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1. INTRODUCTION

Up to know most extended range forecasts have been based on linear
regression models. Dynamic models like GCMs have hardly been used,
partly because of economic reasons and partly because the skill of
such forecasts has been low so far. Nevertheless, there appears to
be a growing interest in long range forecasts with dynamic models
(e.g. Shukla (1981)).At this stage it may be worthwhile to estimate
the errors inherent in extended range forecasts made with a dynamic
model. To assess this error we adopt the following strategy: We
restrict our attention to the barotropic modes of the atmosphere
and assume that the barotropic vorticity equation captures the essen-
tial features of what goes on at the 500 mb surface. The equation
is
%(v‘-»)wdw,v%yw):-cv‘n.wr—' (1)
is the stream function, X_1 is a radius of deformation and the
terquy describes the influence of a free surface on the flow. The
Coriolis parameter 2{1sin@ is denoted by f wheref) is the earth's
rotation rate. The first term on the right hand side of (1) represents
the effects of friction and F is a forcing term which is thought to
describe baroclinic effects. Suppose now that we want to make a long-
range forecast for the 500 mb surface. Then, we do not want to fore-
cast the day-by-day variations of WY nor do we want to resolve
features with a scale of 1-2000 km. What we want is a forecast of
the slowly varying.part of the largest scales of motion. This is
quite a reasonable program since data analysis has shown(e.g.
Blackmon, (1976)) that the largest planetary scales contribute strongly
to the low-frequent variance of the 500 -mb geopotential. If we ‘could
forecast the motions at these space and time scales we certainly would

have a model with sufficient skill to be useful.
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It is convenient to partition the stream function between a part e
to be forecast in a extended range forecast and a part q»m which
would have to be included in a medium range forecast but is not fore-
cast in an extended range prediction:

W =Y, +1Pm (2)
The forecast equation for 1+é is
)
f?t (V-y, + U, we,v‘we_+§‘) =-C VY, v R (3)

- Je c*e, Vz\"m)-Je(q‘m.V:f'm)'je (*mlvtfé) .

The subscript e at the symbol J denotes the projection of a Jaco-
bian on the spatial scales selected for the extended range fore-
casts. The three Jacobians on the right hand side of (3) describe

the impact of the 'synoptic' scale modes 1Pm on flow con the largest
planetary modes. Note that (3) does not ensure that only slow mo-

des are forecast.

An extended range forecast of ‘fe by aid of (3) will contain gross
errors. Some of these will be due to our ignorance with regard to
the forcing F. The crude damping scheme is also a source of fore-
cast error. But let us assume that the barotropic vorticity equation
is the proper equation to use and that we have a perfect parameteri-
zation scheme for the forcing F and for the damping. Then, the
only source of possible errors are the three Jacobians on the right
hand side of (3). It is well known that no dynamic forecast modes
can provide a good forecast for these terms beyond a few days (see
also Section 2). Therefore these terms will act as a source of

error in (3). What we want to do is to estimate the error of\ye fore-

casts induced by these interactions terms.

2. DATA

To assess the impact of thelym—field on the\fé—field we have to
evaluate the forcing Jacobians on the right hand side of (3) from
data. We took two years of daily height observations (1972-1973}
as provided by the German Weather Service. These height data were
essentially expanded in terms of the eigenfunctions of the La-
placian on the sphere (the procedure actually used was slightly

more complicated and is described in Egger and Schilling, 1982).
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These eigenfunctions are the spherical harmonics

™ ™ im A
YL = PL (sinB) e , (O 1latitude, A longitude) so

that ~

M ~v
W= zZ Z_'q;“" +r AW, B | 4)

m=0o Mm=Aq m '.’2“"'4

with expansion coefficients ‘rmn' The term Q=U¢$“19- describes

the superrotation. The earth's radius is denoted by a. As can be
seen we admit only modes which are antisymmetric with respect to

the equator. The zonal wave number is m and n is the number of zeros
between the equator and the pole and may be called a meridional wave-
number. We used the resolution ofmg£12, 1€n % 5 for the ex-
pansion of the data fields.

