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1. INTRODUCTION

Statistical interpretation of medium range numerical weather prediction (NWP)
products started at the Royal Netherlands Meteorological Institute (KNMI) in 1970.
At that time the forecasters in the Operational Division used a technique based on
manually selected analogues for the interpretation of the 72 hour 500 mbar
prognostic charts. These NWP products were received from the National Meteoro—
logical Centre (NMC) of the United States of Bmerica. In 1975 de Jongh developed
a numerical procedure for selecting the analogues and in the subsequent years the
whole procedure was transformed to a completely objective scheme for the interpret-
ation of 500 mbar prognoses. When the European Centre for Medium Range Weather
Forecasts (ECMWF) began operational forecasting this scheme was rewritten for use
on the ECMWF products. In section 2 a description of the analogue selection scheme

is given as well as the verification results obtained for ECMWF forecasts.

Inspired by the results cbtained by Klein and Glahn in the USA, research on the
interpretation with regression techniques was started in 1978; this resulted in.
guidance being based on NMC-NWP products from 1979. Although only 500 mbar data
were used as input in a Perfect Prog system the results were encouraging. As a
result some procedures based on European Centfe products were developed. In
section 3 a description of the current Perfect Prog system is given. It must be
emphasized, however, that the description given in this section should not be seen
as a static one but just as a description of a rapidly changing state of affairs.
The recent growth in the number of products received by us from the Centre will
lead to new procedures. Furthermore our growing archive will soon allow us to
start research on MOS-procedures. In section 4 some preliminary research on this

subject is described and the first results certainly are encouraging.

2. ANALOGUES

The use of analogues as a tool in interpreting the output of numerical models is
fairly well known. For instance Wilson and Yacowar (1980) and Woodcock (1980)

reported recently about the use of analogues. Also Yacowar (1975) and Agnew and
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Alexander (1980) report on the successful use of analogues. Although the principal
approach is similar, the selection of analogues can be based on quite different
procedures. The procedure described here was designed to simulate a particular

manual selection as much as possible, see de Jongh and Kruizinga (1975).

2.1 2Analogue selection procedure

The selection of analogues is based on the 500 mbar forecasts of the European Centre
for Medium Range Weather Forecasts (ECMWF). The forecast times used are +24, +48

up to +i44 (indicated by day 1, 2 etc) valid for 12 GMT. For each forecast chart

a set of 30 analogues is selected in the following way. From each field the 500 mbar
heights on the 58 gridpoints indicated in figure 1 are used. The historical

data-set scanned for analogues consists of 500 mbar heights at the same gridpoints
daily at 0 GMT, for the period January 1, 1949 up to December 31, 1979. Before

the similarity of two 500 mbar patterns is computed a simple selection based on

the date is performed. A possible analogue must be in the same period of the year,

a difference of 20 days between the dates is allowed. When this criterion is met

the similarity S of patterns is computed from

58
s = I v ((FF) - (a-K)° (2.1)

where Fn and An denote gridpoint values of forecast and possible analogue

respectively. Furthermore wn denotes the weights assigned to the gridpoints (see

figure 1). These weights are also used in the computation of the averages E; and
=

_ 58 58

L Y Fa / nf1 n (2.2)

The similarity measure S becomes zero in case of a perfect match. When scanning
through the historical data the dates and the similarities of the 30 most similar
patterns are retained. The weather associated with these analogues is used to

produce a "guidance" forecast.

