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Abstract
The bifurcation properties of low order, barotropic models with orographic
and a Newtonian type of vorticity forcing are reviewed. The low order model
results that multiple equilibria develop as a result of a sufficiently strong
wave, orographic forcing and that a suitably positioned wave vorticity
forcing can enhance this bifurcation mechanism are verified with a high
resolution, spectral model. The high resolution model is integrated in time
to find stable steady-states. Bifurcations into multiple equilibria appear
as sudden jumps in the amplitudes of the model components, when the forcing

is slowly changing in time.

Diagnostic studies of the mountain torque and the eddy activity in the
Northern Hemisphere during winter are compared with the occurrence of blocked
flows to support the blocking mechanism originally proposed by Charney and

DeVore (1979).

1. INPRODUCTION

In recent years there has been a renewed interest in the study of low=-order
systems to gain some insight into nonlinear mechanisms present in the
atmosphere. The basic procedure used when studying a low-order system is to
expand the space dependent quantities into a series of orthogonal functions
and to truncate this expansion by just retaining a few components. Each
component is thought of as representing a certain scale of motion and, by
inserting the truncated expansion into an equation of motion, one can study

the nonlinear interactions between the scales considered. One thus neglects
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all interactions with spectral components not taken into account. This is of
course a serious limitation of low-order systems, but it is nevertheless
believed that a study of such systems is one way of getting an insight into
the nonlinear mechanisms present in the atmosphere. To verify results found
with a low-order model one should also perform experiments with a
high-resolution, fully nonlinear model., These experiments must, however, be

guided by the gualitative properties of the low-order sYstems.

To study the effect of orographic forcing on the nonlinear energy transfer
between the larger scales of motion, Charney and DeVore (1979) (hereafter
called CdAV) extended Lorenz's (1960) barotropic B<plane model to include
orographic forcing. With a low-order system they showed that for a given
forcing it was possible for the flow to arrange itself in several equilibrium
states, some stable and some unstable. The multiplicity of equilibrium
states is associated with the resonance occurring when the Rossby wave,
generated by the zonal flow over the orography, becomes stationary. Through
the nonlinear interaction between the zonal flow and the wave components of
the flow and due to the orography, the components can arrange themselves in
two stable equilibria, one close to resonance with a large amplitude wave and
a weak zonal flow, the other with a strong zonal flow and a weaker wave
component. The large amplitude wave flow may be associated with a blocked

flow in the atmosphere.

This result was first derived for a g-plane, channel model with reflecting
side walls, but later studies by Davey (1980,1981) and Ké'lléﬁ (1981) have
shown that the same type of mechanism can be found with an annular or a
spherical geometry. Trevisan and Buzzi (1980) also showed the same

phenomenon using a different expansion method on a g-plane geometry.
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The basic equation used for the models of all these studies is the
quasi-geostrophic, barotropic vorticity equation with linear dissipation, a
Newtonian type of vorticity forcing and orographic forcing. In a

non-dimensional form this equation is

3L _ -
g = J@+ £+ h, W)+ el - o) (1)

where r is the non-dimensional vorticity, £ is the planetary vorticity, (-
the vorticity forcing, ¢ the stream function and h is a parameter related to
the orographic effects. The non-dimensional time is given by t and g is the
dissipation rate. The orographic forcing may be introduced as a forced
vertical velocity of the lower boundary in an eguivalent barotropic model, in

which case h is related to a dimensional mountain height m via
(2)

where H is the scale height of the equivalent barotropic atmosphere and C is
a constant which depends on the equivalent barotropic assumption. For normal
atmospheric conditions the constant C is approximately equal to one. For

details of the derivation of Eqg.(1) see K&llenh (1981).

The nonlinearity of the model is contained in the term involving the Jacobian
(J( £+ f+h, ¥)), and one way of investigating the nonlinear properties of
this n.lodel is to expand the space dependent variables in a series of
orthogonal functions, Fy (_;S),where % is the space vector. It is convenient
to choose the Fy's to be eigenfunctions of the Laplacian opefator, because

= V¥ The exact functional form of the F 's of course depends on the
Y

geometry of the model and the boundary conditions.

The variables to be expanded are the vorticity (also gives the

streamfunction), vorticity forcing and the orography. The expansion may be
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written

y (3

For a B-plane, channel model trigonometric functions can be used and

R Gey) = et TR,

n x and y being the Cartesian coordinates (CdVv)., 1In an
r

annular geometry, Bessel functions are involved (see Davey, 1981) and on the
sphere the FY's may be written
Foo(u =27 () oM™ | (4)
m,n n
where u is the sine of latitude (¢), A is the longitude and an (u) are
associated Legendre functions. Most of the results discussed in this paper

will refer to a spherical geometry as in KH31llén (1981) and thus the expansion

functions given by Eqg.(4) are the appropriate ones.

A low-order model may be formulated by inserting the expansion Eq.{(3) in the
model Eqg.(1) and truncating the expansion at a very low oi:der just leaving a
few components to describe the fluid motion. Each component may be thought
of as describing a certain scale of motion and only the nonlinear
interactions between the scales involved in the low order system are taken

into account.

