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1. INTRODUCTION

In recent years there has been increasing interest in the poss-
ibility that there may be dynamically stable nonlinear structures,
such as solitons or modons, embedded in the otherwise guasi-two
dimensional turbulent flow characterizing the large-~scale behavior
of the atmosphere. This possibility has important implications for
predictability and prediction. It has been suggested, for example,
by McWilliams (1980) that dipole blocking structures in the atmo-
sphere may be modons.

Solitons and modons are special localized solutions of the non-
linear dynamics equations. Two aspects of these equationg -- non-
linear interaction and linear dispersion -- might be expected to
destroy any local structure. Together, however, they can balance
each other and preserve certain structures in a surprisingly stable
way.

Long (1964) found soliton solutions in a g-channel and Benney
(1966) carried through a detailed perturbation calculation to derive
a Korteweg-deVries (KdV) eguation appropriate for Rossby waves.
Solitons are exact solutions of the KdV equation, but the KAV equation
is only an approximation to, say,the barotropic vorticity equation
and is only formally valid for weak dispersion and weak nonlinearity.
The KdV equation describes dependence in only one space dimension
taken as longitude in these applications. Latitudinal dependence is
determined by the constraints of meridional boundary conditions.
Redekopp (1977) has worked out the theory of Rossby solitons in
considerable detail.

Linear dispersion can also be induced by effects of bottom
topography in a shallow water model of the ocean. The. corresponding
solitons have been examined for stability and practical numerical
simulation by Malanotte Rizzoli (1980). 1In her simulations, she finds
that soliton-like solutions persist and appear to be robust for
conditions that greatly exceed the formal reguirements of the
perturbation theory.

An alternate construction of a localized solution of the baro-
tropic vorticity equation was provided by Stern (1975). His modon
solution is a dipole confined within a circle that is stationary with

respect to uniform zonal flow. Modons are exact solutions rather
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than perturbation apprbximations but suffer from discontinuities at
the circle boundary. Larichev and Reznik (1976) generalized Stern's

modon and weakened the boundary discontinuity by attaching an exterior
solution that decayed sufficiently rapidly to preserve the local
nature of the modon. Such modons move with respect to a uniform zonal
flow. Flierl et al. (1980) have generalized modons still further to
equivalent barotropic and baroclinic cases and have shown that, having
once constructed a dipole modon, monopole riders of great variety

may be added. McWilliams (1980) has matched the parameters of an
equivalent barotropic modon roughly to the observed characteristic

of a dipole atmosphere blocking event observed over the North Atlantic
Ocean in January 1963. ‘

I shall describe in detail the construction of an equivalent
barotropic modon in Section 2 and of its riders in Section 3. The
spectral consequences of a rider vorticity discontinuity are examined
in Section 4, and finally in Section 5 I shall summarize the results

of some numerical modon experiments.

2. MODON STRUCTURE

We shall describe a localized modon solution for the equivalent

barotropic vorticity equation
(Vy-ap), + By, + 3T = 0 (2.1)

which determines the evolution of the stream function y for the flow
of shallow water of mean depth h on a B-plane with Coriolis coeffici-
ent £ =Af0 + By. Here o is the deformation wavenumber with
2
2 f0

o? =L (2.2)

. ) 1
and g is an equivalent gravitational acceleration such that (gh)* is
the speed of gravity waves. The Jacobian here is defined in the

usual way as

T8 = by by = by by (2.3)

Y

There exists in this case a potential vorticity
Z = f + V2P - o’y (2.4)
in terms of which Eg. (2.1) may be rewritten

Z, + J(b,z) =0 (2.5)

displaying 7 as conserved following the flow.
The linear Rossby wave solutions of Eg. (2.1) are given by

eigenfunctions of V2 such that
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w2y = -22y (2.6)
For these the Jacobian term vanishes and Eg. (2.1) reduces to

the linear equation
2,2 _
(0"+2 )wt + By, =0 | (2.7)

describing waves propagating in the x-direction with velocity

c=-—5 (2.8)
o +A
Since 0 < Az < ©, ¢ is bounded with —B/a2 < ¢ < 0. Rossby waves are
oscillatory in space like sin Ax and are not therefore localized
solutions.
A localized solution must drop off rapidly away from some central
region. As an outer solution with this property we take another

eigenfunction of V2 but one such that

vzw = uzw (2.9

In particular we choose
Y = A Kl(ur) sing (2.10)

where Kl is the modified Bessel function of the second kind of order
1. Again in the outer region the Jacobian vanishes and Eg. (2.1)
reduces to Eg. (2.7) but with 22 replaced by *uz. The outer solution

