definition (25). (24) and (28) imply

1

2m e _
i; [ [ YY) @ a=0if (am) # (n'ym') (29)
-10

m* ) m
where Yn represents the complex conjugate of Yn .

Thus in the space of continuous complex functions on the sphere H(S) with the

scalar product

1
(frg) = AT

-

1 om
] £ g* aau (30)
0

the Yi (A,0) form an orthogonal set. With this scalar product H(S) is a

Hilbert space and it is possible to show that the Y: form an Hilbertian basis
of § (see Hobson 1931). Thus every continuous function F(A,8) on the sphere

can be expressed as
F(A,8) = ) ) FI;: YI;: (A,9) (31)

m n

If F = F(A,0,n,t) where N is some vertical coordinate, then

11



m m '
F=) ] F (&) ¥ (A,6) ’ - (32)
ma”n . '

: m
As a consequence of (6) the Fﬁ are computed as

(i

1
[
1

o“—N

X
F(A,u,n,t) Yﬁ (A,u) ardu (33)

gl

m
F (n,t) =

m
The Fn are called spectral components.

Note that (33) can be rewritten:

1 .
[ F 2 au} I g - (34)
-1

—t—
N =

2%

by a so called Legendre transform

N =
| S

() Pru)du .
1 n

(32) can be separated in a similar way into inverse Fourier and Legendre

transforms.

A consequence of the definition of the associated Legendre functions (25) is:

~m

Bl(u) = P (W) : (35)
n n
and »
p‘;(u) = 0 if |m|>n , - (36)
-m m . . B
(35) Y = v¥ , (37)

and (36) implies that (32) can be written

X [ ) '
F= ) D (38)

n'n
m=-w n=|m|

12




Another useful property is

n+|m|

mo, - — | _
P (-u) = (-1) B () . - (39)

which corresponds to either symmetry or antisymmetry with respect to the

equator.

o _— . . m . .
Many recurrence formulae link the various Pn. For us, their main usage

nowadays is to compute the values of the Pn used in the model.

As an example, the one uséd at ECMWF is

m m _m—2 m m-2 m _m

Pn(u) =c, Pn_2 () --dn u Pn_1 () + e Pn-1 (u) (40)
with

Cm - (2n+1 min=-1 m+n-3

n 2n-3 m+n m+n=-2

dm _ (2n+1 m+n~-1 n-m+1

n 2n-1 m+n m+n-2

m 2n+1 n-m 3

en = (E;:T H:;) ; for m > 0.

It has the advantage of being mathematically stable when n and m increase

(Belousov;'1962).'

Bnother recurrence formula is used to compute the meridional derivatives
{unlike the case for the zonal derivatives, the spherical harmonics are not

A 9
eigenfunctions of 7).

oy
2 dPi m m m_m
G=1 Eﬂ— =n €n+1 Pn+1 -_(n+1) en Pn—1 (41)
m n2— m :
with En = (——E—““)
4n -1

13



2.3 The truncation problem

As already mentioned in Sect.2.1, we have to restrict ourselves to a finite

number of components. This is called the truncation procedure.

At this point it is important to note that as m and n increase they correspond
to features with decreasing horizontal scales. So when using spherical
harmonic expansions (Y:) we have a direct control on the scaleé we wish to
neglect, very siﬁilar to the one in grid point metﬂods when selecting the éize
of the grid intervals. We are thus led to the following choice for the

truncated field
_ M N(m) m ‘
F= ) N Py (42)
n n
=-M n=|m|

The fact that m runs from -M to M ensures that E is real since (37) and (33)

imply
m¥* -m__=-m mm .,

F = F ,and thus that F Y + F Y is real.
n n n nn

n

A problem is then to know how quickly F converges to F.

y2P

Let us assume that F is infinitely differentiable. This means that G = F
can be expanded in terms of spherical harmonics for any integer p:
m _m
G= ) ) G Y (43)
n m
with A
m 1 an m*
Gn = f f G Yn dy ai (44)
0 -1 : :
Green's theorem states that
1 2r 1 1 2r 1 :
— [ [ g2 fawar=-— [ [£Vigau ar (45)
4n 4T
0 -1 0 -1
Thus repeated use of this theorem shows that
p
- +
n ) n

r

14



The Bessel-Parseval equality applied to G yields

lgh? = |g§|2 L A | | (47)
n,m : : '

which implies that |G:|+0 when m,n + ®. Therefore (46) implies

Fﬁh2P + 0 when n + ® for any p, (48)
whiéh shows that for a smooth field, F converges uniformly to F faster than
any finite power of ﬁ'where n tends to infinity (Orszag, 1974). This

extremely rapid convergence is another important argument in favour of

spherical harmonic expansions since it explains why they can achieve an

accurécy éomparabie with grid point methods with substantially fewer degrees

of freedom.

If F is not as smooth (as, for example, in the case of the Earth's orography),

the convergence can be slower.

The main question left is therefore to chose N(m). The two most common

truncations used in numerical prediction models are the so called triangular

'and rhomboidal ones.

These can be best represented in the (m,n) plane as shown below in Fig.1.

X X
X X n X X
n X X X X X X
T X X X X X X X X
X X X X X X X X X X X X X X X X X

X X X i' x X X X X X L X X X

X X L X X X X L X X
X 'L X X L X
X > m X
Triangular truncation Fig. 1 Rhomboidal truncation
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Early spectral models employed almost exclusively rhomboidal truncations, but
the most recently implemented operational spectral models (France, Japan and

ECMWF) use triangular truncations.

The reason for choosing a truncation should be to make the best usage of a
given number of degrees of freedom (i.e. of a given number of retained
spectral components) which means either getting the most accurate results for
a given cost or the most economical result for a given accuracy. All this can
of course depend on the nature of the problem studied and/or on the computer

facilities available.

This being said, the arguments .in favour of a rhomboidal truncation are mainly
historicél. On the technical side, rhomboidal truncations can lead to easier
initial programming (the spectral components can be stored in rectangular
arrays, i.e. matrices) although with the establishment of the technique and
its operational implementation this no longer becomes a valid criterion for
choice. It should also be mentioned that several spectral models derived from‘

the same initial rhomboidal code.

A strong reason was‘put forward by Ellsaesser (1966): he showed that fo; very
coarse resolutions (i.e. keeping only up to five to ten zonal wave numbers)
rhomboidal truncations could maximize the variance retained for the rotational
kinetic energy at 500 mb. However Baer (1972) analysing the kinetic energy
for January and February 1969 at five levels (700, 500, 300, 250 and 200 mb)
over the northern hemispheré obtained results in favour of a triangular shaped
truncation for moderate resolutions (Fig.2) More recently Savijdrvi (personal
communication) has obtained results supporting even more strongly a similar

conclusion.

16



Fig. 2 Percentage of total KE in each spectral component (after Baer, 1972).
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A ‘theoretical advantage of a triangular truncation is that it is isotropic.

