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1. INTRODUCTION

Weather forecasts are often accurate but never exact. Fore-
casting must be treated in part therefore as a random process with
errors distributed according to some probability distribution. It
is important for us to guantify these error distributions not only as
a guide to users of the forecasts but also as a measure of progress
in the development of improved forecasting methods. A general theory
of observation and prediction error was first formulated by Gauss
(1809) for orbit calculations in celestial mechanics and has since
been applied in many fields of science and technology.

In these lecture notes I shall show how these general ideas have
been applied to an analysis of forecasting error. I have two general
goals. The first is to develop a calculus of error variance from
which a simple forecast error budget may be constructed. This is
done in Sections 3 and 4. The second is to provide the basis for
judging the significance of any change in error statistics in tests
of proposed improvements in an observing and forecasting system.

This is done in Section 5. 1In Section 2 I summarize the general
definitions of random variables and vectors which I apply to random

errors in Section 3.

2. Random variables and vectors

2.1 Random scalars

In common usage the adjective random means uncertain, unknown,
or unpredictable, and a random variable would be considered in some

way ill-defined. 1In probability theory a random variable is defined

as a variable which takes on different values with a specified proba-
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bility. Thus assoclated with a real random variable x is a proba-

bility function P(x) such that the probability that x < x, is P(xo).

. , 0
If P(x) is differentiable then there is an associated probability

density distribution p(x) such that dP(x) = p(x)dx. Without much

loss in generality I shall consider that this is the case in these
notes.

A random variable may be characterized by a hypothetical
ensemble of an infinite number of possible and equally likely members
each labeled by a value of x. The probability density p(x) is then
a measure of the number density of members at x when they are sorted
and distributed along an x-axis.

A probability density p(x) must clearly be normalized,

e8]

J p(x)dx = P(=) = 1 | (2.1)
and everywhere non-negative,
p(x) > 0. | (2.2)

but is othérwise unconstrained. For an arbitrary function f£(x) of a
random variable, which attaches to a member of the ensemble labeled
by x a functional value f, we denote the average of f over the

ensemble as

<f> = j f(x)p(x)dx (2.3)
Only if the integral converges does the average of f exist as a
finite number.
Moments are defined as averages of powers, thus the nth moment

is given by

<xP> = menp(x)dx. (2.4)
—
The zeroth moment is identically equal to unity by the normalization
condition (2.1). We shall be primarily interested in the first and
second moments. The first moment <x> is called the mean of the dis-
tribution p(x). Averages such as the mean are not random variables

but sharp variables or constants independent of x. As for the zeroth

moment, the average of a sharp variable is equal to itself. The
averaging operation is clearly linear, so that if we define a new

random variable as

y = X - <x> (2.5)
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its mean will vanish since

<y> = <X> - <<X>> = <X> - <x> = 0. (2.6)
Higher order central moments or moments about the mean are defined in
terms of this shifted variable. The variance, X, is the second
central moment,

X = <(x-—<x>)2> = <x2> - <x>2 (2.7)
I shall generally denote the variance as here by capitalization.

In his analysis Gauss (1820) introduced for simplicity the

normal (or Gaussian) distribution

pi{x) = (Zﬂ)—l/z il4§xp[}(%)x-l(x-<x>)z] (2.8)

as a plausible distribution for random errors. It depends on only
two parameters <x> and X which are, as indicated, its mean and
variance. We shall follow the lead of Gauss and describe a theory of
errors in terms of first and second moments only. We shall also

assume that we are dealing with normal probability distributions.

2.2 Random vectors

A random vector is characterized by an ensemble of vectors x in

an n-dimensional vector space with an associated probability density

distribution which is nonnegative

p(x) > 0. (2.9)
and normalized

Jp(§)d§ = 1 (2.10)

A random vector is generally more than a collection of random compo-

nents. If the components are independent random variables with dis-

tributions pl(xl),pz(xz),...pn(xn) then
p(x) = py(x)py(x,)...p (X ), (2.11)

but in general p(x) can not be so factored and induces probabilistic
relations between the components.

