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ABSTRACT

The modifications in the analysis code that are required to solve a linear system
instead of inverting a matrix are described. A vefy>pfeliminary estimate of CPU

time savings is given.

1. INTRODUCTION

In the present analysis code, a large correlation matrix is inverted twice for
each data box, once for data Checking ahd once for calculating the analysis

increments and errors.
For data checking indeed every element of the inverted matrix must be known, but
for the calculation of analysis increments it suffices to solve a linear system

which is much cheaper than inverting a matrix.

In this working paper, a survey of the work involved to solve the linear system

is given, together with a very rough estimate of the CPU time savings.

2. THE SUBROUTINE TO SOLVE A LINEAR SYSTEM

A subroutine ("SYMSOL") has been written to solve a linear system. It is based
on a Gaussian triangularisation and elimination.- The subrdutine assumes the

matrix to be symmetric: further, if it is not positive definite, the subroutine
will abort with an error code. For symmetric, positive definite matrices SYMSOL

is extremely stable (e.g. Wilkinson, 1965).

The code Ffor SYMSOL has been derived from that of SYMINV, the matrix inversion
subroutine: only a small piece of code (vectorisable due to work by D. Dent)

had to be written.

As opposed to SYMINV, SYMSOL does not return an estimated condition number. This
is because a condition number is the product of the matrix norm and the norm of
the inversed matrix: SYMSOL does by its nature not calculate the inverse. No
method to estimate the condition number from the matrixAitself has been found

yet (Jennings, 1977).

Appendix 1 gives a listing of SYMSOL and appendix 2 gives some results about
stability tests with SYMSOL.

Solving the system Ax=b, where A is a 191 x 191 matrix, takes about 0.15 sec

on Cray with SYMSOL: the inversion of A with SYMINV takes about 0.30 sec.



3. USE OF SYMSOL IN THE ANALYSIS SUITE

3.1 Calculation of the increment

The analysis increment is given by the expression
-1
a=YA g S Y)
where A is the correlation matrix, Y the vector describing the correlation
between the analysed quantity and the observed quantities, and ¢ the

observation vector.

. , -1 . . ~1 \
For a given set of observations, A 0 is fixed, say A ¢ = w. Therefore, with

w the solution of the linear system Aw =0 we get:
a=vY.w » (2)

Thus, A does not have to be inverted but it is sufficient to solve the linear

system Aw = (.

3.2 Accuracy of the calculated increment

The relative accuracy of the solution x to'Ax = b is determined by three factors:

X

In here, K is the condition number of A:

k= aflaty, W

and ) is determined by the stability of the solution algorithm.‘ For positive

definite A and Gaussian elimination

23n ' (5)
where n is the matrix order (Ralston and Rabinowitz, 1978). Further

Lev]|[ | =15
p = 5 is the computer accuracy (for Cray ~710 ).
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Eq. (3) as it stands is not applicable for error estimates, ' because SYMSOL does

not give an ‘estimate for K.

The matrix A is the sum of two positive definite matrices:-

where € i1s the observation error correlation. The smallest eigenvalue of € be n.

-1 € 1
Then H A ” s N because ¢ has only positive eigenvalues.
Further, in appendix 3 it will be shown that for all x
o2
(v.x)” € x ¢ x ; , L : (6)

The following estimate of the error in the increments, relative to the length of
2 1 : . FHNE e ;
the observation vector (o )? can be derived.
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where a factor {) appears due to the algorithm to invert A.

Using Jl§g%£ ~.p {+§¥++ ~ p and ILY ”< /%H
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(the last because every element of y has absolute wvalue less than.1) this

results in

7/2
1 -1
E = 5% |5 (YA 07[ < —I%r'kp | - (7)

(o™)
S s . -4 . -2
If it is required that E < 10 ~, for all n € 191, n must exceed 10 .
The matrix € can be written as the sum of two positive definite matrices
€ = §+¢C
where 0 is diagonal. The condition N >,1O_2 is then certainly met if every

diagonal element of § exceeds 10—2. Therefore, in order to obtain a reasonably

accurate increment, it is required that every cobservation with uncorrelated



observation errors be given-a normalised observation error in excess of 0.1.
If there are correlations between observation errors, the normalised observation

error must exceed 0.1 / V1 - K where K is the largest observation error

correlation between different data.

The present analysis scheme does in general fulfill these requirements: the
observation error is seldom, if ever, less than 0.3 and K is at present 0.8.

But it is advised that the requirement: .

7/2
E (1-k) ) )

be checked and, if not fulfilled, be imposed for each datum.