In other words, if F, is an expansion of F triangularly truncated at

1

.

wavenumber M in one sphericél coordinate system (11,61) and 52 in another one

(A2’ 92) then F = F,.
This results from an interesting property of the spherical harmonics (see for

example Courant and Hilbert 1953):

n

e = ] Gt ot e (49)

m'=-n D n 27 2

The resolution in a triangularly truncated system is therefore uniform on the
sphere. In other words, whatever the position of the pole the truncated field

is the same.

Rhomboidal truncations on the other hand are only invariant under rotations
around the earth's axis and correspond to a uniform resolution only in the

east-west direction.
Incidehtally, (49) also explains why n is called the two-dimensional index.

n defines a scale which is invariant by any rotation of the (A,0) coordinate
system and is thus truly two dimensional (m on the other hand only defines an

east-west scale at a given latitude).

Therefore when using a triangular truncation, all components corresponding to

a given spatial scale are either kept or discarded in a consistent way. This
» 2

is also consistent with the isotropic horizontal diffusion (V P form) used in

many numerical prediction models.

18



The anisotropy of the rhomboidal truncétion has been mentioned by some authors
as an advantage, claiming that for a given number of degrees of freedom, a
rhomboidal truncation provides an increase north south resolution, at the
expense of the east west one. This would of course be an advantage in
resolving the strong north south gradients near the jet for example. This is -

however not true as we can easily show.

Let us assume that we have a perfectly zonal flow (see Fig. 3).

Pole

Fig. 3

o
It can be analysed in terms of Yn (1) only. Since it does not depend on A, m
has to be zero. Note that definition (25) implies

o _Y2n+1 gt (1-u2)"

O =
Yn(u) Pm (n)

o (50)
2n n! du

The Pz(u) are called Legendre poiynomials and the Yg(u) are called zonal

harmonics.

19



If we now compare, as in Fig.4 a rhomboidal and a triangular truncation with
the same number of degrees of freedom (i.e. of spectral components retained)

one can distinguish four different parts.

There is a part A common to both truncations. There are two parts (B and D)
kept by the triangular truncation and not by the rhomboidal and one part (C)

for which the reverse is true.

Fig. 4

It is clear that the triangular truncation will better represent the north
south gradient of the type shown in Fig.3 since it keeps more zonal harmonics
(m=0) than the rhomboidal one. In the real atmosphere, the flow is nevér
purely zonal, but it has a strong zonal compdneht together with a substantial
amplitude in the planetary waves (m=1-3), and the north south gradients
associated with them will be more accurately represented by the triangular
truncation due to part B. This may prove more important in the winter

stratosphere when the jet is strong and there is a large amplitude in the

20



low zqnal wave numbers. The impact of part D is éasy‘to expléin: it reduces
the east west resolution for the rhomboidal truncation at low latitudes. (At
~high latitudes the Pz(u) for high m héve extremely small values). Thé
impprtance of part C is much more difficult to evaluate, precisely because of
its anisotropic nature. From what has been said earlier, there is no doubt
that it‘introduées smaller scales than in the corresponding triangular
truncation. An important point is that at high latitudes (u tending to 1) we

have the following inequality.

m m .
|1=n1 an| < | = )| i n, < n,.
Thus for a given zonal wavenumber m, additional components with larger two
dimensional index n will contribute to increase resolution at high latitudes,
but not uniformly, and paradoxically not only in the meridional direction.
Therefore part C brings increased resolution at high latitudes in the meaium

part of the spectrum.

Frdm a computational point of view the triangular truncation is slightly more
efficient than the rhomboidal one for the same number of degrees of freedom.
Firstly, since shorter waves are represented in the rhomboidal truncation, a
siightly smaller time step has to be used. Secondly the associated grid
(Gaussian grid, - see Sect.3) where all the non linear terms (including the
physics) are computed is larger by about 20%. These two points lead to an

overall increase in cost of about 25%.

Practical comparisons on the other hand have been carried out by a few groups.
Simmons and Hoskins in 1975 compared the two truncations for a growing
baroclinic wave. No significant difference was found with the higher versions

of these truncations (triangular T42 or the equivalent rhomboidal one). For

21



‘fhe lower'reéoiﬁtion (tfianéular'TéT versus rhomboidal R16) the rhomboidal
showed some sliéht aa&aﬁtégeé. jiélshaﬁid ﬁowevef be noted that there was a
maximum in the aﬁplitﬁde'of Ehéhﬁorticityﬁfiéld for ébnal aneﬁumber 8, and
stréhgrnén.iiﬁéér generétion.bf wavénﬁmber‘16-"There‘waé thus significant
activity preéiéely in the Sbéctral rahgeﬂwhére fhis pafticulaf rhomboidal
truncation can be ekpedtédka priori to impféVe acCording‘to ouridiscussion
above. Therefore>the“problemléppeafsvbiaSedvtowards'the rhomboidal low

resolution truncation.

Daley and Bourassa (1978) performed a number'of’short-term (36:h) comparisons
between triangular T29 and rhomboidal R20 multilevel spectral modéls. The
models proved extremely similar for the mid and high ;atitgdesf Similﬁr
conclusions  were obtained from another comparison witthigher rego;gtiqns

(triangular T40, versus rhomboidal R29).

Some previously unpublished experiments have also been carried out at ECMWF
comparing a triangular T40 with a rhomboidal R28 truncation in a series of six

10 day forecasts from initial conditions chosen from dates withiq'February,

. 1976.

The results did not,cqntradict those qf’Daley and Bourassa. However, at a
_range beyond two days they showed a distinct advantage for the triangular
trunqation. This advantage increased with.heights(see Fig.S) to become more
substantial in the higher troposphere, whichis consistent with the previous

discussion.
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The triangular truncation was subsequently selected as the basic truncation

for the ECMWF spectral model on the basis of these arguments and results.

R28 T40 — —
mb 70,60 80 40 3
200+ s 7
300} ( {
| o
500} ’| ll 10
700} / /
850}
1000F | 70_60, .30 20. . 10
0 5 10 Day
FPig. 5 BAnomaly correlation (82.5—20°N)kas a function of height.
3. IMPLEMENTATION IN ATMOSPHERIC MODELS

3.1 The barotropic vorticity equation

3.1.1 Governing equatlons

We first illustrate the way the spectral method is'implemented in atmospheric
models with spherical geometry by considering the simplest case; that of the

barotropic vorticity equation. The governing prognostic equation is

3t 2.9 " aou (31
a
where £ is the relative vorticity, [ the absolute vorticity, U and V the
eastward and northward velocities multiplied by the cosine of latitude, and a
the radius of the earth. As before, t is time, A is longifude and y is the
sine of latitude. The relative vorticity is defined in terms of U and V by

E=l{ 1 9V aU}

== (52)
209X 09
" u
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and the absolute vorticity is given by
T = 20u.+ & : . S : . - (53)
where 2 is the earth's rotation rate. Velocities are non-divergent enabling

us to introduce a stream function ¥ {to within an additive constant) such

" that »
-1 2, 3
g = 2 (1-u) u (54)
= 18V - | |
V= a oA : (55)
whence
. ‘
E= V7 i ‘ - (56)
The non-divergence of winds also allows (51) to be rewritten thus:
3 _ 13 19 | |
T 2o (U8 =gy (V8) (57)
a(1-u")

3.1.2 Spectral representation

Choosing spherical harmonic expansion functions as discussed in Sect.2.2, we

represent & by a truncated series:

M N(m) n i mA ‘
=) ) 2w ™ S o (58)
==M n=Imi n n ’ ) ’ -

Since the spherical harmonics are eigenfunctions of the operator Vz, we may

use (26) and (56) to write

Mo N(m)  EN . ‘
_ 2 n m imA
w B a m=§M n=%m| ‘n(n+1),Pn.‘p) © o (59)
n*¥ o

. ; ) o
where the restriction n¥o corresponds to the choice wo = 0.