To study the effects of the orogr‘aphy on the‘interaction between the waves
and the mean zonal flow, at least one purely zonai compbnent and two wave
components have to be included. The mathematical structure of such a minimal
system is independent of the geometry and multiple equilibrium states may be

found even in such a simple model, as first pointed out by CdVv. When
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additional components are included the geome;ry will affect the structure of
the equations, but the basic mechanism for the formation of multiple
equilibrium'states still remains. In the following section a minimal system
will be analyzed, following the basic idea of C4V. Section 3 will deal with
a combination of orographic and direct wave vorticity forcing as discussed by
Kdllen (1981). The direct wave vorticity forcing is thought to represent the
time mean effect of the small scale baroclinic eddies on the long waves in
the atmosphere. 1In Section 4 a verification of some of the drastic
agsumptions made when dealing with low~order models will be made and in
Section 5 we will try to relate the bifurcation properties of the simplified
models to diagnostic studies of the atmosphere in connection with blocking

events.
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2. WAVE-MEAN FLOW INTERACTIONS VIA THE OROGRAPHY

The simplest possible low-order model in which one may inve‘stigate the
nonlinear coupling between the zonal meaﬁ flow and the eddies th‘rough thé
effect of the orography, is a model which involves one component. describing a
purely zonal flow and two components describing the phase and amplitude of a

wave. On the sphere the streamfunction may thus be written

b= -u (1) P o+ (x, (£) cosfi + v, (0) sinKA)‘Pf(u)

where uo, X and y,are the time dependent amplitudes 6f each flow component.
To drive the zonal flow, a vorticity forcing is introduced in the P1(U)
component with an amplitude, L The ’orography is assumed to be present
with an amplitude, h1, in the cos ﬂ,APi(u) component. Inserting these
expansions of the stream function, vorticity forcing and the orography into
the barotropic vorticity equation (1), a set of three ordinary differential

equations governing the time evolution of the model is obtained,

uo=h1 61 y1 +e(uoE—u)
X, = (B-a uo)y1 - ex, (5)
y1 = —h1 62 uo— (B-—muc)x1 - t-:y1

The coefficients appearing in (5) are defined

o = /5.8 [1—2/n(n+1)] ’ B = H(_flf—l—) ’ 61 = g‘el 62 = fﬁ"‘l) -

These expressions for the coefficients have been derived for a spherical

geometry, but in fact the structure of the equations is exactly the same for
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a B-plane or an annular geometry, the only difference between the different
geometries lie in the expressions for and values of the coefficients. The

results shown in this section, may thus equally well be applied to the other

types of geometry.

To investigate the mathematical properties of the nonlinear system of

equations (5), we first determine the steady-state values of u, %, and Yqe
¥

Setting the time derivatives equal to zero and solving the resulting system

of equations for one of the steady-state amplitudes (uo), we arrive at the

following equation in ao {hereafter an overbar will denote a steady-state

amplitude)
-3 =2 2B o) 2 2 2 (62 + 82)
u - + =) + —— = —
o uo (uoE o ) a2 [6162h 1 te +B o+ 28 uoE] uoE 2
o
(6)
which also may be written
2 -
u - 818, By uy .3 -
oE E2 + (B - ob )2 o

The polynomial form (6) of the steady-state equation shows that we can at the
most have three steady-states for certain values of the forcing parameters.
The other form of the steady~state equation, (7), allows us to investigate by
graphical methods how the number of steady-~states varies with the forcing
parameters. Note that on the left hand side of (7), ue is a Velocity. This

velocity is the purely linear response of the uo-component when there is no

orography.

The example chosen to illustrate Eq. (7) is one in which £=3 and n=4. This

implies an orography with a zonal wavenumber three and a maximum in
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mid-latitudes. Fig. 1 is a plot of the curves given by Eq.{(7) for some
values of h1. Both axes are given in non-dimensional and dimensional units.

The diménsiqnal units are m/s and correspond to the windspeed of the a

component at 45° latitude.

The curve in Fig. 1 for h1 = 0 is a straight line and for increasing values
of h1 we obtain a family of curves, some having a section with a negative
slope. As each point on the curves represents a steady-state of the system
given by Egs. (5}, a negatively sloping section of a curve implies that
within a certain forcing parameter (uoE) interval it is possible to have
three steady~states. Taking as an example the curve for h1‘ = 0.20 it can be
seen from Fig. 1 that iil the interval 0.135 < u - < 0,158 three steady-states
exist. The stability properﬁies of each steady-state are found by
linearising Eq. (5) around each steady-state, and finding the eigenvalues of
the linearized equations. An investigation of this kind gives stability
properties as indicated by full (stable) and dashed (unstable) lines in
Fig. 1, In Fig. 2 it may also be seen that the bifurcation from one to three

steady~states occurs for a value of h1 somewhere between 0,10 and 0.15.

The possibility of having two stable equilibrium states for constant values
of the forcing parameters is due to the nqnlinear coupling bgtween the zonal
flow and the waves. The coupling by itself, however, witho‘utb the effect of
the orography, does not give rise to multiple steady-states in Eqg.(5). It is
the influence of the orography which is crucial in creating an instability
which gives the possibility of having multiple steady-states. CdV called
this a form drag instability, where the form drag refers to the effect of the

orography in this simple model.