2.2 Verification results of analogues

The elements mainly used to express the medium and long range forecast at our
institute are minimum- and maximum-temperature (Tn and Tx) and the occurrence of

a measurable amount of precipitation (>.3mm) in the periods 06-18 GMT (daytime) and
18-18 GMT-POP12 and POP24; all elements being observed at De Bilt. In this paper
temperatures are expressed as deviations from the pentad normal in whole degrees
Celsius. Forecasts for maximum- and minimum-temperatures are obtained by

averaging the maximum and miminum temperatures of the analogues. These averages

are rounded to the nearest degree. The fractions of analogues (in %) with
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precipitation > .3mm during daytime (POP12) and during the period 18-18 GMT (POP24)
respectively are interpreted as the probabilities of precipitation. The verifi-
cation was performed over a 20 month period from December 1980 up to July 1982
inclusive. Temperatures are verified with the Mean Zbsolute Error and with a
score, in current use at our Institute, - a Performance Index (PI). The PI yields
0 in the case of no-skill. The result related to perfect skill is dependent on
the element studied. The Brier score and also the PI were applied to POP12 and
POP24. For the sake of clarity the Mean Absolute Error and Brier score were
transformed to skill scores with a scale from O (no-skill) to 100 (perfect skill),
indicated by MSS and BRS respectively, These transformations are discussed in

the appendix.

L1} 20
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Figure l: Grid on which the similarity is computed.

The results cbtained with skill scores are given in table 2.1. The Performance
Indices are given in table 2.2. Both tables lead to the same conclusion: up to

day six a positive score is ocbtainedwith the analogue interpretation of the 500 mbar
ECMWF forecasts. The minimum temperature is clearly the worst element treated in
this way. As is seen, the skills are rather stable during the first days but

later on mostly decrease with forecast time. This suggests that during the first

days the total skill is limited by the quality of the interpretaion scheme, whereas
on davs 5 and 6 the quality of the numerical model is the limiting factor.
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In table 2.3 the bias of the forecasts is given. As is seen this bias is very
small for the temperatures. The probability of precipitation is slightly

overestimated.

Table 2.1: Skill scores of Tn and Tx (MSS) and of POP12 and POP24 (BRS) versus

forecast time in days

1 2 . 3 4
T, 10 10 10 9 3
Ty 36 32 32 26 19 19
POP12 19 16 17 9 9 4
POP24 29 29 27 22 24 16
Table 2.2: Performance Index (PI) of T, Txs POPL2 and POP24.

1 2 : 3 4 5 6
T, 16 15 15 12 11 9
Ty 34 33 29 27 21 20
POP12 18 18 18 14 16 13
POP24 26 26 22 21 23 19

Table 2.3: Bias of T, and T, (°C) of POP12 and POP24 (%).

1 2 3 4 5 6
T, .2 .2 .2 .1 .2 .2
T .3 .2 .2 .2 .2 .1
POP12 2 2 3 5 6 6
POP24 1 3 3 4 4 5

3. PERFECT PROG GUIDANCE

The interpretation of NWP-products through the Perfect Prog (PP) approach was
introduced by Klein et al (1959). In the PP-system a local variable (predictand)
is forecast through a regression equation from predictors obtained from a numerical
forecast. The statistical regression equations are developed with a historical
data set containing cbservations of the predictand as well as the predictors. When
the equations are applied, the model predictor values are assumed to be perfect.

ILocal climatology has been accounted for in the regression equation.

350



3.1 Statistical Techniques

The forecast equations for maximum- and minimum-temperature are derived with a

standard multiple linear regression scheme:

T=ao+§a.x (3.1)

where Tx is the forecast temperature and then the x are parameters predicted by
the model. The selection of the input parameters X (predictors) is performed with
a forward stepwise regression procedure. This technique has been discussed
frequently in meteorological as well as statistical literature. Dempster (1969)

contains a thorough description.

For the elements POP12, POP24 and the probability of thunderstorms in the
Netherlands (POT) use is made of the logit model to formulate the forecast
equations, Glahn and Bocchieri (1975). The probability of occurrence is related to

the input parameters (predictors) in the following way:

P = 100/(1 + exp(f)) (3.2)
with f:
f = ag + g a % (3.3)

The values of the coefficients ao, an are estimated with an iterative maximum
likelihood procedure. For the statistical background for this procedure we refer
to Anderson (1972). The predictors were selected in advance with a forward step-—

wise regression scheme.