To compute the term

. 2
Je = - je ('“'Pe, th‘m)’Jcc?m,VWe) “Je(‘h. ‘VZ}“»\) (5)

we have to decide which scales have to be included in the \Pe—field
We chose

w2 Z v Ym

-— ) (6)
€ " o na»\\k"‘ﬁ Mme2n-a ¥ aug Siv O

» 50 that the Wy -field is composed of 31 modes. Of course,

12 5 »
) (7)
LP‘M - £6 ;:__4 Lr'thwi-ln“'

With all the coefficients 1(mn available on a day-by-day basis it is
straightforward to evaluate Je whereby Je is expanded with expansion
coefficients ’a’mn'

Next the vorticity equation is projected on to the spherical modes.
This procedure results in a forecast equation for the expansion coefi-
ficients of the WY _-field

%wm* coeres 2= Cp + Jemm (44 N7KL) = Fram /(1GER) (8)

where k;n is the eigenvalue of the mode m,n:

Kw::u= (W +2n-1)m+2n)/at (9)
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Fysm 15 the expansion coefficient of the 'baroclinic' forcing terms.

Furthermore, Jewmm = - 5‘““ /K:'\“

~ (10)
C = C/(A+2Y/ka)

In (8) we have not written down the cumbersome interaction terms
stemming from the term J(qre,§7§.e+f) on the left hand side of (3).
Before we turn to integrations of (8) it is revealing to obtain
some information on the statistical characteristics of these for-
cing terms. To that end, we discuss the powerspectra of Jemn' These
spectra are essentially of the 'red noise' type. Therefore a first
order Markov process MJ can be fitted to the time series Jemn(j)
where j is an running index in time increasing by one every day.

The Markov process 1is
Va
-b ~2b .
Miea = Mje 4 ((4- e™2)Rew) " W (1)

R () is the autocorrelation of the real or imaginary part of the
forcing. Wj is a white noise process with power density 1. The
decay rate b characterizes the autocorrelation through

Rex) = R) e~ bey
(12)

The corresponding fitted power spectrum is

S(w)= Ro) b/ brea? s

The decay rate b and the autocorrelation R (¢) depend on the

mode (m,n), of course.

Fig. 1 shows the parameter b for the imaginary part of the forcing

terms, i.e. for the sinkmx -forcing.
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Fig. 1 Autocorrelation decay rate b (day—1) for
the sinkmx~f0rcing of the modes of the H’e-field.

Roughly speaking the largest modes (m,n small) have the smallest
values of b whereas the smallest modes (m,n large) have the
largest values of b.

To demonstrate the quality of the fitting formula we show the
average of all powerspectra with 1.25€ b < 1.75 and the average
of the corresponding fitted red noise spectra (Fig. 2).
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Fig. 2 Average over the powerspectra of all modes
with 1.25€ b€ 1.75 d"" and the mean fitting
curve (solid) for these modes. The power is
normalized with respect to a white spectrum

for the same frequency interval.
The correspondence of the observed and fitted spectra is satisfac-
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tory although the fitted spectra overestimate somewhat the power
of the forcing for high frequencies. Since (11) appears to capture
the essential features of the synoptic scale forcing we can draw
the conclusion that the forcing terms Jemn are essentially unpre-
dictable beyond 2/b days, say. We can go on to say that even high
resolution GCM's would not be able to give useful deterministic
predictions for Jemn more than a few days in advance. In particu-
lar, the forcing must be seen as essentially white and totally
unpredictable if we are concerned with longrange prediction on the

scale of a month or more.

The variances R (o) has been computed as well and those for the

sinkmx— modes are shown in Fig. 3.
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Fig. 3 Variance R(o) (m45_4) of the forcing for the

imaginary part of the modes of the‘Pe-field.