One of the stable steady-states is close to a resonant flow ‘configuration,
and in this steady-state the wave component has a high amplitude. The phase

of the wave is such that there is a high drag across the orographic ridges
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Fig. 1
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Steady-state curves for the low order model of section 2 with different
values of the orographic parameter. The horizontal axis gives the ampli-
tude of the ﬁo—component, both in non-dimensional and dimensional units.
On the vertical axis the forcing is zlso given in both units. The
dimensional units are the flow velocity at 45° latitude. Each curve
corresponds to a certain value of the orographic parameter, h,, and a
numerical evaluation of the eigenvalues shows stability properties as
indicated by full (stable) and dashed (unstable) lines. For further
explanations, see text.

Parameter values: € = 0.06, £ = 3, n

1= 4.
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and thus energy is transferred from the zonal forcing, via the effect of the
orography, to the wave components of the flow. In Fig. 1 this type of a
steady-state falls on the left hand part of the diagram where the response in

the zonal component (uo) is much less than the forcing.

The steady-states on the right hand side of the unstable region have a more
intense zonal flow and a less marked wave component. In these steady-states
the orographic drag is much lower, both due to the lower amplitude of the

wave component and a different phase of the wave.

The steady-state with a high wave amplitude may be associated with a blocked
flow in the atmosphere. The wave ridge occurs downstream of the orographic
ridge, and the persistence of blocking ridges in the atmosphere may be due to
the stable wave-mean flow interaction described by this simple model. The
model also predicts that there may be another stable flow configuration
without a high amplitude wave, but a much more pronounced zonal flow. Which
one of these steady-states the flow settles into is crucially dependent on
the initial state of the flo&. cav 6ffered this feature as.a possible
explanation for the observed variability in the frequency of the occurrence

of blocked flows.
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3. A COMBINATION OF WAVE VORTICITY AND OROGRAPHIC FORCING

In the model described in the previous section, the waves of the flow are
only due to the interaction between the zonal flow and the orography. In the
atmosphere.there are numerous other processes which generate waves and in
midlatitudes the most important one is the baroclinic instability process.
Baroclinic waves have a characteristic wavelength which is shorter than the
scales involved in the low order models of this study, but seen as an effect
on the time mean flow the energy generated by baroclinically unstable waves
on the shorter scales is transported in the spectrum through nonlinear
processes and thus also exports energy to the longer waves (Saltzmann, 1970
and Steinberg et al, 1971). In a barotropic model it is impossible to
describe these baroclinic effects explicitly, but one may be able to take the
long wave effect into account by introducing a wave vorticity forcing in the
same components as the orography. The wave vorticity forcing should thus be
seen as the time mean effect of cyclone waves rather than a direct diabatic

heating.

A wave vorticity forcing can easily be introduced into the low order model of
the previous section by adding EglE and EylE to the right hand sides of the

equations for k1 and 91 of Eq.(5). The steady-states may be analyzed in the

same way by writing the steady-state equation in terms of the zonal forcing

(uoE) as a function of the zonal response (uo) with the orography (h1), the
2 2 -1¥1E .
+ y1E )} and the phase (tan ~—=) of the wave vorticity

1E
forcing as parameters. In Kallen (1981) this was done, but with a sightly

amplitude ( XlE
more complicated model. Two extra wavecomponents and one extra zonal
component was included to take into account some of the interactions with
unforced parts of the spéctrum. It is still possible to solve for the
steady-states analytically in such a model according to the procedure given
in K¥11én (1981). We will not go into any detail here regarding the solution

method, but only display some of the results.

381



The streamfunction expression used in the examples is
Y, A, t) = - uo(t) P, (p) + z(t) Py (W)

3

+ (Xi(t) cos 3\ + yl(t) sin 31) P4

(n) +

i 3
+ (xz(t) cos 3\ + yz(t) sin 3)) P6(u)

and the vorticity forcing is given by

wE(u,A) =-up Pl(u) +

. . 3
+ (x5 ©0s 3X + Yqp Sin 33) P4(u) .

The orography is the same as in the previous section,

3
h = h1 cos 3X P4(u)

The low order system is thus made up of six ordinary differential equations,
which govern the time evolution of the model. Because of the choice of
components, no direct wave-wave to wave interactions are allowed but energy
transfer from one wave-component to the other may take place via the zonal
flow. The zonal component with the amplitude z describes a sheared zonal
flow and it is via this zonal component that energy may be transferred

through flow-flow interactions from the forced to the unforced wave

components.
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A plot of the steady-states of the system is given in Fig. 2. On the
horizontal axis the steady-state response is given in terms of the amplitude
of the sheared zonal component, z. The vertical axis gives the zonal
momentum forcing, Uope
The orographic forcing is fixed at a value of 0.05 while the wave vorticity
forcing has a varying amplitude, but the phase in relation to the orograéhy
is fixed. Multiple steady-states of the system are identified in the figure
by the condition that a horizontal line should have multiple intersections
with one of the steady-state curves. The forcing parameters are in a range
where multiple steady states are just possible, i.e. close to the first
bifurcation point. For smaller values of the forcihg parameters the
nonlinear system behaves quasi-linearly, with just one steady state for a
certain value of the forcing parameters. By linearizing the system around a
steady~state and computing the eigenvalues of the matrix governing the
linearized motion around each of the steady-states, stability properties are
found as indicated in Fig. 2. It may be noted that no Hopf-bifurcations (see
Marsden and McCracken, 1979) indicating the existence of limit-cycles around
the steady-states have been found in this low order model for reasonable

values of the forcing parameters.