From (59), using (54) and (55),

n N{(m) E:, o, im
U=a m=Z_M n=z'm| PP {(1=u) ET} e (60)
n#o
and
. .m
ol TEes e
n¥o
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The truncated spectral form of equation (57) follows from the general case

represented by (19):

9g ;
R - . 5= =im)
it 4na f £ {— B ax (ug) + (VC)} (u) ¢ akdu (62)

and using integration by parts, this equation may be written :
m m
2n im(UC)Pn(u) ap

f’ {“‘—‘—‘*—-‘ - (vg) ——E} e
o 1 - u2 du

A gaan (63)

| Y

—n___1
4

1

From (53), (58), (60) and (61), the integral in (63) is known in terms bf the
Ezyand‘the‘knowh analytical functions'P:, dP:/du and eimAf_ Thus given an
.initial distribution of vorticity, its subsequent evolution may bé computed

" using an appropriate time discretization once a computationally feasible
technique for evaluating the integral can be found. As discussed in the
introduction, the discovery of efficient "transform" techniques for evaluating
such intggrals has been central to the development of spectral models as

practical meteorological tools.

3.1, 3 Interaction coeff1c1ents

Pefhaps the most oﬁvious approach to the evaluation of integrals of form (63),
and ﬁhe approaéh adopted iﬁ the éarly spectral models reférred to previously,
is to insert directly the spectral expansions into the integrand. Consider
the simple product

C = AB A (64)

where A and B are représented by truncated spectral expansions:

P e e .
A= A Y _ (65)
 m==M Nm| non o P

M . -N{(m) i :m , : : : . Lo
B= ) ) B Y (66)

==M n=|m|
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The spectral coefficients of C are given by
m 1 1 27 m
U | e

and directly substituting the expansions (65) and (66) into (67) gives

m o N{p) o7 rm r
C, = ) 2; ) 2 ‘Ipsn aP B, . (68)
where the'Iizi are known as "interaction coefficients", and are given by
v.Prm 1 ! p.r , m* |
Toen = 41 1;1 / Yq Y (Y ) d\ dy (69)

o

Such interaction coéfficientsvmay be pre-computed and storgd,‘and repeatedly
used during the integration in time of a model such as governed by Egn.(63).
This approach, however, is quite impractical for realistig weatherrprediction
or climate models. Even allowing for the fact that many of the interaction

. coefficients are zero, the computation required per timestep increases
ma:kedly as resolution is increased, with_O(Ns) operations/timestep .for large
N, with M~N (Orszag, 1970). Computer storage requirements also become
prohibitive as resolution increases, and there is no feasible way that highly
non-linear parameterisations can be included. It was thus not until an
alternative approach was developed by Eliasen et al,_(1970) and Orszag (1970)
that’spectral models becgme competitive with the 1opg-established finite-

difference models.

3.1.4 The spectral transform method

The alternative approach is based onheyaluation of‘grid point values of basic
and derived variables (or "transforms" from spectral to grid-point space) and
use of numerical quadrature to evaluate integrals such as (63). Considering
again the simple product C = AB, grid-point values of A (and B) are computed

in a two-stage process.
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(i) Inverse Legendre Transformation

N(m) nom . . .
A (u,) = ) AP (u.) - (70)
J n=[m| J

(ii) Inverse Fourier Transformation

- ¥ imk
A(A,, ) = Y A ) e™i - , (71)
i 3 —_— m 3j _

With values B(li, uj) similarly calculated, grid-point values of C(Ai,uj) are

computed by simple multiplication.

These values of C are then used in quadrature formulae to evaluate
longitudinal and latitudinal integrals giving the transformation from grid-
point back to speétrai.space."In.cohtinuous form, these transformations are:
(i) Fourier Transformation
2 im

1 ' ' .
i =g [ et a o

(ii) Legendre Transformation

1
m 1 m
=3 _{ c (W) P (u) au , (73)

The methods used to evaluate the integrals (72) and (73) are generally'guch as
to give exact (or non-aliased) results for the contribution of quadratic non
linear terms to the computation of those spectral coefficients retained in the
truncation. Considering first the longitudinal integral, the integrand in
(72) is the'prodﬁct of three trigonomettic funcﬁions, and includes zonal
wavenumbers up to 3M. Following Machenhauer and Rasmussen (1972), the

integral is evaluated using a regular grid of points in the east/west, with

_2mi

A =5 (74)

and
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|mAv

1 - o R . -
Culuy) = 3 _Z COAjugde 1 (75)
i=1
The result is exact for
I > 3M+1 (76)

In practice, I is chosen to allow efficient "fast Fourier transform"
techniques (Coéley and Tukey, 1965, Temperton, 1983) to be used to compute the
sums .(71) and (75), and truncation are usually such that (3M+1) is equal or
Jjust less than one such I, for example an integer of the form 2P 34 5r for
integers p, g and r. Thus spectral models'have typically,been run, or are
anticipated to run, with zonal truncations given by M = 15, 21, 31, 42, 63,
84, 95, etc.

Considering now the latitudinal integral, we note that

(i) the associated Legendre functions Pi(u), as given by (25), are of the

form

(1 - uz)lml/z x (Polynomial in p of degree,(n-lml)

(ii) the longitudinal integral of a product of three spherical harmonics

vanishes unless the three zonal wavenumbers, m

R

2

apd m3

. of the

harmonics satisfy

+ =
m1 + m2 m3 0

It follows from these properties that the integrand cm(u) Pﬂ(u) in (73) is a
polynomial in u, of degreé at most
3M for triangular truncation (N=M) ,

2M+3K for rhomboidal tiuncation (N=m+X) ,

Following Eliassen et al (1970), the integral (73) is evaluated by Gaussian
quadrature:

J
m m
c = &‘j£1 g5 Cplky) Ptuy) | T (77)

where the uj are the zeros of Pg (1), that is

o ) : ,
By (m) =0 , 3 =1, 2 ..., (78)
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and
2(1 - p2) o
g, = 1 o | S - (79)

3 0 2
(7 P, (uj))

This Gaussian quadrature is exact for an integrand which is a polynomial in u

of degree €2J-1, and in view of the particular form of Cm(u)Pz(u), J must

satisfy
J > 3M;1 for triangular truncation,
and _ (80)
> ZﬂgﬁKﬁl for rhomboidal truncation.

These conditions apply to the simple product (64). Returning to the
particular form of the barotropic vorticity equation, it may be shown from
(63) that the minimum number of "Gaussian" latitﬁdes becomes 3M/2 or (2M+3K)/2
.iﬁ £his césé, élfhouéh for the pximitiye equations considered in Section 3.2,
it is conditions (80) that apply for non-aliased treatment of all quadratic

terms.

