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AN INTERPRETATION STUDY
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1. INTRODUCTION

Until now the statistical interpretation of numerical model output has been
applied mainly to short range forecasts. Some national weather centres have
an operational system based on Model Output Statistics (MOS) or the "Perfect
Prog" (PP) method to produce forecasts for many individual stations (Cater et
al, 1979; Finizio, 1982; Kruizinga, 1982; Rousseau, 1982). The data base
for the development of the statistical equations is usually very large as

short range numerical forecasts have been performed for quite a long time.

Medium range forecasts have been carried out on a daily basis at ECMWF for a
comparatively short period. The special archive at the Centre (covering the
European area with data from forecasts up to 10 days) goes back to only 1
March 1981. The contents of this archive is documented in the ECMWF
Meteorological Bulletin M 1.9. The software offered by the ECMWF to process
this data makes it comparatively easy for the user to carry out interpretation

studies on single stations.

The major target of this study is to show how the data handling system
provided by ECMWF has been used for statistical interpretation. The results
can only be very preliminary as the forcast database is nbt large enough.
However, we will try to gain some indicationg of what benefits we can expect

from the application of statistical interpretation to medium range forecasts.

2. DATA AND METHODOLOGY

One of the most important parameters in local weather forecasting is the

temperature at 2 m. The problem tackled here is the production of a 5 day
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Fig. 1 Stations used in the intepretation studies.
Location of the station (#) and the four surrounding
gridpoints (W) of the "European archive grid"”
(1.5° x 1.59).
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forecast of the 2 m temperature. The statistical interpretation will be
carried out for the winter and summer season, and for a small number of
stations in Europe. The locations chosen for the winter studies (Fig.1) are
Jonkoping, Berlin, Nancy and Thessaloniki; for the summer studies the

stations are Berlin and Nancy only.

The derivation of the 2 m temperature in the post-processing of the forecast
data is explained by Louis (1982). When we verify this direct model output
parameter against the observed 2 m temperature, we must keep in mind that the
observed vertical temperature gradient at low levels is not used by the
analysis. Below 850 mb the model contains 4 sigma levels apart from the
surface o=1.0. In the data assimilation cycle the model produces a first
guess low level temperature profile which is very much dependent on the
parameterization of physical processes and on the formulation of the tendency
equation for the surface temperature. The analyis then adds only an even

distributed increment to the mean temperature in the layer 1000 to 850 mb.

Serious problems for the application of statistical techniques may arise from
changes in the numerical forecast model. This will affect forecasts in the
medium range far more than in the short range (Glahn, 1982) making it more

difficult to derive stable equations.

There were some modifications to the ECMWF forecasting system between the
winters 1980/81 and 1981/82 which could cause the kind of problem mentioned
above. The most important change was probably the introduction of a more
realistic topography in April 81. At the same time the surface fluxes for
stable conditions were changed. Model modifications like these may have
changed the forecast error pattern. Tt is therefore interesting to see if the
model errors in the two winters 1980/81 and 1981/82 were different for the
observation station near JbnkSping. The scatter diagram (Fig.2a and 2b) of

the 2 m temperature (observed against direct model output) shows that the
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Scatter diagram for the 2 m temperature (C) at JBnkbBping

a) observed (abscissa) against direct model output (ordinate) at D+5 for
winter 1980/81

b) the same as a) but for winter 1981/82
c) observed (abscissa) against initialised analysis (@) and observed
(abscissa) against initialised model surface temperature (+)
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model errors in both winters are similar. The model is not able to forecast
very low temperatures, an error which can also be found in the initialized
analysis (Fig.2c). As we have pointed out, this does not necessarily mean that
the analysis itself is the cause since the model influence (via the first
guess in the data assimilation cycle) on the low level temperature is very

strong.

The positive bias of the initialised 2 m temperature at Jonkdping where the
surface is covered in snow, draws our attention to the surface temperature
which has almost the same bias (Fig.2c). Over land a thin soil layer of
specified heat capacity is defined in the model which exchanges heat and
moisture with the atmosphere and with the deep soil. From recent
investigations (private communications with J.F.Louis) it seems that the thin
upper soil layer assumed for snow covered land is too deep. Thus the surface
temperature in the model will fall only slowly when strong radiative cooling
or cold air advection is present. This is in contrast to observations which
show that snow cover prevents almost any exchange between the soil and the

surface above the snow.