Averages and moments are defined as generalizations of their
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definition for random variables. 1In particular, the mean is a vector
<x> = Jl{ p(.}_{‘)d}f_ (2.12)

For notational convenience a random vector x will be treated as a
» 3 * L3 . .
column vector in component form with X indicating the transposed row
*
vector. Then xx , in usual matrix multiplication notation, is an

nxn sguare matrix. The covariance matrix is defined as the central

second moment

. * * *
X = <(§f<§>)(§—<§?) > = <X > - <xX><X > (2.13)

Its diagonal elements are variances of the associated components; its
nondiagonal elements are covariances of the associated pairs of com-
ponents. An important property of a covariance matrix is that it is
non-negative definite, which means that for any (sharp) vector a the
scalar, a* X % is nonnegative. To see this let y = x - <x> so that,

*
since a y = y a is a random scalar, we have

* * * * * * 2
aXa=a<yy>a=<(ayllya>=<(ay">>0. (2.14)

By a suitable linear transformation of coordinates the covari-
ance matrix X may be diagonalized, thus displaying its eigenvalues as
variances on the diagonal of a matrix whose non-diagonal covariance
elements vanish. These eigenvalues are nonnegative, but some might
vanish. The asscciated eigenvector would in that case be nonrandom
or sharp. We shall assume that such a degeneracy does not occur in
our applications and thus that X is positive definite, i.e. that
gf& a is strictly positive. We shall then feel free to invert X at
will.

By letting the dimensionality of the random vectors become in-
finite it is possible to generalize the definitions to apply to random
functions or field. We shall not do this since the meterological
fields of interest for weather forecasting must be represented for
computing purposes in terms of a large but finite member of degrees
of freedom. But this serves as a reminder that we are interested in
random vectors whose components may consist of all the spectral com-

ponents in a prediction model and may have a dimension of order 105.

3. Probabilistic measures of error

3.1 Scalar error

Let us suppose that we measure using an imperfect technique a
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physical guantity, whose true value, is x Owing to imperfections

the measured value X will differ from xttby a measurement error e =
Ko = Xpo We consider the measurement to select one member out of an
ensemble of equally likely possible errors, and thus the error e is

a random vafiable with some probability density p(e). We shall
assume that the first two moments of p(e) are known from experience
such as provided by repeated independent applications of the measure-
ment technique to a known standard. The first moment <e> is the
mean error or bias which by recalibration we may assume to vanish.

2. .
The second central moment, E = <e”> is the mean square error Or

error variance which, following Gauss,we take to be the primary

probabilistic measure of error. Clearly the smaller is E the more

accurate is the measurement technique. We shall define the accuracy
-1 .

A =E as the inverse of E.

The random error e induces randomness in the measured value
Xx = X, + e (3.1)

even though x, is sharp. Over an infinite ensemble of measurements

t
the mean of Xm is

<x > = x, + <e> = % (3.2)
m t
and its variance is

E + <e>2 = E. (3.3)

Suppose in addition that Xy is a random variable with mean 0 and

variance Xt and that the error e is independent of Xy . Then the

variance Xm of measured values is given by

2 2
= = > = > 3.4
X o= <x " <(x, t+e) X, + E> X, ( )

since, in this case, <xte> = 0. Note that this result is unchanged

by a change in sign of e. Similarly if there are two independent

errors e and e2 in a measurement then

(3.5)
and
+ B (3.6)
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It is this additive property of independent sources of variance that
makes variance such a useful simple measure of error.
Another common error measure is the standard error or root mean

square (rms) error defined in general as <e2>l/2. This is a measure

of the width of the error probability distribution in the same
physical units as X The standard error does not, however, have the
additive property of error variance. '

Accﬁracy can be additive also. Consider two measurements of X,
made by separate, independent, and perhaps differing measurement

techniques giving the pair of results

Xm:L =Xt+ el

(3.7)

sz =Xt + 62

We assume that each measurement is unbiased, but that they may have

different error variances El and E2. One expects that some weighted

combination of the two measured values

X o= gx g+ (l—q)xm2 (3.8)

should be more accurate than either by itself. This is, in fact, the

case in a probabilistic sense. Clearly the combined error
e = ge, + (l—q)e2 (3.9)

has a wvariance

o 2 2 .2
E = <l?el +(l—q)eé] > = q°E; +(1-9)’E, (3.10)

which may be minimized by finding a value of g such that

dE/dg = 2qE; - 2(1-q)E, = 0 (3.11)

1

Eq. (3.11) is satisfied by

E A A
2 1 2
q = = , 1 -qg= (3.12)
El+E2 A1+A2 A1+A2
where Al = Eil, A2 = E;l are the respective accuracies. Note that the

weights are proportional to the corresponding accuracies and that this

is indeed a minimum in E since
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a’e/aq? = 2(E,+E,) > 0. (3.13)