For the curve marked I in Fig. 2 the wave vorticity forcing is set to zero
and the only forcing of the model is in the orography and the zonal momentum.
For the orography height chosen in Fig. 2 there is only one, stable
steady~state for all values of the zonal momentum forcing. For higher values
of the orographic parameter multiple steady~states are possible within
certain ranges of values of the zonal momentum forcing. For further details
of this, see Kallén (1981). BAnother way of obtaining a region of multiple
equilibria is to include vorticity forcing in one of the wave components and
this is shown with steady state curve II in Fig.2. The phase of the wave

vorticity forcing is ~90°, i.,e. positive (cyclonic) vorticity forcing on the
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Steady-state curves for the low order model of section 3. The abscissa
gives the response in terms of the amplitude of one of the zonal
components (z), the ordinate gives the strength of the zonal forcing (uoE).
Both axes are given in dimensional and non-dimensional units, the
dimensional units being taken as the zonal average at 45° latitude. The
height of the orography, h1 = 0.05 and the dissipation rate, & = 0.06.

For curve I there is no wave vorticity forcing while for curve II there

is a wave vorticity forcing in the same component as the orography

(2=3, n1=4). The amplitude of the wave forcing of curve II is

x1E= 0., y1E=-O.015 which corresponds to 20 m/s8 inoterms of a zonally
averaged absglute value of the meridional wind at 45 latitude and a phase
angle of -90 . Stability properties as indicated by dashed (unstable) and
full (stable) lines.
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leeward side of the highs in the orography. In Kd1l&n 1981 it was shown that
this phase angle is the most favourable one for bifurcations to occur. The
characteristics of the steady-states within the region of multiple equilibria
can be found in the example displayed in Fig. 3. The steady=-states on the
left hand, upper branch of curve II in Fig. 2 have a marked zonal flow and a
rather weak wave component as the top flow of Fig. 3. The steady-states on
the right-hand branch, on the other hand, have a much stronger wave component
and a weaker zonal flow as the bottom flow of Fig. 3. These latter
steady-states can be associated with low index atmospheric circulations, i.e.
blocking periods, while the steady-states on the left hand branch have the
characteristics of a high index, zonal type of circulation. Examining the
energetics of these two solution types it was found in Kallen (1981) that in
the zonal steady~state the orographic influence on the flow was much weakexr
than in the blocked state. In the blocked state the orography acted to
transform zonal kinetic energy into wave kinetic energy in a much more
intense way than in the zonal state. Furthermore, the efficiency of the flow
in picking up energy from the wave vorticity forcing was markedly different.
In the blocked flow the phase difference between the forced wave and the wave
forcing is very small, thus giving a high amplitude response. In the zonal
steady state the trough on the leeward side of the orography is further
downstream from the orographic high than in the blocked case, and the
response amplitude is thus lower. The unstable steady-states on the dashed
part of curve II have properties somewhere intermediate between the two
stable branch steady-states. The unstable steady-states are, of course, not
very interesting. Because of their instability the flow will never settle

into them.
It has thus been demonstrated that a combination of orographic and wave

vorticity forcing can give rise to multiple equilibrium states, even when the

separate effects of the two types of forcing do not show this type of
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Fig, 3 Examples of stream function fields for three steady-states within the
region of possible multiple equilibria of Fig. 2 (curve II). Full lines
are isolines of the streamfunction while the dashed lines are isolines for
the orography. Over the hatched area the orography is above its mean value
("land areas") while otherwise it is below its mean value ("ocean area").
Dash-dotted curves with arrows showing direction of circulation indicate
regions with maximum cyclonic and anti-cyclonic wave vorticity forcing.
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behaviour. Only a wave vorticity forcing in this model does not give rise to
more than one equilibrium state. The orography can be seen to act as a
triggering mechanism, directing the basically vorticity forced flow into one

or the other of the stable equilibria,

4, HIGH RESOLUT ION EXPERIMENTS

A serious shortcoming of a severely truncated low order system is of course
the lack of interaction between waves of all scales. Only a few scales of
motion are taken into account and the interactions with other scales are
either neglected completely or included via a bulk momentum forcing. To
investigate whether the bifurcation mechanism found in a low order model is
sensitive to the number of waves present in the model, the results should in
some way be verified with a high resolution model. CdV showed that the
multiple equilibria in their B-plane channel model could also be found in a
model with an increased resolution, while (Davey 1981) pointed out that it is
possible to find the multiple equilibria in a high resolution model but they

do not obtain as easily as in a low order model.

To verify the results of Ki11én (1981) for a spherical geometry, experiments
have been performed with a high resolution, gquasi-geostrophic, spectral,
barotropic model. These experiments will be described here following K#1lén

(1982).