In general, the forcing has about the same intensity for all modes
although the modes withwm{2, my4 receive the strongest input.

If we want to study the forcing of the planetary scale stream func-
tion at a certain locality we have to superimpose the contri-
butions of all the various J . to the forcing at that point. Then
we can compute the powerspectrum & (X\,0es) at any locality of the
Northern Hemisphere. To display the results it is convenient to con-
sider variances, i.e. the integral of the power over a frequency
band. Following Blackmon (1976) we introduce the low-frequent varian-
ce of the forcing
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2 -
e =2 fzc«\.e.w)dw (14)
L ™

O
This is the variance of forcing with periods T =m/w larger than
ten days. Fig. 4 shows the low frequent variance of the stream

function forcing as obtained from the data.
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Fig. 4 Variance of the forcing for periods T » 10d in
2_4.-4

10"m’ S
The variances are generally lower at high and low latitudes than
at mid-latitudes. There is a fairly broad maximum of the forcing
over the western part of the hemisphere. The intensity of the
forcing is of the order 2-4 x 102 m4 5_4.
It remains to determine the long-term response of the‘fe—field to
the forcing displayed in Fig. 4.

3. LINEAR RESPONSE TO THE FORCING BY SYNOPTIC MODES

(8) is the forecast equation to be integrated in time whenever a
forecast has to be made. In that equation Jemn acts as a forcing
term. This term is known for the years 1972-73 but it is not known
when we have to make a forecast. In particular, as we have seen,
we cannot forecast this forcing term beyond a few days even with

a GCM.

In an actual situation we would have also great problems to deter-
mine the 'baroclinic' forcing an. Also, the dissipative term would
be a source of error. Let us, howeyer, assume that we have a perfect
parameterization of an and that -CY%amis the correct form for the
damping. In other words we assume that (1) is the correct forecast
equation for the 500 -mb flow. Then our lack of knowledge with
regard to the forcing {mn is the only source of errors in an inte-
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gration of (8) (provided we know the initial state perfectly well),
The error induced by these terms in an extended range forecast can
be assessed by running (8) with J prescribed on the basis of the
observations. As we have seen J has the characteristics of red
noise. Therefore Jemn induces a response at all frequencies but the
strongest forcing occurs for the smallest frequencies. It is the
smallest frequencies we are concerned with in an extended range
forecast. Therefore we have to expect that J emn will induce a
considerable error in longrange forecasts.

There are at least two methods how to determine the response. The
first and most accurate one is to integrate (8) numerically whereby
the forcing terms J are updated from day to day according to

the observations. The resulting time series LV (j) has to be
analysed in order to find out the longterm Varlance of the error
field.

Here we chose a simpler approach. We linearize (8) with respect to
a zonal basic state. Then our problem is linear and we can find
out the error by analytical means. In particular, we can put F =O.
To that end we linearize (8) with respect to the zonal mean flow

u, cos @
ﬁ‘(’"\?\ = - ““-’Rmn + E)\l’m-h + J-e‘h\"h/("* A‘/k‘l:a.\\) (15)
The symbol
<
Wewmn =M ( ekpmy = (2_{1 + Qﬁ(‘.“))/(kv}n '\‘f\z) (16)
a a o

denotes the Rossby frequency. In what follows we shall use a scale
dependence of the damping based on a conventional Austausch Ansatz:

C —Vk Y constant.

mn?
Using (15) corresponds to assuming that the nonlinear interactions

of the resolved modes are at least not more important than the

linear wave dynamics. Such an assumption would be hardly tenable in

a truly turbulent wave field but there are arguments that the regime
of the largest atmospheric modes is a wave regime where linear
dynamic may provide good guidance (Basdevant et al. (1981); see also

White and Green (1981)). 76



Given Je as a function of time it is easy to solve (15) by analyti-

mn
cal means. For our statistical considerations it is more convenient,
however, to perform a Fourier transform of (15) in time
where )
T W€
= €
‘P’W\'V\ () fe ‘q/‘lm'n &
- (17)
P )