If we now look into the domain of positive temperatures of the scatter
diagrams (Fig.2a and b), we see that the distribution in the last winter has

sharpened; this should be beneficial for statistical interpretation.

To get a reasonably long period for the derivation of the regression
equations, the definition of the winter season has been extended to include
the months from November to March. The dependent database contains six
months, from 1 December 1980 to 31 March 1981 plus 1 November to the 31.
December 1981. Three months (January, February and March 1982) are then left
as independent data to compare the direct model output with the regression

equations results.
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The summer cases are taken from the periods are 15 May to 15 September 1981

for the dependent data, and 15 May to 15 August 1982 for the independent set.

The list of predictors offered to the regression program, Table 1, contains
firstly, the direct model output parameters, and secondly, derived predictors
like the windspeed and the thickness. To derive the forecast equations both
the forward stepwise regression described by Draper and Smith (1966) and the
optimum regression (GrBnaas, 1981) were used. But there were only minor
differences in the result in the sense that the equation selected by the
forward regression was among those 5 best relations found by the optimal

regression.

3. RESULTS

3.1 MOS technique, effect of area and time averages

In the following we will be interested in the kind of predictors that are
selected when we apply the multiple regression to the longer (dependent) data
set. The explained variance of the first predictor and the increase of the
explained variance when additional predictors enter the regression equation
will be interpreted as a measure of the quality of our derived equation on
dependent data. The real independent test will then be made by applying the
derived predictor equation to the dataset which is not part of the development
sample. 1In this test we will compare the error statistics of the direct model
output with those calculated from the predictor equation. In both cases
errors are defined as deviations from observations. First we will concentrate
on one station and show the kind of influence that different time and space

means can have on our results.
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Table 1 List of predictors

a)

b)

c)

Direct model output
%z,T,a,v,w at 1000, 850, 750, 500 mb

T , U Y
2m 10m 10m

Large scale rain, convective rain, snowfall, cloud cover

Derived from direct model output
AZ 500/1000 mb

<>
IV‘ 1000, 850, 700, 500 mb and 10 m

Sine and cosine of the day of the year

Forecast time: 96, 108, 120, 132, 144 hours

Table 2 Predictor selection for J8nkSping from a dataset of 6 winter
months with no area mean and no time mean. Predictand 2 m
temperature, verification time 120 h.

Predictor Explained variance
Ton (120h) 0.29
U500 (108h) 0.34
T200 (120h) 0.36
V500 (120h) 0.38
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J6nkdping, the first station selected for the interpretation study, is
situated in the south of Sweden (Fig.1) well away from the coast. Despite the
problems in calculating tﬁe surface temperature for snow covered soil, which
has a pronounced effect on the low level temperatures, the first predictor
selected is the direct model output 2 m temperature (Table 2). The second
predictor increases the explained variance from 29 to 34 per cent, whereas the
increase by the third and fourth predictor is much smaller. Hammons et al
(1976) examined a dataset containing 410 events for a winter season (compared
to 180 available here) and found that the first three predictors usually
accounted for most of the explained variance of the temperature. In our
experiments where different area and time means were applied, a very stable
predictor selection was found. The 2 m model temperature always entered the
equation first and the zonal wind component second. The most frequent third
predictor was the temperature at 1000 mb. After that, very different
predictors were selected in the fourth place; this supported our findings
that when these predictor equations were applied to independent data, the
largest improvement on the model ouput was produced with 3 predictors. The
explanation for having an optimum equation with only 3 predictors in the

equation is probably associated with the rather short dependent data set.