The sequence of calculations for a barotropic vorticity equation model using

the spectral transform technique may now be summarized.

At a particular forecast time, t, we start from the spectral coefficients of
relative vorticity Ei(t), and depending on the time-scheme we may also have
available values at previous tiﬁes,‘particularly Eﬁ(t-At) say. The bulk of
the model compﬁtation involves a sequence of calculations which is repeated
for each Géuési;n latitude sih’liuj. These calculations comprise

(i)> Inverse Legendré Transforms

Compute

N(m) m_m
L) = ) P .
Em(uj) n=>ixi| £ nths)
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and also, using (60) and (61),

N(m) € & (u.)
Um(uj) = a ] PYEYET) (1—uj) an
n#0
,and
N(m) EI; n
Va(Hg) = _iman=%m| ey Patey)
n¥0

(ii) Inverse Fourier Transforms

i i A A .
Compute grid point values &( i’ uj), u( i’,uj)' Y(Xi, uj)

(iii) Grid-point calculations

Compute C(Xi, uj) from E(Ai, uj) using (53), and form the products UZ and VC.

(iv) PFourier Transforms

Compute (UC)m and (VE)m as in Eqgn.(75).

(v) Legendre Transforms

: ‘ n ;
Compute the contribution from the current latitude, U , to BEn/Bt. From (63)

J
and (77) this contribution is
9y tme] (1) ar;
- o2 {woy .2 - VB (uj)}
J

Contributions are accumulated latitude by latitude.

m nm
Once these computations are complete, BEn/Bt is known, and new values of En

may be computed, for example using the simple centred scheme

§

m

1

g™ (t+At) = g (t-At) + 20t 1 ey
n n ot

The sequence of calculations may then be repeated.
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(i) The computational grid

The grid on which non-linear calculations are performed is regular in the
east/west'direction, but formally irregular in the north/south. In practice,
howéver, Gaussian latitudes (determined by (78)) are almost regular in 6,
particularly as resolution increases. For example, with J=96 (as in the
operational model at ECMWF, which uses triangular truncation at wavenumber 63
(T763)), the Gaussian latitudes all lie within 1.4 km of a regular grid

starting at 88.585°N with a grid interval of 1.8649°.

(ii) Comgutational cost |

The transform method requires 0(N3) operations/timestep for large N, with M~N
(Eliassen et al. 1970, Orszag, 1970). It thus has a substantial advantage
.over the interaction cgefficientkmethod in the asymptotic limit, and this
advantage is realised at quite low res§1utions. For example, Bourke (1972)
showed that for a shaLlow-watgrwequation model rhomboidally truncated with

M = X = 15, the transform method was faster by a factor of 10.

‘The‘O(N3)_asymptotiq operation count ar;sés‘because of the computation of the
‘Legendre‘transfqgms; the fast Fourie; transfo:ms yield an O(NzlogN) beh;viour,
and the nonr-linear grid point calgqlations involve O(Nz),operations. In

.. practice, however, qugls,arekfar fromvthe‘asymptotic limit. In the multi-
level T63 model used at ECMWF, the Legendre transforms account for about 20%
of the computational cost, gndﬂthe Fourier transforms about 5%. Extraﬁolating
léads to figures of 33% for the Liegendre transforms at a resolution of T126
and 50% for T252, while Fourier transforms remain at close to 5% of the net
cost, assuming no corresponding increase in the:complexity of the physical

parameterisations. Thus although the cost of the Legendre
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transforms is not prohibitive for current or immediate:fﬁfure résblutions, it
is by no means negligible, and the search for more efficient transform:

techniques continues (Orszag, 1979).

(iii) Optimisation

A property of the Legendre functions which may. be derived directly from the .
‘definition (25) is |
PIE(U) ~ ('1-1112)'“['/2 as p >t 1.

Thys for large m the functions become vanishingly small as the poles are
approached, and the contributions to spectral tendencies from pblaf»regfons
Beéome less thén unavoid&ble round-of f errorAfor.Sufficiently 1afgé'zdna1
wavénﬁmbers. This ﬁeans that ih'pfaétice’3M+1 loﬁgitudinal points may not be
needed at all 1atitudés, and thaf é'decréasing number of points may be used as
thé'poies'are appfoadhed withbut signifidant‘loss of accuracy (Machenhauer,
1979). This has been confirmed in some preliminary experiments at ECMWF, but

exhaustive testing has yet to be carried out.

'if is unclear to whaf éxtehtktheré is further scope for optimiSation by use of
véfids which’are Qenetally coarser than required=for alias-free calculation of
quadratic terms. “ﬁnsaﬁisfadtory reéuits have'been reported by Bourke et al.
(1977j and Machenhauer (1979) using quite low resolutions, although'successful
iﬁfegration of a higher—reSolution”bi—Fourier model with a very selective

horizontal diffusion has been reported by Sadourny (personal communication)-.

3.2 The primitivekequations

We illustrate the application of the spectral transform method'to mulﬁi-level
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primitive-equation models for the choice of prognostic variables made for the

operational ECMWF model. These variables are:

relative vorticity : . -£

divergence -D
temperature : - T
‘specific humidity -qg

natural logarithm of surface pressure - ln(ps)
Each is expanded in truncated series of spherical harmonic functions. For

example,

E(A,u,n,t) = ? Nim) EX(n,£) B () im (82)

m=-M m=[m| n n '

Here N is the vértical cooédinate, which we shall take to be a general
pressure- based terrain-following coordinate. It must be a monotonic function
of pressure {p) and depénd'also bn éurface pressure:

n =n(p, ps) (83)
where

n(o,p,) = 0 and n(ps,p;) =1 . | | (84)
We shall not’be conéérned here with the discretization of E:(n;t) and other
‘-épectral coefficients in the vertical, but shall simply assume that all

relevant integrals and derivatives with respect to n are calculable using

grid-point values of the basic variables.

To compute wind components we introduce the stream function, } and velocity

pptential, X- Then

_ 1 2, 9% 9 _
U= [- (1-u?) ot BA} (85)
and
12y 2y X | |
V=< {ax + (1-p2) au} | N (86)

33



cwith
£ = V2 ; e L (8T
and D = V% _ (88)

Truncated expansions for ¥ and X are thus given by

>M N(m) Ez m imA
Y= - azmz_M o YLy P (e S (89)
n#0
M N(m) D" o am
and X = - asz_M - mI'HTH;T;.Pn(u)e R T R T (20)
n¥0

(85), (86), (89) and (90) thus give truncated expansions for U and V:

. R m .
M N(m) , dpP. . .
_ 1 m ., 9 n_ . m) imA
oo, e P o
n#0
- N{m) 'i‘ L m_m m ‘:2 dP: imA '
and V= =-a Z L f;?ﬁ:?;:{lmgnpn + D (1-u )Ea—u}e ) (92)
m=-M n=|m| : : =

n#0

3.2.2 Governing equations

The governing primitive equations for U, V, T and g may be written in the form

o g
3u » 80 _dvdlmp , 13 -
e "Vt Y Ta m taax () TRy (93)