The value of E at the minimum is given by

' -2 2 2
E = (A1+A2) [AlEl + AJE, ]
(3.14)
= (a,+a) "t
172
The final accuracy
-1
A=K = A, + A (3.15)

1 2

is the sum of the two contributing accuracies and therefore greater
than either.
A special case of some interest is for an independent repetition

1 A2 = Al’ and the
two weights are equally 1/2. Then A = ZAl and . E = %El. This can

be extended to many repetitions, thus for n independent measurements

of the same measurement technique whence E2 = B

the best estimate of X, is an equally weighted average of the xmi's

and its accuracy is n times greater than that of a single measurement.
In summary, independent sources of error lead to additive error

variances, but independent sources of information lead to additive

accuracies.

3.2 Error vectors

For an imperfect measurement of a vector X, we have
=X, + e (3.16)

where e is a random error vector. The extension of error measures to
random vectors is fairly straightforward. We may again without much
loss of generality set the mean error, now a vector, to zero, thus
<e>= 0, where 0 is a vector all of whose components are zero. The

error is then characterized by a positive definite error covariance

matrix

E = <ee*> (3.17)

whose matrix inverse

A=zt (3.18)

serves as a positive definite accuracy matrix.
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In the case that all error covariance and accuracy matrices
under discussion commute they all have a common set of eigenvectors
and can all be diagonalized by the same transformation. Each error
eigenmode then is independent of all others, and the scalar algebraic
manipulations of adding error variance or accuracies carry through
separately.

In particular, two independent sources of error with covariance

matrices El and Ez contribute a total error with covariance matrix

E = El + EZ' Two independent sources of information with accuracy
matrices él and éz provide a total accuracy A = él + 52 when com-
bined with matrix weights
_ A=l _oa-1

Q =A "R, Q9,=2" 1R, (3.19)
so that

X = A~ A,x, + A-l A x (3.20)

= - 11 - —2=2 ' )

In case the matrices E, and E, do not commute the summing of

1 2
error covariances remains valid, but the solution to the problem of

combining information is not so clear. The use of Egns (3.19) and
(3.20) appears however, to remain plausible (Leith 1975).
In the case that X, itself is random, with say <Xt> = 0 and
i ; d

covariance matrix ét = <X X > then this knowledge can serve as an

independent source of information to improve the estimate X" We

seek, in this case, a regression matrix R such that

X, =Rx + £ ) (3.21)
This is a sort of inversion of Egqn (3.16). Here

&, - ® x, (3.2
is a best estimate of Xt with error covariance

Fo=<f £> (3.23)

if R is chosen such that

*
<f X > = 0 (3.24)
for then X provides no further information about £. We have from
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Egn (3.21)

* *
<§t Xy > = E§§m X > = R Em (3.25)
and from Egn (3.16)
* *
<KL X > =<X X >= §t (3.26)
so that with the use of Egn (3.4) we find
_ -1 _ -1
R = Et Em - Et(éth)
_ -1 -1 -1, -1
= [(§t+E)§t ] = [E+§ —t]
= [E(E"l+x'l)] -1 _[E"l+x"l] lg-1
2 2 2t =
-1 )
= (é&ét) A (3.27)
-1 -1
where A = E and ét = gt .
The final error covariance is
£ s o= <f x
F = <_(§t-3 §m) > =<£x >
_ & &
= < (EeR x> = Xy - Rexy xp
=X -RX, = [T - (A+A)'1A]x
e T 2 2t = =T Dot
-1 -1
- (éfl_k_t) ét &t = (é'*'ét) (3.28)

Standard regression analysis leads thus to the expected result.
R is the normalized weight for X in the combination, I-R is the

normalized weight for <X > = 0, and the final accuracy is A + A No

g
assumption has been made that E and X

£ or A and A, commute.

t
3. Forecasting errors

I have described the error analysis in terms of measurement
error, but it is equally valid for forecasting error. In that case

X, = % represents the forecast atmosphere state vector in a model

£

and x_ represents the state vector in the model that most closely

t
describes the true state of the atmosphere at that time. The error
ensemble is based hypothetically on an infinite number of forecasts

for an infinite ensemble of atmospheric states. This ensemble of
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states X, can be considered as the climate ensemble and it is con-

venient to set <x, >= 0 by defining the state vector components as

anomalies from thz climate mean. The regression analysis that
utilizes information about the climate covariance matrix §t is an
example of "statistically optimal analysis" when applied to observa-
tions or of "optimal filtering" when applied to forecasts.