The high resolution model was originally developed at the University of
Reading, UK and it is a barotropic and guasi-geostrophically balanced version
of the model described in Hogkins and Simmons (1975). The gov.erning equation
of the model is the same as in Section 2, i.e. Eg.{(1). Forcing is
introduced in exactly the same components as in the low-order model of
Section 3 and the model is integrated in time to find the steady-state(s).
For reasons of economy, most of the experiments were done with a T21

truncation (k < 21 and n < 21 in the Legendre (Pnk (L)) representation).
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However, some integrations done with a T42 truncation showed no significant

differences to the T21 experiments.

To find multiple stable steady-states the time integrations are set up in the
following manner, Initially the forcing is held constant for a time period
of twenty days. The model, starting from a statke of reSt, is allowed this
time to find a syteady-state. After the model has settled into a steady-state
the zonal momentum forcing is Vslowly increased or decreased in time. The
time scale of this slow increase or decrease is chosen to be significantly
slower than the dissipation time scale of the model (the forcing is doubled
or halved in 100 days while the dissipation time scale is around 2.5 days).
In this way it is hoped that the model stays reasonablyv close to a stable
steady-state all of the time. 1If, however, a bifurcation of the type
pictured in Fig. 2 occurs, the model has to make a sudden jump from éne
stable branch of the steady-state curve to the other when a critical value in
the zonal forcing is passed. 1In a time plot of some of the spectral
coefficients this will show up as a sudden change of the amplitrude and
perhaps some damped oscillations when the model settles into a steady-state

on the other branch.

Results of experiments of this type are displayed in Fig. 4. The forcing
parameters have values which are close to the ones used in the low order
example of Fig. 2. The phase difference between the wave vorticity forcing
and the orography is exactly the same, -90°. It was, however, found that in
order to obtain multiple equilibrium states with a high resoluﬁion model the
vorticity forcing has to be higher. This is presumably due to the fact that
the existence of more components forces the energy introduced at certain wave
components to spread out to all parts of the spectrum. The long waves,
therefore need more energy input to reach the critical amplitudes necessary

for bifurcations to occur. The orography, on the other hand, had to be
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Fig. 4 Vorticity amplitudes of one wave component (k=3, n=4; solid curves) and one

zonal component (k=0, n=1; dashed curves) as a function of time in the high
resolution model. Curves marked I refer to the experiment with increasing
zonal forcing, the ones marked II to a decreasing zonal forcing.
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lowered to avoid the formation of multiple equilibria when only zonal
momentum forcing is present. The high resolution model thus appears to be

more sehsitive to the height of the orography than the low order model.

In Fig. 4 the amplitudes of the forced zonaly and wave components are shown as
functions of time for two different experiments. 1In one experiment (curves
marked I) the zonal forcing starts at a fairly low value, well below the
bifurcation "knee" of the curve in Fig.2. After day 20 the zonal forcing is
increased slowly and from the amplitudes of the forced zonal component and
the forced wave component it can be seen that a sudden jump occurs around day
80. The curves marked II show a similar experiment, but this time the zonal
forcing is decreasing as a function of time., In these curvés the jump occurs
around day 90. and it should be noted that the jump does not occur at the same
value of the zonal forcing as for the jump with an increéasing zonal forcing.
This strongly suggests that there is a certain interval in the values of the
zonal forcing where multiple stable steady-states are possible.. To find
these steady-states the same type of integrations have been performed, but
instead of increasing/decreasing the zonal forcing until the end of the
integration the zonal forcing was held constant at a certain level after an
increase/decrease from an iniktially low/high value. The final level of the
forcing was chosen to be in the range of possible multiplé equilibria. 1In
Fig. 5 the resulting streamfunctions from such an experiment are displayed.
The top figure is the steady-ététe which is reached from an initially high
value of the zonal forcing, the lower part is the steady-state reached from
an initially low value of the zonal forcing. Comparing these figures with
the low order results of Fig. 3 it may be concluded that the streampatterns
are qualitatively similar. One has a pronounced wave component and can be
interpreted as a blocked steady=-state. The other has a much more marked
zonal flow and a weaker wave component. The feature displayed in Fig. 2 and
shown in K&1len (1981) that when orography alone is not sufficient to produce

a forcing regime with multiple equilibria, a combination of orographic and
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Fig. 5

Fig. 6

Two stable streamfunction patterns having the same values of all the forcing

parameters (¢ = 0.06, h = 0.023, g = 0.0, Vi = ~0.02, uOE = (0.095).

Full lines are isolines for the streamfunction with the same isoline interval
in the two plots. Dashed lines are isolines for the orography, areas with

the orography above its mean value (land areas) are hatched. The dashed-dotted
curves indicate the positions and directions of maximum and minimum wave
vorticity forcing.

Alternative stable states in an annular model with an isolated orographic
ridge, taken from Davey (1881). Orographic ridge in the right hand sector
between the two dashed lines. Full lines are isolines of the streamfunction.
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wave vorticity forcing does give this possibility, is reproduced by the high
resolution model. The addition of wave vortiéity forcing is thus not just a
linear addition of wave energy to the flow, instead it actively takes part in

the nonlinear formation of multiple equilibria.