3.3 Calculation of the analysis error

The analysis error is given by the expression
e=1- yAa vy (9)

If SYMSOL is used, A—lc will be known but not A_lY.: Therefore, it is not
possible to estimate the analysis error when the analysis increments are
calculated. However, during data checking each element of A_1 must be known and
it would be very cheap to éalculéte the analysis error then. The only disadvantage
is that during data checking, observations are used that have not yet received
their final flag - although those observations have undergone a preliminary check.
Therefore, the estimate of the analysis error might become slightly less accurate.

This does not seem  a serious drawback.

3.4 Time savings

The following CPU timings apply to an analysis of 15 January 1979, 0000h, made

with the present code:

GAP - data checking 200 s
GAP - increments and errors 240 s
Analysis - total 580 s

The increments and errors calculation time is split up as follows:



SUBROUTINE TASK

SELINF Selection of influence boxes S N 20s
SETLHS Construction of correlation matrix : e 538
CHOOSE Inversion of correlation matrix 65s
COEFFS Calculation of A_lg and analysis error P 35s
VALUES Calculation of analysis increments ) 30s .
Selection of data, of grids, etc. » 35s

If SYMSOL is used, CHOOSE would become twice as fast and COEFFS would no longer
be needed, although a small portion of it would be required in GAP - data
checking to calculate the analysis errors. The time saving is therefore estimated

to be ~ 60s, i.e. 10% of the total CPU time.

3.5 Required changes in the analysis code

From the previous sections, it is seen that the following (extensive) changes

must be made in the analysis code:
1. The analysis error calculation must be moved to the data checking

run -~ this involves also reading in the error grid and writing the errors.

2. In the increments calculating run, the matrix inversion must be
replaced by SYMSOL. This requires a different data selection algorithm
because unchecked data must not enter the correlation matrix anymore.

Further, the observation error must be checked using eqg. (8).

3. The subroutines to calculate the increments need changes.
The burden of the work is presumably in the different data selection algorithm.

4. CONCLUSION

If the linear system Aw = Y is solved instead of the matrix A inverted during the
analysis increments calculation, CPU time savings of ~ 60 seconds per analysis

run (about 10%) are expected. The required recoding involves many subroutines.
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Listing of SYMSOL SUpKOUTINE SY#SOL CA,NDIMAH,P0SD, X b, DEFS) .
CODIMENSION A(RDIMAHUDIM) L, X(HULM) ,W(300) ,B(NDIM)
WORK ARRAY % [S nOT NEEDED IM CAL VERSION SO IT 15 MOT IN ARG LISI
S VE AX=R '
A 1S A SYMMETRIC POSLTIVE DEFINITE MATKIX. R .
THE UPPER TRIANGLE OF p (lte ALI,d) JalTLJ) 1S NOI H@Eu OR ALItRFD
PUSEH (OUTPUTD) ¢ «IF A0S POSDEF., PUSD=ET,.3

' ELSE POSD==FLOAICT) WHERE 1 15 THE Ran OF THE

CFTRST-PRINCEPAL MINOR OF A“THAT [$ NOT PUSLDEF.

CDEPS IS CPTIONAL TO WAkb THi PUS DEFJH]TE IESY MURE SEVERE, 1F
CNET SUPPL1ER, DEPS=0. o B
A*****ikkﬁkﬁ*k*k*k*[ujq VERSILOH KEQUIRES NUMARGX XA khkkhkkk *A

THIS VERSIOH 18 OUPTIMIZED FUR Thie CRAY (FT COMPILER
A FASTER (AL VERSION UF SYmSOL ExISTS OnM ECLINH
RERUHDANT “TESTS 0l W aRE JRCLUDER TO ERSUFE . ZERO- THIP pO, LOOPS - WOREK

FFONJLT Q1Y RETURY
EPS={}. . .
IF (NUMARG(T) L EQL7) EPS=DEFS
CCkxkwo ), GAUSS ELIMINATION TO OHRTAIN LOWER TRIANGLE; OVERWKITES A & B
Pusn=1. . ) ’ h
1F (AC1, 1)Ll ELEPS)IGDT0N9T
X1 =1,/A01,1)
1PN GTa1)GOT010
ACT1,1)=xC1)
X(1)=XC1)*8(1)
RETURYN
10 DO 14 J=2,u
DU 11 I=J,N
kN ACL,d=1)=ALT d=1) %X (J=1)
HOd=1)=0C)=1)xx (J=1)
TViz=h~J4)
DG 1271 1=1,fvL
121 W(I)=sA(I=141,4)
W= 0,})
PO 13 k=2,
. DO 122 I=1,1VL
122 W) =(=A k=1, ,K=1)*Aa(J,k=1)) * A(J-1*I-K 1 4+ w(l)
D whEmA (=l k=T Y RA (D =1 ) RB (k= 1) U
13 CONTINUE
‘DO 131 I=1,1VL
131 ACQd=1+1,Jd)=1(I)
B(J)=WH
C CHECK FOR POSITIVE=DEFIWLTENESS A0D INVERT DIAGONAL MATRIX Da
TF (A(J,J) JLELEPS)GDTIOYY
’ XC))=1./A03,4)
14 CONTINMUE
BINY=X(N)*B(N)
C . :
Cxkkx 2, COMDLITION KUMHBER
C : .
c*******k****i**************Not KMOWN YETh*dhkxkkak
[%
Cxkx& 3, SOLVE AX=H
C
© DO 30 I=1,H
30 x(3)=n(l1)
DO 37 J=N,1,~1
COIRY 1VDEP
no 31 KJ 1 11'1
31 X(k)=X(K)=A(J,R)XRX(J)
32 CONTINUE