One practical problem in utilizing random error vector analysis
becomes clear immediately. The number of different components in an
error covariance matrix E is N(N+1)/2 where N is the dimension of the
model state vector. For N of order lO5 this is a tremendous amount
of information. In practice therefore one usually reduces the
measure of error back to a scalar variance quantity by some combina-
tion of selection and averaging over diagonal elements. Such a pro-
cedure can be strictly justified only if all covariance matrices in-
volved are multiples of a common matrix. In the next section I shall
develop simple error budget equations based on this kind of a reduc-

tion.

4. Simple prediction error budget equations

4.1 Introduction

It is known from many theoretical predictability studies that
even for a perfect prediction model any initial error, no matter how
small in scale and amplitude, will progressively contaminate in-
creasingly larger scales and grow with an rms error doubling time of
about 2 1/2 days. Prediction models, however, are not perfect and
introduce an additional source of error growth. A simple error-
growth equation (Leith, 1978) has been used to describe the initial
growth of small errors and to distinguish model-induced error sources
from the inherent growth of initial analysis errors. Although the
equation is based on rather crude assumptions, it seems to provide a
consistent fit to observed error growths during the first day or so
of prediction. It has recently been applied with some success to the
operational ECMWF prediction model by Bengtsson (1981).

In this section the equation will be summarized and extended to
the calculation of the error budget for a standard data assimilation
procedure. This extension provides an estimate of the relative im-
pact of model errors on the equilibrium error level of the final
analysis with assimilation. The saturation effects of climate vari-

ance on error growth at late times will also be discussed.

4.2 Error variance

In dealing with error budgets, it is far more natural to use
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mean sguare error or error variance E rather than the commonly used
root mean square (rms) error. If, for example, a particular deter-
mination is afflicted by two independent errors with variances El

and E
B

o then the resulting error variance is the simple sum E = El +
5 I1f, on the contrary, two independent determinations with error
variances E1 and E2 are combined into a better final determination,

then the inverses, which measure accuracy or information content,
are summed; gL = Eil + Egl. We shall use both of these general
statistical principles which were developed in Section 3.

The use of a single number E to describe the error variance of
an atmospheric state ignores details of error distributions over
space or over spatial scales. This is less serious for compositing
error than for compositing information, but in either case an im-

plicit assumption is made that all distributions are similar.

4.3 Error growth equation

The simple error growth equation (Leith, 1978) is
E=oFE + 5 (4.1)

The term oE describes the inherent tendency for error to grow owing
t+o the unstable nature of atmospheric dynamics. The rms error doub-
ling time of 2 1/2 days given by predictability theory translates
into an error variance doubling time of 1.25 days and a value of
o = 0.5545 dayﬂl, The term S describes the model error source rate,
which is model dependent and can be empirically determined by fitting
observed error growth values.

Analysis error variance, which includes observation errors, will

be denoted by E_. and provides an initial value for the integration

0
of Eg. (4.1) with the result

E(t) = E, t+ (EO + S/a) explat) - 1] (4.2)

It is convenient to replace the time variable t with the pseudo-time

variable

T =

Qi

[explat) = 1] (4.3)

in terms of which the error growth is linear. The perceived error
variance involves a verification against a later analysis, and this
contributes an additional term EO under the simple assumption that

the verifying analysis has independent errors. Thus, for t > 0, we
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have

+ S) T ' (4.4)

0

EP(T) = 2E_ + (ocEO

For a particular model a linear empirical fit to a plot of per-
ceived values of Ep against values of 1 > 0 for a day or so deter-
mines first EO from the intercept and then S from the slope. Great-
er confidence is achieved by, at the same time, fitting values of
Ep(T) for a null model, namely, those of persistence forecasts. The
intercept should be the same but the null model slope is greater and
determines a value SO' The ratio S/S0 is a dimensionless figure of
merit for a model. It must be remembered in making the linear em-
pirical fit that Eg.4.1) includes no effects of saturation for large
errors, thus that smaller errors at shorter times should be more
heavily weighted.

It is assumed that the foregoing determination of E. is without

‘ 0
any benefit of assimilation methods. Thus, EO is the error variance
of an analysis which may use climate but not a model prediction as

a source of a priori information. The benefits of assimilation will

be examined next.