The numerical experiments with the high resolution spectral model thus
strongly support the results derived from the low order model of Killén
(1981). There are, however some aspects of the low order model behaviour
which are not verified by the high‘resolution experiments. One such
behaviour is the bifurcation obtained in a low order model in the absence of
orography. With a low order model it is possible to find multiple equilibria
with only vorticity forcing (Wiin-Nielsen, J979) on the longer waves.
Experiments with the hiéh resolution model have not shpwn this feature, even
for very large values of the forcing parameters. The model behaves perfectly
linear when only momentum forcing is applied, the response to the forcing
being purely in the forced components. For shorter waves this is no longer
true. Hoskins (1973) has demonstrated that for zonal wavenumbers larger than
five a nonlinear instability develops which is mainly due to wave-wave
interactions. For the longer waves the Coriolis effect acts as a stabilizing
factor which prevents this type of nonlinear instability. With orography
present it thus seems that a new type of instability develops as first
pointed out by CdV. An intuitive reasoning which points to a possible reason
for this property of the orography can be given as follows. The governing

equation of the model at a steady-state may be written

_ 3¥ _ -
J(zg,p) + J(h,y) oyt e(cE z) =0 (8)

If h=0 (no orographic forcing) and ;E#%)it is possible to have a steady-state

"where the response is in the same component as the forcing and the nonlinear

term J(C,w) is zero. As mentioned above, numerical experiments with
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reasonable values of the vorticity forcing on the longer waves have shown
that such a steady-state is stable. Equation (8) is in this case linear.
This also holds if the wave vorticity forcing is applied at several low wave
numbers simultaneously. If an orographic forcing is introduced (h¥ 0) the
term J(h,y) forces energy introduced via the vorticity forcing Z;E at a
certain wavenumber to spread over the whole spectrum. It is this energy
spread combined with a suitable vorticity forcing that appears to give rise
to a nonlinear instability and the bifurcation leading to multiple
steady-states. The experiments with the high resolution model have also
confirmed that a suitably positioned vorticity forcing in a wave component

enhances this bifurcation mechanism.

Another aspect of using one Fourier component to represent the orography
which can be tested with a high resolution model, is to see whether multiple
equilibria can be obtained with an isolated orographic ridge. Davey (1981)
did an experiment of this type with an annular geometry and within a certain,
rather narrow, range of the forcing parameter space, he obtained multiple
steady-states. An example of two stable states can be found in Fig. 6.
These states have the same characteristics as the blocked and zonal states
described previocusly. It can also be seen from Fig. 6 that in the high
amplitude wave state the waves generated on the leeward side of the
orographic ridge are almost totally dissipated when the flow reaches the
upwind side of the orographic ridge. The high amplitude wave state is thus
not associated with a global resonance, the phenomenon is rather local in
character. The resonance occurring is instead of the type where the Rossby
wave generated by the orography has a phase speed which is such that it is

stationary in the zonal flow which results.
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5. OBSERVATIONAL STUDIES SUPPORTING A BIFURCATION MECHANISM FOR BLOCKING

The main conclusion that can be drawn from thé bifurcation mechanism found in
barotrépic 'models is that the orography is necessary as a triggering
mechanism in establishing the multiple steady-states. The implied
application of the theory to atmospheric blocking can thus be tested by
studying the effect of thé orography on the atmospheric flow in connection
with blocked flow situations. One parameter which reflects the influence ofk
the orography on the barotropic component of atmospheric flow is the mountain
torque. To furthermore couple observational evidence with thé combination of
orographic and wave vorticity forcing, an evaluation of the long wave forcing
is neededs This forcing should be seen as the cumulative effect of’ the

transient eddies on the mean flow rather than a direct thermal forcing.

To study the orographic factors influencing blocking action in the Atlantic
and Pacific regions separately it is ne‘cess‘ary to separate the torgue
contributions from the American and the Eur-;Asian continents. It is
primarily downstream from a mountain rahge that the orography may influenée
the flow pattern. The mountain torque parametef essentially reflects the
surface pressure distribution around a mountain range and therefore it would
be possible to separate the contributions from each continent by computing
thé torque for the eastern and western parts of the Northern Hemisphere
separately. The separation line between eastern and western’ parts would then
have to lie entirely within the oceanic regions. Computations of the
mountain torgue around complete latitute circleé has previously been done by
Oort and Bowman (1974). They presented monthly averaged results for a five
year period including the anomalous winter of 1963. In January 1963 there
was a well developed blocking ridge over the Atlantic region (see O'Connor,
1963) and for this month there was an exceptionally high mountain drag in
midlatitudes. Recent calculations by Metz (private communication) have also
shown a correlation between high values of the mountain drag (again around

complete latitude circles) and high amplitudes of the geopotential over the
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eastern Atlantic area.

Separating the torque contributions from the North American and the Eur~Asian
continents, K&11én (1982) has shown that during one winter period
(January-March, 1979) there is a correspondence between a mountain drag and

the occurrence of a blocking ridge downstream of the mountain barrier.