In our first set of experiments, the effects of using various area means of
the forecast data was tested. The derived statistical equation was applied to
the independent data sample and the result was compared with the direct model
output (Table 3) for the same period. The area averaging did not change the
standard deviation of the model temperature very much, thus indicating that
this parameter is already rather smooth. Overall the use of smoothed data to
derive the prediction equations improved the error statistics. The only
exception was the bias which was least when the equation was derived from the

next north western gridpoint.
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A substantial improvement in the relationship between observation and forecast
was gained by applying a time mean of at least 3 forecast steps (12 hours
apart) to both the predictor and predictand. This procedure reduced the
standard deviation (Table 4) of the predictand whereas that of the direct
model output remained almost the same. From the viewpoint of available model
information, a part of the non explainable variance in the observation had
been removed. A 3 time level mean compared to no mean improved the reduction
of variance significantly. The results for the error statistics became better
as well. When we extended the period for the mean to 5 and then 7 steps of 12
hours, we found that the 5 step mean gave the best relationship between
observation and direct model ouput. The verification of the deri&ed
regression equations on independent data suggests the same conclusion. The
best result was again obtained by using an equation developed on a 5 time-
level mean predictor-predictand set. The large positive bias could be
corrected completely and the mean absolute error and the rms error was reduced

by about 30%.

Looking now at some of the details (Fig.3) of the best result obtained so far
(4 point mean/5 timestep mean), we see that the regression eguation corrected
the direct model output in the right direction for the second and third cold
spells which were not captured by the modelkforecast. In the transition
period to spring temperatures (day 55 to day.75) the statistically interpreted
values were too low, but towards the end of the period the correction of the
forecast was successful again. Fig.4a, 4b show the scatter diagrams for the
direct model output and the statistical interpretation results for J8nkSping
using independent data. The most obvious improvement is in the low
temperature forecasts. However there are still a large number of forecaéts
which are much too warm after the correction. The reduction of the bias for
the total sample had the effect of producing forecast temperatures which are

too low when the observed temperature was in the range of -4 to +5 degrees.
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Fig, 3 2 m temperature (C)

model output (dashed line) and three predictor equation applied on this
independent data (dotted line). Period: 1 January 1982 to 31 March 1982.

JBnk8ping at D+5.
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Fig. 4 Scatter diagram for the 2 m temperature (C) in J8nkbping.
Period: 1 January 1982 to 31 March 1982,
a) observed (abscissa) against direct model output (ordinate)
b) observed (abscissa) against a three predictor equation
(ordinate) applied on this independent data.
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3.2 Winter cases
In the following studies of three further stations in winter (Berlin, Nancy,
Thessaloniki) only the most successful time mean (i.e. over 5 steps) was used

to derive the forecast equation.

Again in all three cases the first predictor selected was the direct model
output 2 m temperature either at the verifying time or 12 to 24 hours earlier
(Tablé 5). For Thessaloniki and Berlin the second and the third predictors
are a wind field parameter and the 1000 mb temperature respectively. The order
of selection was the same as for J6nkdping. Quite frequently the forecast
equation contained predictors valid 12 to 24 hours before the vefifying time.
However, this cannot be interpreted as an indication that synoptic waves are
systematically too fast. As a sufficient drop in the skill in the forecast
will also lead to a foreward time offset in the selection of predictors; in
other words, persistance from earlier forecast steps may be better than the

forecast itself.

Compared to the direct model output temperature at 2 m, the statistical
equation reduced the bias in all cases (Table 6). The improvement of the mean
absolute error and the rms error was rather small and, in terms of explained
variance, the statistical interpretation gave rather poor results for Berlin

and Thessaloniki.

3.3 Summer cases
For the summer season only two stations, Berlin and Nancy, were chosen.
Compared to Berlin, which has a subcontinental climate, there is a maritime

component in the climate for Nancy.
During the summer season fewer occasions with strong inversions are observed.

Therefore the temperature at upper levels should be a good predictor. But for

Berlin the 2 m temperature was still the first predictor (Table 7) and the
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850 mb temperature entered the equation only as the second predictor.