(2.10) propagates therefore in the x-direction with velocity

¢ = - .jliiﬁ (2.11)
o -u
Since 0 < Q2 < o, the range of possible ¢ values for localized
solutions is =« < ¢ <--B/0L2 and 0 < ¢ < », disjoint from the possible
Rossby wave velocities of Eg. (2.8). 1In Eg. (2.10) ¥ and 6 are polar

coordinates in a moving frame with, say,

-2 2

= (x-ct)2 + vy
sin® = y/r (2.12)

To avoid the singularity in ¥ at r = 0 given by Eg. (2.10), we
introduce a smooth inner solution which we let join the outer one at

a circle of radius r = a. We take as the inner solution for r < a
Y = BJl(kr) sin® - C r sin® (2.13)

where Jl is the Bessel function of order 1.
The first term is again an eigenfunction of V2 satisfying Eqg. (2.6)

and would by itself propagate in the x-direction with a velocity given
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by Eqg. (2.8). The second term, however, introduces a constant ad-
vecting velocity C. 1In order that the inner and outer propagation
velocities be the same we must impose a velocity constraint

= (1 2 4+ )2
C = B 72 - g\tz(ag — UZ)]

(2.14)

that determines the coefficient C for any choice of inner and outer
wavenumbers, A and y .

We match the inner and outer solutions at r = a by imposing as
many continuity conditions as possible. From the continuity of y

and Y, at r = a we have

A K;(pa) = B J;(da) - ca, (2.15)
and

A na Ki(ua) = Bja Ji(xa) - Ca : (2.16)
Let Aa =X, pa =y . By subtraction we may eliminate the term Ca
and find

AlR, (W) - RG] = BII; () - TJi(,T)] (2.17)

Recursion relations for Bessel functions permit Eg. (2.17) to be

written in simpler form as

A [EKZ(E)‘] = BJ A_Jz(T)] (2.18)
whence

A=sSIuR, (D171

B = S[AJZ(A)]'l (2.19)
The coefficient S is determined by Eq. (2.15) to be

[ Jl('i) K, (D) ]-1 ( )
S =¢C o i 2.20
2 XT,5(X) 7K, (W)

The conditions imposed so far suffice to determine the amplitude
coefficients A, B, and C for any choice of radius a and wavenumbers
X and y . By Eg. (2.11) a choice of yu is equivalent to a choice of
the overall propagation velocity c. Then the choice of ) determines
C by Eg. (2.14). 1If we next choose a radius a then % and j are
defined, S is determined by Eqg. (2.20) and finally A and B by Egs.
(2.19).

The most important continuity conditions have been satisfied,
but we still have the freedom to choose ) for a given value of py in
such a way that the vorticity ¢ = Vzw is also continuous at r = a.

364



The continuity condition for ¢ at r = a is
2 — ) - .
A1 Kl(u) = -B X Jl(x) (2.21)
which may be combined with Egs. (2.19) to give

L (D) K, ()
- L (2.22)
JZ\A) Kz(u3 ‘

For any value of 7 the expression on the right is well defined
and negative. Thus )X must be in those intervals of the X range where
Jl and J2 have opposite sign. We shall consider only the gravest
such interval (j{l), jél)) where X is smallest and the inner solution
has the smoothest structure. The solid curve in Fig. 1 shows the

mapping 1 -+ X into this interval given by Eg. (2.22).
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Fig. 1. Inner wavenumber A vs. outer wavenumber p satisfying vorticity
continuity conditions for a modon (solid) and a rider (dashed)

Dots on the A - axis delimit solution intervals.

The modon so constructed is a localized vorticity dipole with
an amplitude determined by its radius a and its velocity c. The
required form of the second term in Eqg. (2.13) imposes the dipole

structure on the first term and on Eg. (2.10).
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3. RIDER STRUCTURE

Once a modon has been constructed it is possible to add a rider
to it and still have a localized propagating solution of Eg. (2.1).
The simplesﬁ rider is a vorticity monopole. Let the rider stream
function be indicated by y' to distinguish it from that of the modon;
the total stream function will then be ¢ + y'. ‘

For the outer rider solution we choose a monopole solution of

Eq. (2.9) with the same value of u2 thus for r > a

The sum ¢ + ¢' is still an eigenvector of v2 satisfying Eq. (2.9),
and the velocity c is unchanged by the rider.
We take as the inner rider solution the monopole structure

y' = E Jy(ar) + F ‘ (3.2)

with the same value of )\ as for the modon. The first term is again
an eigenfunction of v2 satisfying Eqg. (2.6). Since the constant F
does not affect velocities, the velocity constraint of Eq. (2.14) is
still appropriate and satisfied.