The mountain drag, TM' is defined as

T=—fP-a-hacos¢dS (9)
ASBA

where ps is the surface pressure, h the surface elevation above sea level, a
the radius of the earth and ¢, Athe latitudinal and longitudinal coordinates,
respectively. The integration is carried out over two areas, one containing
the North American continent and another containing the Eur~Asian continent.
Both areas extend from the North Pole down to 30°N. The separation lines
between the two areas lie entirely within oceanic regions and the torque
contributions from both continents can thus be evaluated separately (Fig. 7).
A time plot of the torque for the two areas is shown in Fig. 8. The time
evolution of the mountain torque has been smoothed with a five day running
time mean to remove the influence of short lived, travelling baroclinic
eddies. These tend to give large variations in the torque on a time scale of

one days.

The most prominent feature of the curves in Fig. 8 is the large variation of
the torque on a time scale of about two weeks. Both curves tend to show
sudden jumps between what appears to be fairly constant values, the jumps
appearing over a time interval which is shorter than the time scale over

which the torque is approximately constant. To investigate whether there is
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Fig. 7 Geographical map of the orographic field used to calculate the mountain
torque. Contours are drawn with a 500 m interval. Thick lines indicate
the boundaries of the western and eastern regions used for the calculation
of the separate contributions to the mountain torque.
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Fig. 8 Mountain torque for western (full line) and eastern (dashed line) parts of
Northern Hemisphere (30°N—90°N) during January-March, 1979. The curves are
calculated from 12 hourly FGGE data and a running 5-day mean time filter
has been applied to smooth the curves. The time periods which are used as
averaging periods for Fig. 9 are indicated on the horizontal time axis.
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any relation between the periods of low values of the torque (negative values
of the torgue imply a mountain drag) andrthe blocking events during
Januarf—March 1979, time mean maps of the 500 mb flow have been prepared for
the time periods indicated in Fig. 8. The time periods are chosen to
coincide with the periods between the jumps in Fig. 9. Also shown in Fig. 9
are areas with a high value of the time variability of the 500 mb surface
height. The variability is calculated as the standard deviation of the
12-hourly values from the period average. A high variability indicates an
intense eddy activity which can be coupled to strong baroclinic developments
at mid-latitudes. A time plot of the variability averaged over regions
upstream of the characteristic blocking regions is shown in Fig. 10. The
variability in this figure is calculated as the standard deviation from a
running seven day average of the 500 mb surface height. A high value of this
quantity may thus be interpreted as an intense activity of eddies with a

characteristic life time which is between 12 hours and seven days.

The time series has been divided into the following four periods.
I. 1 Jan 1979 - 18 Jan 1979
II. 18 Jan 1979 - 9 Feb 1979
III. 9 Feb 1979 - 28 Feb 1979

IV. 28 Feb 1979 - 31 Mar 1979

During periods I and III there are well developed ridges over the Pacific
Ocean and the ridge in period III has many of the characteristics of a
blocked flow. In the Atlantic region there is a well developed block during
period IT while there is a tendency for some ridging over Europe during
period III. During period IV there is a predominantly zonal flow over the
Atlantic-European region while over the Pacific there is a strong ridge in
the poleward part of the region while the flow is zonal across the central
Pacific Ocean. Going back to the plot of the mountain torgue (Fig. 8), one

may see that the Atlantic block during period II and the Pacific block during
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TIME AVERAGED 500 mb SURFACE

1-18 JANUARY 1979 18 JANUARY - 9 FEBRUARY 1979

Fig. 9 Time mean maps of the 500 mb surface for the time periods indicated in
Fig. 8. Areas where the variance is above 1202 n? are hatched.
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Fig. 10 Time evolution of variances as calculated from deviations of the 500 mb
surface from a seven day running mean and spatially averaged over certain
regions. All regions extend from 30°N to the North Pole and have the
following longitudinal boundaries:

i }

Full line, 135°E - 180°E (Kuroshio region of Pacific Ocean)
Dashed line, a5% - QOOW (Gulfgtream region of Atlantic Ocean).
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period III are coupled with low, negative values of the torque, i.e. a
mountain drag. The Pacific ridge during period I is also associated with a
high moﬁntain drag over the Eur-Asian continent while the zonal flows over
the Atlantic region during periods I and III and over the Pacific during
period II are coupled with high, positive values of the torgue. During the
last period (IV) the torgue from the North American continent shows
consiaerable fluctuations and the flow over the Atlantic and European regions
is predominantly zonal. The torque from the Eur-Asian continent is
distinctly negative and there is a ridge extending northwards towards the
polar regions over the Pacific Ocean. The occurrence of a high mountain drag
thus has some correspondance with the appearance of"a blocking high
downstream of a continent. |
;