4.4 Data assimilation

The basic idea of data assimilation is to combine information
from a new set of observations with the a priori information about
the state of the atmosphere available from a short-range prediction
valid at the new observing time. In this way information from
earlier observations is carried forward, although somewhat degraded,
to provide an independent source of information to be added to that
newly acquired. It is straightforward to compute an error budget
for the assimilation process by using Eg. (4.1) between observation
times and the general principle for compositing information at
observation times.

Let now Tt be the fixed pseudo-time interval of the assimilation
cycle, and let En be the error variance after data assimilation at
the nth cycle. According to Eg. (4.1), prediction over the pseudo-

time interval 1 leads to a prediction error variance

ET,n = En (L + at) + ST (4.5)

The introduction of new observations with error variance E0 will
lead to a new value En+l according to the general principle by

which information is composited, thus
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-1 -1 -1
En+l = EO + Er,n (4.6)
To cast the problem in dimensionless form, let €, = En/EO’ g =
S/uEO, and B = 1 + a1. Then Egs. (4.5) and (4.6) may be combined to

give the iterative expression

_ -1 ~1
€1 = {1+ {Ban + oot} ] (4.7)
As n increases, an equilibrium level
e = lim e, = 1im €nsl (4.8)
n->-co n--co

is reached which is the factor by which data assimilation reduces the
observational error variance EO. It is easy to deduce from Egs.
(4.7) and (4.8) that € must satisfy the gquadratic equation

82 + n(oc - 1) ¢ -~ no =0 (4.9)

where n = at/B is a dimensionless parameter depending only on the
assimilation time interval. The relevant root of Eg. (4.9) is given

by
e =[no + {n(o - 1)/2121Y? - (n(o - 1)/2}. (4.10)

and is displayed in Fig. 1 as a function of o for values of n corres-
ponding to assimilation time intervals of 0.25 day and 0.50 day and
for a = 0.5545 day_l,

Error growth results from an early GISS research model (Druyan,
1974) were fitted by Eg. (4.4) both for 500 mb height errors and

velocity errors (Leith, 1978). For height errors, the resulting

values are EO = 200 m2, S = 900 m2 day_l and thus o = 8.25. For

velocity errors, the fitting parameters are EO = 15 m2 sec‘z, s/a =
- |

17.3 m? sec 2 day ~ and thus ¢ = 2.1. More recently, Bengtsson

(1981) reports for the ECMWF operational prediction model 500 mb
height error values of EO = 150 m2 and S = 400 m2 day-l with o = 4.8.
It is not clear, however, whether EO in this case reflects already
the benefits of assimilation.

Fig. 1 shows quantitatively how a decrease in model error
sources leads to an improved equilibrium error variance. The great-
est benefits appear to accrue when o = S/aEO is reduced to less than
1. It also appears that velocity errorsg may be decreased by assimi-

lation more than are height errors.
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ERROR VARIANCE
REDUCTION FACTOR
(@)

o

0 | |
o 5 10 15

o =S/GEO

Fig. 1. Assimilation equilibrium error variance reduction
€ vs. dimensionless model error source rate o.
Inherent error growth rate parameter o = 0.5545

day—l.

4.5 Error growth saturation
It is a well known phenomenon that if either rms error or error

variance for forecasts are plotted as a function of forecast period
the curves approach asymptotically an upper level related to the
climate variance. The reasons for this are clear for at late time
there is vanishing correlation between the forecast anomaly Xe and
the true anomaly Xy - In this limit the error covariance matrix be-
comes

*
E > < (2emx) (Xe=x) >
* *
—-<z(_f §f>+ <—>Et _>_<_t>
= X + X, (4.11)

and any derived scalar variance will likewise give

E X, + X . | (4.12)

If the climate generated by a forecasting model when run for a long

time is the same as the true climate then Xf = Xt and E ~ 2Xt or for

172 21/2 X 1/2.

rms exror E t
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Clearly in this case in which knowledge of the climate has not
entered into the forecasting process the forecast error at long range
reaches a value greater than that of a'climate mean forecast, namely

X. = 0, for which the error is only X As described in Section 3,

hgwever, it is possible to introduce glimate as an additional source
of information by regression filtering and then saturation of fore-
cast error variance occurs at a lower level with E -+ Xt'

This large difference in saturation levels provides a warning
that error variance can depend on any filtering or smoothing that
has been carried out advertently or not. This suggests that the
most reliable error variance for verification purposes is the ir-
reducible value resulting from optimal regression filtering.