3.2 Predictors

The data set used to derive the forecast equations consists of the daily 12 GMT
analyses of 500 and 1000 mbar geopotential height in the period 1-1-1972 up to
31-12-1979. fThese analyses were cbtained from NCAR (USA).

All gridded input fields were transformed to the grid depicted in figure 2. With
the grid values on this grid the following predictors related to the height,

geostrophic wind and vorticity above De Bilt, were defined:

H = H (3.4)
VNZ = H1 - H3

VOW = H2 - H4

VORT = (Hl + H2 + H3 -+ H4 - 4HO)
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with Hn indicating the height of 500 mbar or 1000 mbar at the points indicated in
fig.2. These predictors were defined at both levels resulting in 8 possible

predictors. For POP12 and POP24 these 8 predictors were used only.

Fig. 2: Grid used with Perfect Prog Guidance,Gridspacing = 400 km.

For Tn and TX more predictors were available. In order to have some predictors
related to the larger scales of atmospheric motion 10 predictors defined on the
whole grid of figure 2 were added. These predictors were constructed in the

following way:

‘For each daily grid the central gridpoint height at a given level was subtracted
from all the other gridpoint heights. From the resulting data set the Empirical
Orthongonal Functions (EOF) were computed for each level separately. The daily
scores on the first five EOF's of each level were added to the set of possible

predictors.

Specific predictors for Tn and TX respectively were defined with the help of the
geostrophic wind at the 1000 mbar level. For this wind 8 direction classes and a
calm class were defined. For each class the climatological mean of Tn and TX was
computed per month. These climatological means indicated by the daily wind were
also entered into the regression. Furthermore the thickness of the layer 500-1000

mb was available.
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The prediction equation for the predictand, POT, probability of thunderstorms in

the Netherlands in the period 0-24 GMT, was developed at a later stage. At that
time grids at 850 mbar were available so predictors of this level were also entered.
However, firstly one additional special predictor was developed. Hanssen (1965) has
shown that the thickness difference AD is a good predictor of thunderstorms in the

Netherlands. This thickness difference AD is defined by

AD = (Hygq = Hyggg) = (Hggg = Hygg) (3.5)

with Hi the height of the i mbar level. With the 1000, 850 and 500 mbar heights

we developed through regression a predictor DDH:

+ 2.12 H - 1.82 H (3.6)

DDH = -,
23 Hsp 850 1000

In the POP and POT equations only 4 predictors were allowed. The temperature

equations contained 5 to 10 predictors.

3.3 Verification Results

For the elements Tn' Tx' POP12 and POP24 forecast equations were developed for each
of the four seasons. The thunderstorm probability POT is only forecast in the
warm season, one equation for the 5 month period May to September inclusive was
developed. Skill scores obtained on the dependent data set, about 720 days in each
season, are given in table 3.1. Here only skillscores calculated with either mean

absolute error or Brier score are given.

Table 3.1: Skill scores for Tn and Tx (MSS) and for POP12, POP24 and POT (BRS)

obtained on the dependent data set.

Winter Spring Summer Fall Year
T, 23 40 43 27 33
T, 32 39 45 45 40
POP12 27 31 40 34 33
POP24 36 40 42 42 40
POT 38

Comparison of these results with the results given in table 2.1 leads to the
conclusion that the regression equations have at least the potential to perform

better than the analogues.
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The verification results with forecast data were obtained over the same 20 month
period as used with the analogues except for the thunderstorm prcbability. Only
8 months of verification data were available for this element. Table 3.2 gives

the skill scores measured with mean absolute error and Brier score respectively.

Table 3.2: Skill scores of T, and Tx (MSS) and of POP12, POP24 and POT versus

forecast time im days.

1 2 3 4 5 6
T, 30 27 23 17 13 10
T, 39 32 32 26 19 16
POP12 36 27 13 0 -7 -17
POP24 42 35 24 10 9 0
POT 35 31 24 6 -1 21

Table 3.3: PI of Tn’ Tx’ POP12, POP24 and POT versus forecast time in days.