The influence of the transient motion on the time mean flow is the mechanism
which in the barotropic model is repre‘sented by a direct vorticity forcing.
Evaluating this vorticity forcing from atmospheric data is difficult as
discussed by Savijdrvi (1978). Some attempts have been made at calculating
the vorticity forcing for the time periods indicated in Fig. 8, but the
results have generally been noisy and it has been difficult to see any clear
pattern. Instead, the eddy activity has been evaluated in terms of the
standard deviation of the 500 mb surface during the different time periods.
From Fig. 9 it may be seen that the eddy activity upstream of a blocking
region has some connection with the time periods defined earlier. Through
Fig. 10 it may be seen that the Atlantic blocking during period II and to
some extent the Pacific blocking during period III are coupled with a strong
eddy activity in the beginning of those periods. However, as the blocking
period continues there seems to be a decline in the activity of the eddies,
especially during period II and in the Atlantic region. The decay of the
block may therefore be coupled with the declining eddy activity, when the

block has disappeared there is a renewed intensification of the eddy
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activity. This reasoning does not hold with the period III block in the
Pacific region, there the blocking is precedéd by a very low eddy activity.
on the geographical maps (Fig. 9) it may however be seen that there is a
small region with a fairly high eddy activity just upstream of the block and
it may be that the procedure of averaging the variance over a large area
smooths this feature out. In any case, the geographical maps clearly show
that the upstream flanks of the blocked regions do have intense eddy activity
on the average and this is to be expected from the well known fact that in
the Gulfstream and Kuroshio regions of the Atlantic and Pacific Oceans

respectively, there is normally an intense baroclinic activity.

The ridge over Europe during period III, which on the daiiy 500 mb maps can
be associated with blocking like patterns, is not connected with a high
mountain drag over the American continent. This may be explained by the fact
that the ridge is too far downstream from the orography to be significantly
\
influenced by it and the blocking ridges may therefore develop due to some
other mechanism. From the plot of the variance of the 500 mb surface
(Fig. 7) it may however be noted that within the European area there is quite
a large variability during this time period. This can be due to blocking
like ridges moving across the area and not remaining stationary which also
gives a smoothed ridge on a time averaged map. It may thus be a situation in
which transient ridges develop, but because of the orientation of the large

scale flow and the effect of the orography, the ridges cannot remain

stationary to form a persistent block.
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6. DISCUSSION

Investigations of the nonlinear properties of simplified atmospheric models
have shown that a combination of orographic and voryticity forcing in
barotropic, guasi-geostrophic models gives rise to a long wave instability
and the development of multiple, stable equilibfium states. One of these
stable states can be associated with a large amplitude wave response, while
another has a dominating zonal flow and a less pronounced wave’ component.
The large amplitude wave responsé'(or blocked response) 1is ciose to a
resonant flow configuration, where the wave response is almost in pi‘lase with
the wave forcing. The zonal steady state is further removed from resonance
and the response in the wave component is mﬁch weaker. Instea'd, due to the
changed phase relationship between the wave and the orography, the zonal flow
is more intense and the moun‘tai'n"drag is lower. These two types of
equilibria can exist for the same values of all the forcing parameters, which
one the flow choses is crucially dependent on the initial staf.e of the flow

in relation to the unstable steady-state.

The forcing parameters required in the barotropic’ model bfor the develokpment
of multiple equilibr'ia, can be associated with the conditidns kpresent in the‘
- Northern Hemisphere during wintertime. A strong zonal flow and aﬁ intense
baroclinic eddy activity off the eastern coasts of the two ﬁajor continents
can ithus be linked with two possiblé types of reéponse of the long waveslin
the atmosphere. Once the atmosphere has settled into one of these response
types it is likely to remain there for an extended peribd of time due to the
stability of the flow configuration. In one of the response types there is a
well developed ridge downstream of a continent and this ridge can be
associated with a blocked flow. To remain in this near resonant flow
configuration it is also necessary that the eddy activity upstream of the
blocking ridge is maintained to give an input of kinetic energy on the long
waves. From the diagnostic studies of Kalleh (1982) it appears that this

eddy activity steadily decreases during a blocking event and this may be the
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cause for the vanishing of the blocking ridge. A decreased eddy activity
would, according to the barotropic mechanism put forward in Section 3, imply
that the blocked steady-state vanishes (for a constant zonal forcing) and the
flow is fofced to settle into a zonal flow configuration. 1In Fig. 2 this may
be visualized as the disappearance of curve II when the flow has settled into
a state on the high index branch of curve II. At a critical value of the
eddy forcing of the long waves the flow would be forced to transfer to a more

zonal type of circulation.

Recent investigations by Lau (1981) and Volmer et al (1981) on the behaviour
of the GFDL and ECMWF general circulation models in long time integrations
have interesting connections with the bifurcation mechanism discussed here,
The data from the long integrations were analysed through an expansion into
empirical orthogonal functions. Lau (1981) showed that he could find two
characteristic types of wintertime circulations in the Northern Hemisphere,
one with a predominantly zonal flow and another with a more pronounced
meridional flow. Examining the variance during these two characteristic
types of months, Lau (1981) was also able to show that the cyclone tracks
over the Pacific and North Atlantic Oceans were very different during these
months. During the months with a high zonal index the regions with a high
variance extended across the oceans, while during the months with a low zonal
index the variance was high only over the eastern parts of the oceans. It
thus seems that the model has two different modes of circulation during
wintertime in the Northern Hemisphere and the characteristic properties of
these modes agree quite well with those of the two stable states found in a

simple, low order, barotropic model.
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