. R.T . : :
v s 3V d v 2, 9lnp (1-P2)§_ S Y
et LU ngs v (uf) g | + Bl (4B = By (94)
KT ® ’
T U 9T . V 3T s 3T v
aT dr  vor ST __ v _____p (95)
A d -

b T 2y a2 n T (1+@-Dp T

“and o
3q , U  3q  Vig sl _, o o (96)
at 3(1"112) a du an q :
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The continuity equation is

3_ 3, ,~38p 23 3 _ | |

n ) *Pan tam Man) T 0 | - . (97)

where B = D + ‘—U"'—"’ —2-7\- (ln %B) + Z g_ (11’1 %R) ' (98)
a(1=u2) n a du n ,

- The hydrostatic equation gives

1 R.T

_ 4 v dp
b =9 + fn - 5 (99)

and the quantity E in (93) and (94) is given by

E=— (U2 + V2)/(1 - ﬁz) (100)

il
2
In these equations Rd is the gas constant for dry air and K = Rd/cpd' with de

the specific heat of dry air at constant pressure. PU, Pv, PT and Pq

represent tendencies resulting from the parameterized processes, which are not
specified here. Tv is the virtual temperture, given by
1
TV-T(1+(€ - 1) ) (101)
where € is the ratio of the gas constants of dry air and water vapour, while
§ in (95) is the ratio of the specific heats at constant pressure of water

vapour and dry air.

The pressure-coordinate vertical velocity, w, is given by

n : .
w=-fD—B-Edn+——-—u—-3[3+EQE (102)
o an a

L
and explicit expressions for the rate of change of surface pressure and for n

are obtained by integrating (27) using the boundary conditions n=0 at n=0 and

n=1:
op 1
—S__[(3% ‘
ot £ D3y dn (103)
a n&._2%&_ ? > 4 - (104)
wE VI T T T P |
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(103) may also be written

01
np

T 2e o B .
D 52 an , | (105)

o M YO N

L
9t Ps

In the special case of sigma coordinates,

n=gag-= p/pS | . : (106)
and

3p _ ,

“an T Ps (1on

(98), (99), (102), (104) and (105) then reduce to the more familiar forms

~ d d SR
D=D+ —9 TS 1nps + g 5;'1nps - (108)
a(1-u?)
1 RdTv i . . . S . .
o =0+ ] - do o ‘ T (109)
, e
==--= [Da + (D - D) : : - (110)
P S
s dlnp o'; -
o=-073 2. | pao (111)
t 0
and
d1np 1. . . ‘
% --/paw o | T (112)
t 0

3.2.3 spectral vorticity and divergence equations
v The use of equations in vorticity and divergence form stems from the work of

Bourke (1972). The unapproximated equations in physical space are derived

from the horizontal momentum equations (93) and (94): .

Ce 0 )
86 1 v 1w (113)
at a(1 - uz) oA a oy
oF aF
] 1 u 1 v
— = + = - Vg (114)
a .
t a(1 - Uz) oA a du

36



where

s 3U _ RdTv 31n21+ P

]
I
Y
<
1
=3
|

(115)

u an a 9\ u
" R_T '
 _ _ 20V _dv _ .2, 9lnp
F, = EU N i UIERT I el S . (116)
and
G=¢ + E ) ) (117)

agz 1 } fﬂ( 1. aFv aFu) m —imA
— = — - P (u)e didy (118)
ot 4Ta 10 1-ﬂ2 oA au n
and
m
aD 1 2n aF
n 1 f f ( 1 u + V) Pm =imA
—_— = — (u)e dAdu
ot 4Ta ~1 0 1_u2 oA ap n
1 2m
1 =imA
-z [ [ e Plane™ aa (119)
-1 0

and integrating by parts as for the barotropic vorticity equation we obtain

BE: 1 1 2m im m dP: -imA

— = | : . + —_— :

5t = 7 {1 { {1-u2 I e 1 ardy | (120)
and

SDE 1 1 oem im m dP: -imA

ot = 4aTa f f { 2 Fu Pn- Fv du } diau

-1 0 1-p

1 2 ,
$ 2D E gy
4ma? -10 '

Here we have again used the property that the spherical harmonics are

eigenfunctions of the operator v2,
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The computation of tendencies proceeds in the manner discussed in detail for
the barotropic vorticity equation. From the spec;ral representation of basic
and derived variables, values,of £E, b, U, V, T, q, 1nps, 3(2nps)/ak and
B(Enps)/aﬁ are evaluated at the boiﬁts‘of a "Gaﬁssian" grid.  Corresponding
grid-point values of Fu' Fv and G are computed, using for example'finite
differences in the vertical, and the integrals (120) and (121) evaluated by
numerical quadrature. The choice of Gaussian grid will be discussed further

below.

From (105) we obtain

1
] m 1 m —imA
5T (lnp ) = o= {1 {) F, Po(H) e A dy (122)
where
11 o~ A
F.=-—] Dan ’ : (123)
P P o an

Grid point fields required for the éomputation of tendencies of vorticity and
divergence are also sufficient for the calculation of FP. Tendencies of the
spectral coefficients of lnps, as given by (122), are then evaluated by the

same quadrature as for other tendencies.

Although tﬁe treatment of the temperature and humidity equations is generally
similar to that of the other prognostic equations, two different approaches
have been adopted for the actual implementation of the technique. For
adiabatic models they yield identical results, apart from round—-off error, but
the choice of approach has implications for the way the parameterizations of

convection and large-scale precipitation are included in a model.
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To illustrate the two approaches we write equations (95) and (96) in the forms

oT U T v 9T :
— e T T e T . ' ’ - (124)
3 oA 3 ;
t a(1-u2) 2 o *r | |
and
g_g=-—-—u—%§1-‘;’§-3+a | (125)
a(1-u2) q

where values of RT and R.q can be computed directly on the Gaussian grid using
those grid-point fields used for the calculation of tendencies of vorticity

and divergence.

In the first, and more traditional approach, (124) and (125) are written

3T 1 ] 19 ‘
3 - Y (uT) -~ = (VT) + (DT + RT) (126)
(1-u<)
and
g _ ___ 1 3 _12
3t a(1-u2) ax (U2 =35y (V@) + (Ba + R (127)

Values of UT, VI, DT, Ugq, Vg and Dg, as well as RT and Ré are evaluated on the
Gaussian grid, and integration by parts is used to write the spectral

equations in a form suitable for the application of the quadrature formulae:

aTi 1 1 oam im m dpz =imA
e " Twma L [ T omE - vm R ) T aa
1 2w
1 m =imh \ ,
* e {1 _(f) (DT + R )P e ardu o (128)
‘and
da 1 P ' m E o im
e T [0 T em - e gt arau
1 2w :
1 ; m -imA
= {1 (f) (Dg + 13q)1>n e adu (129)
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- In this approach, tendencies of T and q are not directly available on the
lGaussian grid, and parameterizations involving céndensation hgve to bg
performed after transformations té and from spectral spacé, for example at the
beginning of the next timestep as in the original ECMWF spectral model (Baede

et al. 1979).