The summer dataset for Nancy is an exception to all cases considered so far.
The 2 m temperature of the model was not selected at all; instead the
geopotential height entered the equation first. This is also in contrast to
the predictor selection for the same station in the winter season. The
correlation between the observed temperature and all predictors shows that the
geopotential height always has a better correlation than the temperature from
any pressure level offered to the regression. The explanation may be that the
temperature field at Nancy in the model may have been affected by mountain
gridpoints as the peaks of the Alps in the model are only one gridlength away.
Tn reality the major influence of the Alps will be more confined to the
mountainous region itself. To confirm the explanation for the unusual
predictor selected in this case, more stations near large mountains should be

investigated.

When the predictor equation for Nancy was applied to independent data the low
skill 2 m temperature forecast for this station improved substantially (Table
8). This is not true for Berlin where the statistical interpretation was not

able to add anything to the high skill of 2 m the temperature forecast.

3.4 Perfect prog and modified MOS technique

A typical winter forecast error, such as too high temperatures near the
surface, may be traced back to the formulation of the models surface exchange
processes in the data assimilation cycle. A typical example of this is
Jénkdpping (Fig.2c) where the forecast model has introduced a large positive
bias for low temperatures. As the correlation between analysis and
observation is usually very high, a regression equation derived from the
analysis and observation data sample will correct a large amount of this bias.

There are now two ways to use this equation on sample forecasts. In the usual



Table 7 Predictor selection for Berlin and Nancy with a dataset
of 4 summer months. Predictand 2 m temperature, verification
time 120 hours. 4 point area mean, 5 timestep mean.

Forecast time for which predictors are valid is given
in brackets.

BERLIN NANCY
predictor' explained predictor explained
selected variance selected variance

1. TZm(120) 0.51 2500(108) 0.46
2. T850(108) 0.54 l;]BSO(QG) 0.47
3. V500(96) 0.55 ,3'850(108) 0.49

Table 8 Verification of one predictor (TZm direct model output) or a
predictor equation (Y) against 2'm temperature observed.
Stations are Berlin and Nancy and verification time is 120 1.
Independent data for period 15/5/82 to 15/8/82.
4 point mean, 5 timestep mean. Units for T. :C.

2n

BERLIN NANCY
Mean observed ' 19.3 21.0
Standard deviation of predictand 3.7 3.2
Standard deviation of predictor 3.1 3.7 2.7 2.0
Mean error (bias) 0.0 0.0 -2.5 -1.6
Mean absolute error 1.6 1.7 3.0 2.4
rms error 2.0 2.1 3.8 3.0
Explained variance .72 .68 .29 .40

T Y T Y
2m 2m
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vperfect prog" method, this equation would be directly applied to later
forecast steps (Glahn, 1982). Generally this procedure will lead to an
improvement of the direct model output only if the data sample for deriving
the equation is very long. This requirement is not yet fulfilled by the

present ECMWF database.

In a second approach, the combination of predictors in the equation derived
from ﬁhe analysis-ocbservation sample can be offered as an additional predictor
to the MOS predictor selection algorithm. The MOS-type statistical
interpretation procedure is thereby only slightly modified by offering a
predictor derived from the existing ones. Though the data sampleAto develop
forecast equations is certainly not yet long enough for real "Perfect prog"
studies, the two procedures proposed above have been tested. Instead of being
developed on the analysis, the "Perfect prog" equation was developed on a set
of predictors valid for a 24 hour forecast representing time mean values of 3
timesteps (12,24,36 hours). The first predictor selected from this dataset
was the 2 m temperature giving an explained variance of 81%. In second and
third places followed the 1000/500 mb thickness and the windspeed at 850 mb
respectively. When this equation derived from 24 h forecast data is applied
to independent forecast data valid for 120 hours (labelled PP in Table 9) we
find an overall improvement in the error statistics, apart from the explained

variance which is lower compared to the direct model output 2 m temperature.

The second approach, i.e. offering to the MOS procedure an addition predictor
consisting of the combination of variables occurring in the 24 hr "Perfect
prog" equation, led to an eguation which gave nearly the same results on
independent data as the direct Perfect prog method. Both technigues, however,
do not perform as well as the "pure" MOS approach for this special station.