1 2 3 4 5 6
T, 31 28 25 19 17 14
T, 38 35 31 28 25 22
POP12 25 22 19 16 13 12
POP24 29 26 22 19 20 15
POT 22 19 22 15 15 10

Table 3.4: Bias of T, and T (°C) and of POP12, POP24 and POT (%)

1 2 3 4 5 6
T, A 4 .3 .3 .2 .1
T, .2 .2 .2 .2 .2 .1
POP12 2 5 5 9
POP24 2 3 5 6
POT 8 7 8 12 16

The day 1 skills given in this table are near to the maxima given in table 3.1 and
much better than the skill obtained with the analogues, table 2.1. However, the
skills of POP12, POP24 and POT show a much sharper decline with forecast time than

the skill of the analogues. From day 3 onward the analogues tend to be superior.
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For temperature forecasts the Perfect Prog guldance is better. Apparently the
temperature equations use predictors which are forecast better by the European

Centre Model.

Tn table 3.3 the Performance Indices of the Perfect Prog Guidance are given. The
results given here for day 1 and 2 are in accord with the results given in

table 3.2. However, the results given for day 4, 5 and 6, especially for POP1Z,
POP24 and POT are in sharp contrast. According to this table these elements show
skill even out to day 6, because all PI's given in this table are significantly
different from zero (a PI > 4 is significant at a 95% level). The results of

table 3.2 and 3.3 combined lead to the conclusion that forecasts and observations
are related to each other out to day 6 but there are other reasons than pure
randomness of forecasts that damage the skill scores. Partly these poor results

can be explained by the bias given in table 3.4. The probabilities of precipitation

and thunderstorms are clearly too high.

4. MOS-EXPERIMENTS

The term Model Output Statistics ¢MPS) was coined by Glahn and Lowry (1972). Since
then this approach has been used by several authors. Just as PP the MOS approach
is based on statistical regression techniques. However, with MOS, equations are
developed with model forecast predictors and cbserved predictands. The well-known

advantages of MOS relative to PP are:
a. Model bias and random errors are accounted for in the regression.

b. More predictors are available. For instance special predictors such as vertical

velocities which are only available from models.

c. Recent observations can easily be used as predictors.

Since we are interested mainly in forecast times ranging from 2 to 5 days it is thought
that the first advantage will be the most important. A second reason for applying

MOS is derived from the requirements for the forecasts. The requirement "accuracy"
measured by a score or skill score is widely known. However, "reliability".

introduced by Sanders, see Murphy (1973) should be just as impoxrtant. The meaning

of "reliability" is illustrated with the following examples:

1. BAfter a set of forecasts "the probability of precipitation is p%" the event

should occur in p% of the cases.

o
2. After a set of forecasts "maximum temperature 25 C" the average of observed

values should be ZSOC.

The PP approach will usually fail on this aspect except with short forecast times.
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With MOS, forecasts are known to be reliable. In- our preliminary MOS study

we have performed two experiments.

I Corrected PP (CPP)

PP-poP24 forecasts were offered as sole predictors to a MOS procedure. This results

in bias correction and smoothing of the predictors.

IT ILimited MOS (IMOS)

The same 8 predictors used with the development of the PP-POP24 equations but now
with model predicted parameters were offered to a forward stepwise regression
scheme. The first four selected were used to develop the seasonal MOS-equations

for day 3, 4, 5 and 6.

The available data consisted of approximately 600 runs in the period March 1980 up
to April 1982 inclusive. The period December 1980 up to November 1981 inclusive
was used to test the equations. It was expected that the amount of data in the
dependent-set was too small to develop stable equations. So we took the following

precautions:

I CpP

For each forecast time two yearly equations were developed. The first one based
on all the data outside the test period. The second one on all available data.
The verification results are indicated with CPP1 and CPP2. We expect that the
average of both will be a good estimate of the results obtained with stable

equations.