In the second approach, the additional fields

%% ’ %% ’ %% and %ﬁ
are evaluated at grid-points from the spectral expansions of T and g. This
allows computation of the total grid-point tendencies as .given by the right-
hand sides of (124) and (125), and spectral tendencies are computed by direct
Fourier and Legendre transforms of these tendencies. This is the apéroach

adopted in the operational ECMWF spectral model, as discussed further in a

subsequent contribution to these proceedings.

It is common practice to apply the spectral transform method to multi-level
primitive-equation models using the lowest resolution Gaussian grid which
according to conditions (76) and (80)Aguarantees alias-free quadratic
products. For the dry, adiabatic primitive equations using sigma coordinates,
the highest non-linearity occurs in the form of triple products, and aliasing
can be avoided by choosing a sufficiently large grid. More generally, some
aliasing is inevitable, but there is hudh'experience which points to
insignificantly different results when grids finer than the minimum determined
by (76) and (80) are used (e.g. Bourke, 1974; Hoskins and Simmons, 1975;
Bourke et al. 1977). Some instances when aliasing becomes evident will be

mentioned in our paper on the operational ECMWF spectral model.
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3.3 Conservation properties

The following integral guantities are conserved by motion governed by the

barotropic vorticity equation:

1 2n
Angular momentum - M= -— f f a U ddu (130)
-1 o0

1 2m

[ [ 2 + v2) arau (131)
-1o0

Kinetic energy - K =

g~

1 2w
Enstrophy - E= o f f £E2  arap o (132)
-1 o0

I_a

This may be demonstrated by first rewriting expressions (130) and (131) using

integration by parts. This gives

1 2w

M= [ [ u& arap (133)

-1 o

K = f f Y€ didu (134)

-1 o
from which

1 2w

M _ a? JE B

T -{ £ Hpe dAdu = 0 (135)

1 2w

3K 1

5 = " _{ £ w dxau = 0 (136)
1 2w : :

OE _ 1_ & _

5. = I _{ £ £ 5y dau =0 (137)

" Here the equality to zero in each of (135), (136) and (137) is derived by
substituting Eqn. (57) for 9&/dt into these expressions, and integrating by

parts using the basic relationships (52) to (56).
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Corresponding conservation relations hold for a spectral barotropic model. To
see this, it should be noted that the relatidﬁships (135) to (137) will hold

for the special case in wﬁichlg (énd thus ?) is given by a truncated spectral
expansion of form (58), provided 9E /9t is the exact (or untruncated) tendency

of £. However, the basic spectral technique is such that

+ R(E) ' (138)

9 _ 3

at ot

3E ~
where "t represents the truncated tendency computed by the model, and the

residual R(E) is orthogonal to the truncated £. Since ¥ has the same
truncation as & and B is proportional to P?, it follows that R(§) is also
orthogonal to ¥ and u. Thus the relations (135) to (137) hola for‘a truncated
£ when the truncated tendency 9£/9t is used. It follows that apart from time-
truncation aﬁd round-off error, these conservation relations hold for the

spectral model.

Satisfying these conservation relations contributes to the computational
stabilityvof the spectral technique, and at first sight appears to be
physically realistic. However, if in reality energy or enstrophy is being
transferred from resolved to unresolved scales, this process will not be
represented in a non-dissipative model, and can lead to an accumulation of
energy, and particularly enstrophy, in the shorter retained scales, a process
referred to as spectral blocking (Puri and Bourke, 1974). This is most marked
for relatively low resolutidn models, for which it may'be alleviated bf aﬁ
appropriate choice of scale-selective horizontal diffusion. The benefits‘of
such a diffusion are illustrated quite distinctly in some idealised barotropic
integrations using T21 and T42 resolution reported by Simmons et al. (1983,
Figs.22—24); Some further discussion concerning the incorporation-of
horizontal diffusion in spectral models is given in Sect.3.5, and the subject

is treated more fully by Sadourny elsewhere in these proceedings.
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3.3.2 The primitive equations

in the usual formulation of primitive=—equation spectral -models none of the
principal atmospheric conser&ation relations are maintained. This is in part
due to the presence of triple products in some quantities, for example the
kinetic energy in shallow-water equation and sigma?coordinate models, and in
part due to the use of lnps rather than ps as the basic prognostic variable in
multi-level models with terrain—-following coordinates, as diséussed further in
our later contribution to these proceedings. However, experience with both
shallow-water equation and ﬁulti—level models is that conservation properties
in adiabatic simulations are generally good (e.g. Eliasen et al. 1970;

Bourke, 1972, 1974; Hoskins and Simmons, 1975).

3.4 Semi-implicit time schemes

We conclude our discussion of the implementation of the spectral technique by
indicating in this and the following section how the approach facilitatés
adoption of a semi=-implicit time scheme and linear forms of horizontal
diffusion. In both cases, the property that the spherical harmonics are

eigenfunctions of the two-dimensional Laplacian is basic to the application.

We consider first the semi-implicit treatment of gravity-wave terms, following
Robert et al. (1972), and more specifically the first applications to multi-
level spectral models by Bourke (1974) and Hoskins and Simmons (1975). The
scheme can be written in the following form for the divergence, temperature

and surface pressure equations

8§ D =L~ V2 :
D @ Y {YAtt THE D lnps} (139)
g
ST =~
T -1 A, D | (140)
8 =l 5 A
. 1op_ ﬁ ™A, D (141)
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where the finite difference operators Gt and Att are defined by

1
8% = o {x(erde) - x(e-00)} : (142)
1
2

X = ~ {xX(t+ht) + X(t-At)]} - X(t) (143)

Att
In (139) to (141L£2?;E?Z;d(féﬁzepresent the total tendency qf D, T and lnpS
calculated according to Egns. (114), (95) and (195) using values at time t for
the unparameterized terms. We assume a vertical discretization so that D, T,

cgga;nd 65;;; horizontally-varying column vectors with each element

representing, for example, one level in the vertical. Y and T are constant
matrices, and € and T constant (column and row, respecti?ely) vectors. Their
detailed form will not be specified here; we simply note that they are
computed by linearization about a basic resting state with a specified
temperature profile, and for terrain-following coordinates more general than
'sigma a specified surface pressure (Simmons and Burridge, 1981). For this
basic state, the gravity wave equations with a continuous time representation

are given by

aD _ 2
5 = T V¢ (YT + € 1nps) (144)
3T 4
il T D , (145)
d1np

8 = e
oy = -7 D (146)

from which we obtain

2 .
(3—2 -BV)D =0 " (147)
ot

where
B=7YT + €T (148)
The eigenvalues and eigenfunctions of the matrix B thus determine the gravity-

wave phase speeds and vertical structures associated with the basic state.
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Eliminating T(t+At) and lnpS (t+At) from (139) to (141) we obtain an equation
of the form

(I - BAt? V2) D(t+At) = RHS (149)
where I is the unit matrix and RHS depends linearly on-<4 and and on
values of D, T and lnps at time levels t and t-At. In a spectral model this
equation is simply solved by matrix algebra:

n(n+1)At2

"D:(t+At) = (I + B)~! (RHS): (150)

a

Values for the spectral coefficients of T(t+At) and lnpS (t+At) are then .

computed directly from (140) and (141)

The»inverse matrices in (150) need be computed once only and stored, and in
general the additional computational cost per timestep of including a semi-
implicit time scheme in spectral modeis is negligible. 1In previous sections
we havé indicated how the explicit spectral tendencieggzzgf?ffandkgia: ;re
calculated by quadrature. Completion of the calculation of RHS, and of the
time~level t and t-At contributions to the right-hand sides of (140) and (141).
can be carried out in spectral space, as}in the first multi-level spectral
models. However, in the organisation of the high-resolution model developed
at ECMWF for optimum use of peripheral storage (Baede et al. 1979), only one
vtime level of spectral coefficients is used, and the relevant linear
calculatiéns are’performed in grid-point space prior to the quadrature. A
complete specification of these calculations may be found in the documentation

manual of the current operational ECMWF model.