We match the inner and outer rider solutions at r = a by imposing
continuity conditions as for the modon. We find from continuity of

y' and y. that

D = R [ﬁKl(i)]'l
E = R [TJI(T)]'l (3.3)
and that
K, (W J.(X)
F =R |2 -2 ] (3.4)
WK, (N X3, (D) |

where R is an arbitrary constant unconstrained by any imposed
conditions. Once a modon has been constructed a monopole rider of
an approximate shape may be added with arbitrary sign and amplitude.
Continuity of rider vorticity ' = v2 y' at r = a leads through
recursion relations to the condition
TJZ(A) _ uk, (1) (3.5)
g, N K, (W)
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If this condition is satisfied then Eq. (2.20) determining the modon
amplitude S becomes singular. The dashed curve in Fig. 1 shows the
gravest solutions of Eg. (3.5). These must be avoided to preserve
the modon structure.

A vorticity continuity condition may be imposed on the modon.
It must not, however, be imposed instead on the rider, and the rider

must have a vorticity discontinuity at r = a.

4. VORTICITY DISCONTINUITY

A discontinuity in a field tends to dominate its wavenumber
spectrum at high wavenumbers and induce a characteristic power-law
dependence. It is of interest to analyze this effect for the
vorticity discontinuities that riders must have.

The essential aspect of the situation is revealed by considering
the spectral transform of a vorticity fﬁnction egual to a constant V
for r < a andvanishing for r < a. The two-dimensional fourier trans-
form of a function f(r) depending only on ¥ may be written as

£(kq k) =f r £(r)J, (kr)dr = £ (k) (4.1)
0 0

where kl = k sing , k2

wave vector. The transform £ depends only on k as is to be expected

= k cos¢y are components of a two-dimensional
~

from symmetry.
The two-dimensional power spectrum is proportional to the sqguare

of the amplitude
plkyiky) « £2(k) (4.2)

The one-dimensional spectrum F(k) involves an integration over ¢ in

wavevector space that introduces a factor k,
F(k) « k £2(k) . (4.3)

In this case we have

f(r) =V for r < a
= 0 for r > a (4.4)
so that
~ a-
f£(k) =V f r J,.(kr)dr
0
0
-2 ka
= V k J x J,(x)dx
0
0
=vVak? 3, (ka) (4.5)
and
F(k) = vZa® k71 32 (ka) (4.6)
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Over the ensemble of radii and strengths this becomes

F(k) = kK0 <v’a? al(ka)> | 4.

The evaluation of the bracketed average depends on knowing the joint
probability distribution of v and a. 'In rough approximation we may

assume that the average washes out the detailed oscillations of Ji
and leaves only its general dependence which is proportional to
(ka)_l for ka >>1. Then the vorticity power spectrum becomes

F(k) = k 2 <vla>e«k 2, ~ (4.8)

and the associated kinetic energy spectrum is

4

E(k) = k 2 F(k) « k- (4.9)

Such a spectral contribution of rider discontinuities to the spectrum
of two-dimensional turbulent motions would not dominate the inertial

range spectrum that is proportional to k3.

5. NUMERICAL STUDIES

McWilliams et al. (1981) have carried out extensive gridpoint
p~plane numerical studies of barotropic modons to determine the
effects of limited resolution and of dissipative processes and the
resistance of modons to various levels and scale of perturbations.

. They find modons to be remarkably robust and not easily destroyed by
perturbations. In the resolution experiments, even with only five
grid intervals per modon diameter, a modon-like structure persisted
although with a characteristic velocity about one-half of the theore-
tical value. ' ‘

Should modons or modon-like structures be relevant to weather
and climate simulation, then the question of required model resolution
becomes of considerable interest. Gridpoint methods are notoriously
poor in inducing erroneous linear dispersion with associated errors
in group velocity propagation of wave packets (Grotjahn and O'Brien,
1976). The slowing down of modons at low resolution observed by
McWilliams et al. (1981) is likely to be a consequence, in part, of
this kind of error. I have repeated their resolution experiments
with a spectral transform B-plane model in which the linear terms are
treated exactly with a linear recursion operator. Fig. 2 is taken
from McWilliams et al. (1981) with circled points added to show my

spectral transform results

368



VD n ® n
)
L i i
& : ]
6 05 -
g 0
1l - .
L
> _ R
=
0 | 1 | 1
0 10 20 30 40

NUMBER OF GRID INTERVALS
PER MODON DIAMETER

~

Fig. 2. Modon propagation speed as a function of resolution.

With five spectral transform grid intervals per modon diameter,
the velocity is still diminished but only by 15 percent. At coarse
resolution, it appears that the modon-like structure tends to
enlarge and in accordance with modon dynamics to slow down. These
results suggest that even low-resolution spectral transform global
models, say with rhomboidal 15 truncation, should be able to treat an
atmospheric blocking structure of the sort studied by McWilliams
(1980) .

Many blocking events do not, however, have such a simple dipole
structure and may be better fit with the help of riders. An important
future task, therefore, is to carry out similar numerical experiments

on the properties of modons with riders.
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