IT 1IMOS

First the amount of data was artificially enlarged by using 9 other stations as
statistically independent replicas of the Bilt. So with the same values of
predictors we generated 10 input records. After that two equations were developed
per season and per forecast time in the same way as with CPP. The verification

results given under ILMOS! and LMOS2 are based on De Bilt solely.
Both experiments were limited to the forecast times of 3, 4, 5 and 6 days. 1In

table 4.1 the Brier skill scores of the experiments as well as skill scores of

analogues and PP over the same period are given.
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Table 4.1: Brier skill scores of POP24 obtained with different methods.

Verification period December 1980 upto November 1981 inclusive.

FORECAST TIME IN DAYS

3 4 5 6
Analogues 27 22 25 18
PP-Guidance 22 3 8 6
CPP1 24 10 9 8
CpPP2 25 10 14 12
LMOS1 21 11 16 10
LMOSZ 27 22 23 21

This table clearly demonstrates that MOS and correction of PP can lead to improved
forecasts. However, the analogues, (a PP method), still out-perform the other
methods. It may be expected that MO3 with more predictors available could be

superior to an analogue approach.

With the data for the same verification period the reliability has also been
studied. However, to study reliability a large number of forecasts is reguired,
so we combined the data for day 5 and 6 (as well as day 3 and 4). Thereafter the
set of forecasts was grouped into subsets. In our case we defined 10 classes, the
first class contained all forecasts of POP24 between 0 and 10%, the second class
all forecasts from 10 to 20% etc. The expected frequency of the occurrence of
precipitation in each class is 5%, 15%, 25% etc. In figure 3 the observed
frequency of occurrence in each class is plotted (+) against these expected
frequencies. The number of forecast in each class is also indicated. Foxr the

ideal reliability the plots should "fall on" the straight dotted line.

From figure 3 we see that the analogues behave very well whereas PP is the most
unreliable of the four sets shown. The reliability can be expressed as a number
by computing the weighted average of the squared vertical distances from the plots
to the ideal dotted line. The weights used are the number of cases in each class.
These computations lead to the results given in table 4.2., these results are
computed with vertical distances expressed in percent. Just as with the Brier

score a small figqure indicates a higher reliability.

Perfect reliability results in 0. However, due to sampling effects this limit will
not be reached even in the case of perfect reliability. It can be shown that with

the number of cases used here the lower limit will be about 24 so the analogues are
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very near to perfect.

of PP results in an improved reliability.

Furthermore, it can be seen that MOS as well as correction
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Figure 3: Reliability diagrams (see text)
Table 4.2: Reliabilities
3+ 4 5+ 6
ANAL 14 24
PP 160 224
CPP1 70 104
CPP2 45 51
LMOS1 120 106
LMOS2 47 96

358




5. CONCLUDING REMARKS

As from June 1, 1981, the Operational Division of the KNMI has been issuing 5-day
forecasts to the general public. BAnalogues and PP-guidance as well as directly
plotted output from the ECMWF are used by the forecaster to make up his forecast.
The verification results given in this paper are based solely onthe output of the
schemes. So the scores given here are not representative for the scores obtained
by the Operational Division. The differences between the Performance Indices,
however, are generally small, except for day 1. The skill scores can differ
substantially. For instance the skill score of POP24 of the PP-guidance is clearly
lower than the skill scores of the analogues and the forecaster. For the
temperatures the scores of PP are better than the analogue scores, while the
forecaster is able to improve on PP by about 5 points. For POP24 and POP12
analogues have better scores on day 3, 4 and 5. With POP24 forecaster and analogues
score almost equal to POP12, the forecaster scoring higher than the analogues. It
is important to note that due to the inevitable delay between model initial time
and forecast issuing time the day 5 forecast must be based on day 6 model output.
So when comparing verification results of forecasters and objective schemes a

shift of one day must be applied.