The spectral technique also lends itself to further optimisation of the time-
stepping scheme. An example is given in our subsequent lecture on the design
of the present ECMWF spectral model, while scope may exist for further

developments, for example along the lines discussed by Orszag (1979).
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3.5 Horizontal diffusion

We consider the equation

98 _+ _ _.\P .u2P |
7 = £ - (-DP x77e | (151)

where the second term on the right-hand side (for which p is an integer) acts

as a scale-selective dissipation. Transforming to spectral space this becomes

8E" p P
Tn_ o gym _ Ko° ()T om
5t - (&g 2 °n (152)

This may readily be integréted using an implicit scheme for the diffusion

term:

&n® (n+1)F
a2p

1

m ) .
2At En(t+At) (153)

[E™(e+at) - EN(e-At)} = (E(eN)T -
n n n

giving

Em(t-At) + 2At é(t):

Ez(t+At) = B > (154)
1 + 2kAtn® (n+1)P/a“P

It is thus a very straightforward matter to include a stable, linear diffusion
within the spectral technique. As implemented here with an implicit.scheme,
the diffusion acts eachktimestep in a scale-selective way to reduce amplitudes
ofbspectral coefficienté calculated for t+At in the absence of diffusion. 2
Variety of scale depéndences other than np(n+1)p can be used, but dissipation
may not then be local in physical space. The use of vorticity and diveréence
as prognostic variables also facilitates the use of a stronger dampingvof

divergence if required.

Linear diffusion of the type illustrated here is widely used in spectral
models, with apparently satisfacfory results. Adoption of a non—iinear
diffusion as used in a number of finite-differénce models requires‘significant
programming effort and computational cost, although an example of such an

application has been given by Gordon and Stern (1982).
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4. THEORETICAL DIFFERENCES BETWEEN SPECTRAL AND GRID POINT MODELS

In this section, we do not aim at giving an exhaustive list of all differences
between spectral and grid poiﬁt models. We rather wish to concentrate on the
differencés which have been mentioned as potentially relevant here and there

in the literature.

4.1 The pole problem

In a finite difference model on a latitude-longitude grid there is a
convergence of the meridians towards the poles. As a consequence, there is a
severe restriction on the timestep needed to avoid numerical instability.

Many solutions have been proposed for this problem, however several led to
sharp controversies since they were sometimes solving the numerical problem at
the expense of some extra physical problems. The ideal solution would of
course be to have an isotropic resolution, or at least to simulate it as
closely as possible. This has been done at GFDL by modifying the grid néar
the poles (Kurihara 1965) or in other models by Fourier analysing the fields
or their’time tendencies and discarding shorter zonal waves in order to have
an approximately constant east-west resolution. A variant of this approach
has been developed at ECMWF (Burridge, unpublished) achieving a similar result
through a modification of the horizontal diffusion. The results have proved
very satisfactory and it is probably fair to say that "pole problems" should
no longer be considered a problem for finite difference models, although care

is required at the design stage.

For spectral models using spherical harmonics as expansion functions and a
triangular truncation, there cannot be any pole problem since, as mentioned in
Sect.2.3 the resolution is then isotropic over the sphere. Howeve£, it is
worth mentioning that such is not the case for a rhomboidal truncation. There

is more resolution at high latitudes, mostly in the medium part of the
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spectrum (cf Sect.2.3) which may lead to a certain form of pole problem.
Furthermore spectral models using bi-Fourier expansions have a pole problem
almost identical to the one in finite difference models and similar remedies

(e.g. Fourier chopping) can be used.

4.2 Aliasing errors

Let us consider the simple advection equation on a circle

d
%% =-u 5% ‘ {155)

If we consider 2N points on the circle, i.e.

2m . . .
Ai = oN (i-1) 1 = 1,...2N (1586)
™
then the grid distance is AA = N (157)
u, assumed to be periodic (u(A + 2m) = u(A)), can be expanded in a Eourier
series.
N ,
wu(h,t) = ) u_(t) I (158)
m=_N -
with
2m ‘
1 =imA
u (£) = 5o [ ur,t) e ar , (159)
o
If we assume the horizontal derivatives to be computed exactly, then
N
a )
5% = z in un(t) elnA (160)
n=-N
N N .
and u—a-E = 2 2 inu (t) u(t) el(n+m)k (161)
9A n m
==N m==N
At the points Ai defined by (156) we have
: N N
: ) i A
A, ,t) 2L ,t) = ) T inou(t)u (¢) et (BMAy (162)
i oA i N =N n m ‘

n+m varies from -2N to 2N and we have only 2N points. We can thus resolve

ipA
only elp for p = -N,..N.
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As a conseguence, wavenumbers with |p|>N are misrepresented (aliased) as

longer waves since

i[plj-(j-1)2w]

SIPAT _ (163)
and as a consequence of (156) (j-=1)2m = 2N Aj.
This implies

Ciph i(p=2N)A

e J=e J ' ‘ ' (164)

Thus p is aliased as p-2N.

This aiiasing can be a spurious source of energy in finite difference models
and even if the time step is chosen such as to avoid linear instability, it
can 1ead to non-linear instability (Phillips, 1959). 1In order to prevent it a
solution is to filter all waves with |pl>N but this becomes more complicated
for two dimensional problems. A second solution is to impose certain infegral
constraints to be satisfied in the discrete approximations (e.g. energy
conservations), inhibiting spurious growth of the amplitudes of the smallest
scales: it removes the instability problem, but not the aliasing errors.
However these are usually small and it is interesting to note that they are
further reduced when a Fourier chopping is used to solve the pole problem (as

discussed in the previous section).