As mentioned above the result would probably have been better for a larger

dependent data sample.
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3.5 Dependency of -interpretation results on the forecast range

Up to now we have concentrated on the statistical interpretation of a five day
forecast. In this section we will examine the performance of the statistical
interpretation over a wider forecast range. So far we have split the
available data for winter months into dependent and independent data. Here we
will merge all months to one dataset to see what amount of explained variance
on independent data we can get when we use the longest possible time series.
In this procedure we will allow 3 predictors to enter the regression equation.
The improvement of the explained variance by the 3 predictor eguation over the
direct model output will then be interpreted as a maximum which could be

achieved on independent data.

Two stations, Jonkdping and Berlin, have been chosen; for these the upper
level dynamical forecast has almost the same skill but the low level
temperature forecast is very much better for Berlin. BAs shown before, the 2 m
temperature forecast at Jénkdping is influenced by a positive bias in the
models surface temperature due to problems of snow cover in rather cold

regions like central Sweden.

Fig.5 depicts the explained variance of the direct model output and that of
the predictor equation as a function of the forecast time, both for Jdnkoping
and Berlin. The amount by which the explained variance of the 3 predictor
equation is better than the direct model output has a maximum at D+5 for
Jénkdping. The difference is smaller at D+3 when the skill of the forceast is
comparatively high and becomes smaller again towards D+7 when the skill of the
forecast is very low. Beyond that the skill of both types of forecasts for
Jénkoping levels off to rather 1ow values. For Berlin the 3 predictor
equation adds only a small percentage to the existing high level of explained
variance. But the added amount increases slightly with advancing forecast

time.
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Fig, 5

1}

e———T 2 MODEL JUNKUPING
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Explained variance of the observed 2 m temperature by the direct model .

out

put 2 m temperature (first and third graph from below) and explained

variance by the first three predictors in the regression equation

(y

= .) second and fourth graph from below. Abscissa: forecast time.

The datasets f0r the two stations Berlin and NorrkBping contain 8 months
from winter 80/81 and 81/82.
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In terms of rms error (Fig.6)}, the gain by statistical interpretation can be
substantial. For Jonkdping, the direct model output error becomes as large as
the error of the climatological forecast at D+5, whereas the rms error of the
3 predictor equation stays well below that level. Again for a high skill 2 m
temperature forecast like Berlin, the improvement by statistical

interpretation on the rms error is comparatively small.

4, SUMMARY AND CONCLUSIONS

The time series available from medium range weather forecast are still too
short to develop equations for statistical interpretation with a large number
of predictors, For a selection of 4 European stations it was founa that more
than 3 predictors in the regression equation gave an overfitting of the data
leading to a poor verification when applied to independent samples. The
reason for that need not be the short development sample only; it seems also
to be connected to the high quality of the direct model output 2 m temper-
ature. This parameter turned out to be the best predictor in almost all cases
examined here and indicates the usefulness of the model derived 2 m
teﬁperature. Changes in the model formulation could have a large effect on
interpretation results and should be carried out very carefully. But so far
model modifications seem to have no serious effect on the statistical

interpretation.

In the verification of the regression equations on independent data the most
successful improvement could be gained by correcting the model bias. In most
cases the mean absolute error and the rms could be reduced as well. However
in terms of reduction of variance, the interpretation result was sometimes

inferior to the direct model output.
The usefulness of a MOS type interpretation for medium range weather forecast

can not be decided now - it has to wait for a larger sample of forecasts. A

Perfect prog method based on analysis could be developed now, but then a
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very useful parameter like the discrete model output 2 m temperature would not

be available in the development sample.

We can expect a large variation in the performance of the low level
temperature forecast even for stations where we have nearly the same quality
of upper level forecasts. The skill of the 2 m temperature forecast will very
much depend how the model is able to reproduce the local climate near the
sdrfaée. From the results presented here, it seems that the local statistical
interpretation can improve the 2 m temperature forecast by a large amount
where local climatology is not well simulated by the forecast model. The
amount we can gain in explained variance by using a predictor equation instead
of the direct model output 2 m temperature appears to increase with advancing
forecast time well into the medium range. For a high skill forecast the gain

will be less than for a low skill forecast.
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