C
Cxkxxx 4, RETURN
[«
4 RETIURN
¢
Ckxkdx Q. ERKORS.
C
91 POSD==FLOAT(J)
RETLIRM
EMD



Appendix 2

Accuracy of SYMSOL vs. that of SYMINV
-1
For several choices of the matrix A, the largest element of E = | aAan -1
-1 i g
has been calculated for A obtained with -SYMINV and A‘1 obtained from the SYMSOL
solutions. of Ax = e:.L i ="'... n, where n is the matrix order and ei the i
. o -1 : i . -
unit vector. The matrix AA "~1 is not a very clean error estimator for A -,

but it is suitable for a comparison of the two inversion methods used.

The matrices and the largest element of E are given in table A2.1.: The Hilbert

matrix has elements Aij = (i + j)_1 and is a notoriously ill-conditioned positive
definite matrix. (Cray-1 refuses to invert it if its order is larger than 11.)

. . 2 . . .
The exp?2 matrix has elements Aij = exp(-(i-j) /5). Some matrices had their

diagonal elements increased by € to improve their condition. = The upper bound

on the condition number as estimated by SYMINV

. 2 -1
(i.e. n' max a,. max A, . l)
ij 1]
i=l..n i=l..n
j=1..n , j=1..n

is also shown in the table.

From the table, it is seen that SYMSOL behaves better than SYMINV, especially if
the matrix is ill-conditioned. It is also seen that then both SYMINV and SYMSOL
produce results that are extremely sensitive to the elements of the matrix,

which is mathematically correct.

Table AZ. Comparison of SYMINV and SYMSOL. Numbers;in brackets are
max |(AA )i'l : 1f these enter tg table, the error in the diaggnal
i+j J elements of I an | is certainly less than 10 .
-1
max | (AR )= 8 .. |
Matrix Cond.nr. i,3 + +J
+ lr
Type Order € SYMINV SYMINV . : SYMSOL
. 2
Hilbert 2 0 103 (O)_13 (O)_13
" 3 0 5,107 (9.10_10) (9.10_10)
" 5 0 1012 9.10_4 S 5’10—6
" 8 0—6 1O7 4.10_9 4.10__10
" 8 10 2.1015 4.10 c v6.102
" 10 0_ 10, 1 g S 10070,
" 19 10_¢ 2.10,, 10 g - 5.10_1,
" 1 2. . . B
91 10 103 3.10_13 .5.10_13

exp 2 5 0 2.10 (9.10 ) (3.10 )



Appendix 3
2
Proof of (x.y) <« xcx for all x.

Because Y is a vector of correlations and c is a correlation matrix (say nxn)

the (n+l) x (n+l) matrix M defined by .= IR
17 7y

.Y .

is a correlation matrix. It is positive definite and for all (nt+l)-vectors

L= i) where x is an arbitrary n-vector:

ctML 20

i.e. gz + 28y .x + xcx >0
for all £ and x. This is true if an only if for all x

(Y.x)'2 € xcx (a3.1)
This completes the proof.

An interesting corollary of this theorem is that the analysis error (if there are

no observation errors)

e = 1—'Yc—1'Y

is positive.

For, taking x = c_1Y in (A3.1) we get:

- 2 -
e 'yt < yely

i.e. |yc"1y| <1 (a3.2)

Obviocusly, the proof of (A3.1) and (A3.2) holds also if an observation error is

introduced.



Another interesting consequence of (A3.1) .is that a small eigenvalue of c (say

Xi, with unit eigenvector e, : Ki< <1) does not contribute much to the analysis:
2
. <
{y ei) )\i
although it is a large eigenvalue of c—l. This might be a starting point to the

development of a scheme that does not invert the whole correlation matrix but

only that part of the matrix that corresponds to a limited range of eigenvalues.
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