No saturation effects have been included in the simple error
budget equations so far derived. For empirical fitting to initial
error growth curves and for analysis of the assimilation process this
has not been important. Perhaps the simplest way to add the effects
of saturation is to add climate information or accuracy to that of

the model forecast. Eg (4.2) when written in terms of the dimension-

less pseudo-time T = oT and the dimensionless parameter ¢ = S5/aE
becomes
E(1) = Ej[1 + (l+o)t] . (4.13)

The associated model accuracy egquation becomes
— -1
A(T) = AO [1 + (l+0)T] (4.14)

which approaches zero as T - ®©. Eqg (4.14) may be modified for
saturation effects, in the case that regression filtering is used,
to give

A(D) = AL+ (I40)TT T + A (4.15)

whence Eq (4.13) is modified to become

E(t) = {Eal[l + (1+o)?]’1 + x;l}'l \ (4.16)

Note that E(t) =~ X, as T + o,
4.6 Anomaly correlation

The correlation between forecast and observed anomalies is a
frequently used measure of forecasting skill which is related to the

various measures already discussed. Consider first the anomaly co-
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variance matrix

* .
c = <§f Xy > (4.17)

An expansion of the error covariance matrix E leads to

*
E <(§f_§t)(§f—§t) >

*
Xe v X - ICHC ]

A scalar covariance measure based solely on diagonal elements be-

comes then

c = %{Xf+xt—E] (4.19)
or
C=x% [1-S(B/X,) ] (4.20)
t 2 t
when Xf = Xt' In this case the anomaly correlation is the bracketed

term in Eg (4.20) namely
r= 1 - 2(E/X,) (4.21)
2 t :
As t » », E ~» ZXt and r »~ 0.

5. Statistical sampling fluctuations

5.1 Introduction

The discussion so far has been probabilistic in nature in that
first and second moments of all probability densitydistributions have
been presumed to be known. In practice, however, we must estimate
these by computing error statistics from a finite sample of forecasts.
These estimates are subject to statistical sampling fluctuations
that occur for finite samples even if the infinite ensemble from
which they are drawn remains unchanged. These sampling errors tend
to mask any small change in ensemble properties that we are trying
to detect. This is a familiar problem for the analysis of climate
sensitivity experiments in which one tries to detect small changes
in model climate properties in response to changes in the model
structures. We consider here the analogous problem for forecast
sensitivity experiments. I will first summarize results from sam-

pling theory. These are discussed in more detail in many standard
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texts such as that of Cramer (1945).

5.2 Statistical sampling theory

Let the random variable x have mean<x >= 0 and variance(<x2 s =
X. We draw a sample of n elements (xl,xz,...,xn) from the infinite
ensemble with each member equally likely to be chosen. The sample
average

X = (5.1)

S
I o~18
b

should approach the ensemble mean <x> = 0 as n increases and the
sample becomes increasingly representative. As a sum of random vari-
ables x is itself a random variable whose distribution is determined
by an infinite number of repetitions of the sampling process. We can

compute the first two moments of X and find

(5.2)

i
]
A
®
v
]
8o
N
e~
o~
A
b
[...).
%
3
]
5
e

Thus X has the same mean as x but its variance is less by a factor
1/n. As n+ » we see that X ~ 0, and it is in this sense that X+ 0.

An unbiased estimate of X is provided by the sample statistic

n
v = H%T ) (Xi—§)2 (5.3)
i=1
since
n
<y> = E%I ) <(x.—x)2>
i=1
n
= b T orx -2+ x]=x (5.4)
i=1

its second moment is

n
2 1
L

<y™> =
(n-1)2 i

Ho~13

<(xi—§)2(xj—§)2> (5.5)

1 5=1

which for a normal distribution of x can be evaluated as
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= 2
<y™> = X +nX (5.6)

<v2> - <v>2 = % X ‘ (5.7)

which also tends to zero as n -+ o.

In summary although X of Eq (5.1) and v of Eq (5.3) are unbiased
estimates of <x> and ¥ they have associated sampling error variances
of %X and % X2 respectively. The corresponding rms sampling errors
are,of course, the square root of these, and if an observed change
in X or v is small in magnitude compared to these, we may doubt its
statistical significance as indicating a change in <x> or X.