The MOS-experiment described in section 4 has no operational status at the moment.
It is generally felt, however, that it is undesirable to use more than one
interpretation scheme. So we plan to replace both schemes by one MOS-based scheme.
In section 4 it has been shown, however, that analogues can compete with a MOS
scheme so we plan to use analogue cutput as a predictor to a MOS scheme in order

to retain the benefits of both schemes. Additional research is planned with regard

to the elements of sunshine, as well as to the amount and phase of precipitation.
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Appendix : Verification Scores

Mean Absolute Error

This score is used frequently for the verification of point forecasts for elements
on a continuous scale e.g. temperature, sunshine duration. If fn indicates the
successive forecasts and o the related observations then MAE is defined by
1
1 N
MAE = = I BABS(f - o).
N n=1 n n

(A1)

(N = number of forecasts)

Clearly the optimum forecast will yield MAE = 0. The no-skill-level is chosen

equal to the MAE of climatology MAE The transformation to the skill-score

CLIM"
MSS is obtained by

AE - M
CLIM B

MSS = 100 (Aa2)
MAECLIM

In the preceding paper the skill score is used for maximum- and minimum temperature.
The climatological values of MAE for these elements at the Bilt are 3.1 CO and

3.0 c® respectively.

Brier Score (BS)

This score which was developed by Brier (1950), is applied to the verification of
probabilistic forecasts. 1In our case it is used for the verification of the
forecast probability of a measureable amount of precipitation (>.3mm) in 12 or 24‘
hour periods and the occurrence of thunderstorms in the Netherlands respectively
(POP12, POP24 and POT). When applied to yes/no variables the score is equal to
twice the mean square error. If the observations on are recorded as a row of 1's
and O's for yes and no respectively and the forecast probabilities are denoted

by P (0 < P < 1) then

N
I (o —p)2

2
BS = N n n (A3)

Again perfect forecasts lead to BS = 0. The no-skill reference point is usually
chosen equal to the score obtained by climatology in the long run BS

CLIM’
Transformation to the skill score BRS is obtained by

BS - BS
BRS = 100 . ——Cg—;—M———-— (ad)
CLIM

the climatological values of the Brier-score for respectively 12 hour and 24 hour

precipitation at De Bilt and the occurrence of thunderstorm in the Netherlands are
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.43, .49 and .45,

Performance Index (PI)

The verification score was developed by Kuipers about 1958 but has recently been
described in Kuipers (1980). This score can be used with continuous variables as
well as with categorical variables. However, this score requires an adapted way
of formulating the forecast. For continuous variables the forecast must be an
interval and for categorical variables one or more classes must be chosen as
forecast. The Performance Index (PI) of an individual forecast is given by the
expression

PT = {100 in case of hlt} 3

Ar
0 otherwise c (A3)

where a hit means an observation within the interval forecast or occurrence of one
of the classes forecast and P, is the climatological prcbability (%) that a hit
will occur. The PI of a set of forecasts is simply the average of the individual
PI's. For continuous variables the PI has a scale running from 0 (no-skill) to

100 (perfect skill). With categorical forecasts again O indicates no skill, however,
in general, a result of 100 will not be reackd even with perfect forecasts. The
maximum that can be reached is defined by climatology. In this paper we will apply
this score to temperatures which are given as point forecast and expressed as
deviation AT from pentad normal. So we need a rule to transform the point forecast
to an interval forecast. This is done with the help of table Al, which defines
forecast intervals dependent on the point forecast. The fact that the intervals
become one-sided at the extremes is related to the low climatological probabilities

for the extremes.

The other elements to which the PI is applied are the occurrence of precipitation
and of thunderstorms. The probability forecasts we have are translated to a
categorical forecast by forecasting the occurrence if the forecast probability is
higher than the climatological probability. The maximum PI's obtainable are 43 for
POP12, 49 for POP24 and 46 for POT.
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Table A.1: Transformation of a point forecast to an interval used with maximum

and minimum temperature.

AT INTERVAL AT INTERVAL AT INTERVAL
-7 <=5 -2 =-5<1K0 3 KT
-6 <-4 -1 -3K1IK1 4 KT
-5 T<-3 0 -2<T<2 5 KT
~4 <-2 1 -1<T<3 6 4T
-3 T<-1 2 0<T<5 7 KT
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