PN Oiw) =_af°e"“"x¢.e (A0, t)dt

are the transform of the expansion coefficients and of the resolved
part of the stream function, respectively.
Let jmn (w) be the transform of Jemn' Then we obtain from (15)

P ()= = Cdumm /(= @ + Wpamm =i C) (18)

Switching back to physical space we have

¥m

5 & m »
?()l @.w)-"- % Z Z (P“q(w)Y + P‘h\ﬂ(.w) m+2n-q ) (19)

Mea N=A4 ™medn-q

where P;; is the complex conjugate of Pmn'

Since we know the Fourier transforms jmn it is easy to compute the
powerspectrum S (M BO,w) ~PP¥of the response to the forcing. It is
the power spectrum S (), 8w ) which contains most of the information
we want since it tells us what the error will be at a certain
locality on the sphere given the frequency @ of the atmospheric

motion. For example, the variance
w3p

& (o) =2 [ SQewdw
o

is the variance of the error of monthly mean forecasts induced by the
synoptic scale forcing (mso = 27/30 d-1 is essentially the maxi-
mum frequency resolved by a monthly mean forecast). In what follows

we shall present the variance »
40

G)LZ(A(G)'_‘:-;-fo S dw

which summarizes all the errors involved in extended-range forecasts
which go beyond the 10-day 1limit of medium-range forecasts.
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4, RESULTS

In Fig. 5 we present the extended-range error variance induced by
the forcing by theY/m-field.
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Fig. 5 Varianceei of the 500 -mb stream function W, in
103n%s7% for periods T% 10 d as induced by the for-

cing. The variance presented is an average variance
where A 2amdvhave been varied in the range 0.65% x>
£ Ax10 "t n g4 vé/ta/tosm"‘;s"'j
respectively.

}

Actually, the variance Ghz displayed in Fig. 5 is the average over
seven different cases. (8) contains at least two important parameters
neither of which can be determined with accuracy. Acceptable values
of A 2 and V¥ range over one order of magnitude at least. Although
the results for the sphere appeared not to be overly sensitive to

the choice of the parameters we decided to compute GLZ for several
combinations of these parameters and to average over the resulting
variances.

We note that maximum variance is found over the Pacific, over
eastern Canada and over the Atlantic. High values of the variance
are restricted to the belt 5005 0 < 70°. Subtropical latitudes
show a rather low level of error variance. Note the minima over

the Rockies and over the Himalayas. The response at midlatitudes

is of the order 3x1013m4/s—2. This corresponds roughly to a root
mean square error of about 50 m for the 500 mb extended range hLeight
forecasts.

It is most interesting to compare the error variances to the actual
extended range variance of the atmosphere for thetye—modes. Black-
mon's (1976) charts show this variance. Since Blackmon's data are
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not exactly compatible with our data basis we have computed €y
from our record. Fig. 6 shows the resulting variance of the 500 mb
stream function for atmospheric motions with periods T 7 10 d.
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Fig. 6 Variance of the 500 - mb stream function e in

103072 for periods T 10 d as observed.

We have two prominent maxima of the variance, one over the Pacific
and another one over the Atlantic. Low values of the variance are
found over the Rockies and the Himalayas. The agreement of Fig. 5
and Fig. 6 is rather striking. If we accept this coincidence we
have to conclude that the forcing by the “‘m - modes causes a main
part of the observed longterm variance of the\ye—field. Note that
this part is certainly unpredictable. Therefore, there is little
hope that an extended range forecast made with a dynamical model
will show satisfactory skill. On the other hand, we have to be
aware that the response to the synoptic scale forcing as displayed
in Fig. 5 depends on the choice of the damping parameters. We can,
therefore, not determine exactly what part of the observed long-
term variance is due to the unpredictable synoptic forcing.
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