In application to forecast sensitivity experiments <x> becomes
the forecast bias <Xe> and X the error variance E. We have for con-
venience assumed that <xf> = 0, but in fact the climate mean of a
model usually differs somewhat from that of the atmosphere and thus
of the initial states. The model forecasts tend to drift toward the
model climate mean in a few days introcducing a climate mean drift
bias. Experiments on model improvements designed to decrease this
bias must be interpreted in the light of sampling errors of the mean
which have a variance E/n.

We are of course, also interested in changes that will reduce
E as estimated by v, but here we must face sampling errors of the
variance with, in turn, a variance of (2/n)E2 or standard error of
(2/m /2

dimensionless ratio

E. The significance of any change § E will depend on the

w= m/2)2 (sg/m) (5.8)

Eq (5.8) may be combined with Egq (4.16) to determine the best

forecast range for determining, say, the effect of a change in the

model error source rate S. If we let
€ = .
c Xt/EO (5.9)
and
e = E/E, (5.10)

then Eq (4.16) may be written in dimensionless form as

330



e(r) = {1 + (1+<5)-T']"l + e;l}‘l (5.11)

According to Eg (5.8) the detectabilitj of a change in ¢ is propor-

tional to

m
!
|

N
|

& '\ (5.12)

k(t) = =

M

where A = 1 + (l+o)T.

The quantity k approaches 0 as T + 0 where the effect of model errors
has not yet been felt and as T + » where climate variance dominates
the error variance. In between it has a maximum at T = ?m where

_ (l+€c)l/2

T T T T (5.13)

Evaluation of Eq. (5.13) for typical values such as o =6 and

Il

48 gives a value ?m = 1 and an optimal forecast time interval
1.25 days.
The anomaly correlation measure r defined by Eq. (4.21) is also

oF
3
i

subject to sampling errors. The correlation coefficient r is bound-
ed with -1 < ¥ < 1, and its sampling probability distribution is a

quite complicated function of the ensemble correlation p, the sample
correlation r, and n. This distribution is considerably simplified

by the transformation of variables introduced by Fisher (1941)

1+p

1

=3 log T=p (5.9)
1 1+

z =35 log e (5.10)

in terms of which the distribution of z is more nearly normal with

moments
<z> = [ + d (5.11)
= 7Tn-1) -+
7 = <z2> - <z>2 = nl— 3 (5.12)

to lowest oxrder in 1/n.
5.3 Effective sample size

Sampling theory is based on knowledge of the number n of inde-

pendently drawn members of the infinite ensemble. A special problem
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arises in applications to atmospheric statistics where time and space
correlations can decrease the effective sample size. For climate
studies based on time averages over a time interval T this has led

to the definition of an effectively independent sampling time T
given (Leith, 1973) as

0

o~ :
T0 = J R(t)drt

~
where R(t1) is a characteristic time-lagged correlation function.
For many atmospheric variables TO is of the order of a week. The
effective sample size is then given asymptotically for large T as
n = T/TO. This analysis was appropriate for estimation of a mean.
For estimation of a variance a better time is

2

Té = J RY(T)drt ~T0/2

oo
The number n is greater by about a factor of 2 for variance than for
mean estimates which tends to cancel the factor 2 appearing in Eg
(5.7).

Similar arguments are appropriate for spatial correlations when
statistics are generated by averaging over space. By analogy one

defines an effectively independent averaging area as

AO = J J R(x,y)dx dy

- 00 - 00

for first moments and

o (o]

Aé = J J R2(x,y)dx dy = A0/2
- CQ - 00

for second moments. The approximations for T6 and A6 are based on

observations that time-lagged correlations are nearly decaying ex-

ponentials while space correlations are nearly Gaussian.

6. Conclusion

These lecture notes have been primarily concerned with the more
theoretical aspects of the subject and have ignored many practical
difficulties in forecast verification. I hope that the following
key ideas can serve as a guide for future work.

1)With appropriate definitions error and accuracy can be treat-

ed as additive (Section 3)

2)Efforts to construct error budget equations can sharpen our

understanding of the total forecasting system (Section 4)
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3)Our knowledge of the state of the atmosphere at any time de-
pends to a considerable extent on the forecasting model used

to bring forward past information (Section 4.4).

4)We must not be misled by statistical sampling fluctuation
when testing possible improvements in a forecasting technique
(Section 5)
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