Spectral models, as mentioned in Sect.3.2 and 3.3, do not suffer from aliasing
errors in the computation of quadratic terms, which prevents the non linear
instability mentioned above. They nevertheless generally accept aliasing from

triple (or more) products and from division (as do grid point models).
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Another form of aliasing errors suffered by both grid point ;nd spectral
models is what is sometimes improperly called “iﬁitial" gliasing and is very
closely related to truncation'errors; although not identical; and smaller in
amplitude. It is easy to explain them for the orography although they also
affect initial fields (whence their name). Since the actual mountains have a
continuous infiﬁite spectrum averaging or sampling is thus neéessary which -
modifies slightly all scales, in particular the smallest retained. Fourier
components for example cannot be evaluated exactly by quadrature formulae
since they correspond to integrals of "polynomials" of infinite degree. This
aliasing can however be reduced (almost) at will by increasing the number of
points used for quadratures and by projecting back on the selected grid (this
method applies also to grid point models) which leaves only the truncation
error. BAn example is given in Fig.6 for the line of latitude 40°S analysed
with 63 zonal wave numbers either from a grid of 2160 points or from one of
192 points (after a simple averaging of the orography). The resulting local

differences, although small, may not be.fully negligible.

m

1000 ~— Direct Fourier al)alysis_
from a 2160. point grid

— —~==—Fourier analysis

from a 192 point grid

500

100}

I PN 4
150 7/ 160

ANDES

Fig. 6 Fourier analysis of the part of the circle at 40%S
keeping 63 zonal wavenumbers.
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4.3 Linear phase error

It is generally accepted that this is one of the important contributions to
differences betwéen-spectral and grid point models. To illustrate it, let us

consider the simple linear advection equation:

du Ju

e Y (165)
Then

_ e:L(m)\—ct) (166)

18 a solution of (161) if

c = Wm ' (167)

. du

A second-order accurate discrete analogue of % may be

u(A+40) - u(A-AN)

2AX

which implies u to be solution if

~ sin mAX

c =0 5 (1692)

Comparisdns of (169) and (167) shows that the discretized solution has a
phase speed Z which is different from the exact one c. The absolute value is
smaller, meaning that‘the waves move more slowly than in reality. In
particular for the smallest wave representable (m=N, corresponding to

mAL =N %E = 2m) ;=0. This phase error is a function of the wavelength

leading to a spurious dispersion of complex systems.

The linear phase error is of course a function of resolution (¢ = c tends to
zero when AA tends to zero), but it is shown in a following lecture that it
remains a significant source of error even at the comparatively high

resolution used by the ECMWF grid point model (1.875 degree grid).

High order approximations for the derivatives, at least for the advection
terms would also reduce the error, but at some computational expense.
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4.4 Coupling errors

Although hardly ever mentioned in the literature, these errors are very
similar in nature to the linear phase errors; '‘they originate from the inexact
computation of horizontal non linear differential operators and result in a
misrepresentation of the non linear interactions between the various scales of

motion.

Let us illustrate them with the simple non-~divergent barotropic equation for a

non-rotating atmosphere, following the approach by Lilly (1965).

=== - 3(¥,E) : (170)

where

E = V2 « (171)
As in Sect.3.1, & is the vorticity and § the streamfunction. J is the
horizontal Jacobian operator for a plane geometry:-

Jp.E) = L% W 8 ' (172)

Let us make a bi~Fourier expansion of V.

v = 2 A: ei(mx+nY) _ 2 ¢i | (173)
n,m n,m

then

Y
I

- ¥ (n24m?) xpf: ' (174)
n,m

and
a6y = L w1 (pP+a?) piy
n,m P9 !

) mwi T (p24q?) ¥
n,m P,q q

= I (eena) P+ ¥ - (175)
n,m,p,q
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or in a symmetric way:

m
J(Y,8) = 3% ) (pn-mq)[p2+q2)—(n2+m2)] d)l; v (176)
n,m,p,q
We now define
Ax Ax
§ F = 1o [F(x + 57 = Fx = 3 )]
~—x 1 Ax Ax
o= o [Fx + 50 + Fx - 0]
and replace
v s 88 v 8 ¥ , V2P by 6 F and
9x x o dy ¥ %% ' XX
5. 9% EY -5 ¥ s EF
J(¥,&) by S_ ¥ yE GYIP § &
which leads to a second order scheme.
If we now hake use of (173) again, we obtain
» _1 sin p Ax sin n Ay sin g Ay sin m Ax
.8 =5 ) (=== By Ay Ax
n,m,p.q
p m «
. {R(p,@) - R(mm)} wq v (177)
_ Ax 2 by 2
sin p 5~ sin q 5
where R(p,q) = i + (T) (178)
' 2 2

corresponds to the Laplacian operator.
(177) is to be compared with (176).

The errors made are clearly very similar to the ones observed for the linear
- ) sin m AA . .
phase problem (m was approximated by ———Kx———) and evidence for the importance

of linear phase errors guarantees the presence of non linear coupling errors

with similar amplitude. They are such as to underestimate the interactions
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between the various scales and in particular the shortest scales. They can be
expected a priori to act as a reduction of the resolution. It is easy to see

that their magnitude is larger than that of aliasing errors.

Evidence of their practical importance can be deduced from Williamson (1978):
he showed second order schemes to behave in a way similar to fourth order
schemes with coarser resolution. Since the differences between them lie in
the accuracy of the discrete representation of the derivatives, and in view of
the largely non linear nature of the atmosphere it supports the assertion on
the effects of coupling errors made above. This is further strengthened by
some results obtained at ECMWF comparing a grid point and a spectral model,
showing that on average the grid point model was behaﬁing like a spectral
model with a significantly lower resolution (Jarraud et al. 1979). These
coupling errors are also likely to be reséonsible for soﬁe of the largest
differences seen between spectfal and grid point models at ECMWF during the
course of an extensive comparison (Girard and Jarraud, 1982) which led to the
choice of the spectral technique for the ECMWF operational model, as discussed

in the following two contributions to these proceedings.
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APPENDIX DEFINITION OF THE SPHERICAL HARMONICS (following Rochas, 1973)

i

By definition a spherical harmonic of degree n is a homogeneous function
u(x,y,z) of degree n, solution of the Laplace equation. .
Au = 0 » ’ 7 (A.1)

where Au is the three dimensional Laplacian.

In spherical coordinates (A,0,r) it can be written

d L9 ~ 9%u 3 du, 1
Au = L [co;e ) (cosb 5%) PR N i Y 37 (r2 5%)] (a.2)
r? cos?6 a2
The homogeneity condition in spherical coordinates is
9
r 52 = nu , (A.3)
r .
which implies:
w(r,0,r) = ¢ S (A,9) (A.4)
where Sn igs an arbitrary function of A and 6.
Inserting (A.4) into (AR.2) gives
2
1 39 asn 1 8 Sn
SosB 38 (cosf 6 ) + + n(n+1) Sn =0 (A.5)
S cos28 3?2

Sn (A,8), the solution of (A.5), is also called a spherical harmonic of degree

n. It can be obtained by a classical separation method.

We look for a solution of the form:
sn(k,e) = A(B) B(A) (B.6)

(A.5) given then

B(A) d_ da, , A(8) &%B B
Sos8 b {cosb de) + ;;;E; v + n(n+1) A.B = 0 (A.7)
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which can be rewritten:

2
a(h) a8 + B(8) B =0 : ) - (A.8)

ar2

The solutions are

B(A) = a R (A.9)

Inserting (A.9) into (A.7) leads then to:

]a=0 ‘ (A.10)

1 d da
cos0 ab (cosb de) + [n(n+1) -

This is the so called Legendre equation and it can be shown that the solutions
are the P:(e) or associated Legendre functions of first kind of order m and

degree n.
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