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In recent years, the normal mode method has been introduced into meteorology.
By this method, the objective analysis, initialization and numerical prediction
are treated by the same mathematical procedure. By the method of separating
variables, the three-dimensional weather forecasting problem may, in general,
be treated as a two-dimensional one (in the horizontal) multiplied by a one-
dimensional in the vertical. Since the one-dimensional problem in the vertical
is more or less easy to manipulate, the investigators have been conéentrating
their attention on the two-dimensional forecasting problem. In this case, the
governing equations are the primitive ones for the bafotropic atmosphere. To
use the normal mode method, these primitive equations are first linearized

with respect to some basic state of atmospheric motion.

When the basic state of atmosphere is at rest, i.e. the mean zonal velocity
U=0, the linearized equations may be solved analytically, and Hough functions
are their normal modes. These normal modes consist of three kinds of waves:
the westward propagating Rossby wave, westward propagating inertia-gravity

wave and eastward propagating inertia-gravity wave.

In the basic state of the atmosphere, however, the mean zonal wind component is
not zero and may be an arbitrary function of latitude. 1In this case, the
linearized equations have no analytical solutions, and their normal modes can
only be obtained in numerical form. The question of how many kinds of waves
are contained in normal modes remains open. The numerical results show that
in addition to the three abovementioned kinds of waves, there also exists a
fourth kind of wave - eastward propagating Rossby waves. This fourth wave
sometimes appears more evident when a higher-order difference scheme is used
and the truncation error is further reduced. Therefore, it seems to us that
there are not sufficient grounds to consider all the eastward propagating

Rossby waves simply as computational modes.

To clear up this question, one must solve the linearized equations analytically.
Unfortunately, as we mentioned above, the original linearized equations with
arbitrary mean zonal wind profile have no analytical solutions. Thus, it is
quite desirable to obtain analytical solutions for these equations even in

their over-simplified version.

In this paper the zonal wind shear is considered as constant and denoted by s.
The equations are written on an equatorialfB-plane, and the solutions are applicable
only to the equatorial zone, where y is small. We will take the effective height

-1
of the atmosphere H=10%n,then the gravity-wave velocity c=vgH=313 ms . 1In

-11 -1 -1
the equatorial zone we take B=2.28+10 s m . : sz
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With these assumptions in mind, we may write the linearized equations in their

non-dimensional form as follows:

au du % o
—_— - —_— - N A B . : :
w tslymy) 5 tvlsy) + 52 =0 (1)
ov v ) op
—_— — — ——— T=
e T slyy) o tyu g 0 : , (2)
o9 9% ou o ‘
—i 4 — — - — }rv — —_— =
ot sly yc) ox s(y yc) +,Bx * 3y ‘O, . o ‘3)
—1
Here the time unit is taken as (CB) ? = 1.18-1043, and horizontal length unit

%

Lo~ -
c? B = 3.7'1O6m. Then s = 0.07 corresponds to a mean wind shear of éms

3
per 107km. At the mean position of the subtropical ridge y = v, = 0.9 the
mean zonal wind is equal to:zero, and on.the equator (y = 0) it has a maximal

value.

Assume the solutions are of the wave form exp (iwt+ikx), then their amplitudes

satisfy the following equations:

iwu + iks(y—yc)u +. (s-y)v + ik = O : o ‘ (4)

iwv + iks(y-y )v + yu + d¢ _ 0 : (5)
y Yc Y ay : :

iwb + iks(y=y ) - sy(ly-y )v + iku + &Y = 0 (6)
Y-y, y(y-y )V 3 !

Eliminating u and ¢ we get the equation for.v as follows:

dzv

dv 2
— + + — + - = ' : 7
> (ao aly) ay + (bO b1 y-ylv=0 (7
dy
Where
a = - 2kws
o m2—k2
a1 = syc
2
2 2 k k
bO = W kKT + w + (1 - 2kw + 2)syC
W
b, = (1 +2kw - ’ - EE)S
17 2 2 2
w =k w

If we set s=0, our equation (7) will degenerate exactly into Matsuno's



equation (Matsuno, 1966). For a derivation of (7) including the effect of

orography, see appendix I.
In (7) the parameter s is considered as a small quantity, and only the first
order of magnitude is retained. The small terms of higher orders including

2 ; N , , .
sy are omitted, since we are interested only in the equatorial zone.

By the following transformations

2+a a -b
= v exp ( 12+ y + v)
W Ptz Y 2
V2
= Vov - 2
Z 2 5 b1

equation (7) can be written in the normal form:

2 2b -2-

aw e Pt (8)
2 dz 4 N :

dz

In the transformation of v into w, there appears an arbitrary constantV .

Since we are considering wave motions near the equator, i.e. y = 0 then the

boundary conditions
w0, when z + + k ‘ : (9)

may be adequate, in the real atmosphere there is an upper limit to ]zl, and
the positions of the poles and the boundary conditions should be guite different
ones. However, we take it for granted that these approximations have little

effect on the solutions of the lower modes, so also did other investigators.

The equation (8) with boundary conditions (9) poses an eige?value problem.
- a
o)

The conditions (9) are satisfied only when the constant > T T is equal to
a positive integer or zero:
2b - 2 - a, = 4n
o 1
n=20,1,2 ..... )
Thus,we have the following eigenvalue equation
5y
4 3 2 2 2
6" - 2ksy_u - (<“+2n+l - —Z-S)m + ko + ksy_ = 0 (10)



This equation gives a relation between the frequency and the longitudinal wave

number for some definite meridional mode.

in our discussion.

Since (10) is an algebraic equation of the fourth order in w, we have four roots

when n and k are specified.

and the corresponding phase velocity by -

Equation (10) is solved numerically.

It expresses the dispersion relation

These four roots are denoted by W s i=1, 2,3,4,

It is expected that two of the four roots

w, and w, correspond to the two inertia-gravity waves, one of which is propa-
gating westward and the other eastward. The other two roots W, and w4
to westward and eastward propagating Rossby waves.
Numerical results obtained under various values of n and k are given in
Table 1.
Table 1
n
k 0 1 2 3 4
1 1.04 1.92 2.42 2.82 3.17
2 2.12 2.61 3.01 3.35 3.65
3 3.19 3.52 3.82 4.09 4.35
4 4.26 4.51 4.74 4.96 5.17
1 -1.55 -2.05 -2.46 -2.82 -3.14
2 -2.28 ~2.65 -2.98 -3.28 -3.55
3 —3.11 -3.39 -3.66 -3.89 -4.14
4 -3.99 -4.21 -4.43 -4.63 -4.83
1 0.692 0.308 0.217 0.172 0.144
2 0.515 0.384 0.313 0.268 0.236
3 0.433 0.376 0.335 0.304 0.280
4 0.388 0.358 0.334 0.313 0.296
1 -0.0567 -0.0522 -0.0488 -0.0461| -0.0439
2 -0.101 -0.0948 -0.0899 -0.0858| -0.0823
3 -0.132 -0.126 -0.121 -0.116 -0.113
4 -0.153 -0.148 ~0.144 -0.140 -0.136

correspond




Having obtained the eigenvalues of equatioh (10}, we may now investigate the

solutions of (8). The eigenfunctions of (8) are parabolic cylinder functions

D (z):
n
Z2 dn z2
Dn(Z) = (-1)" exp (T) — exp (- 5
dz
Z2
DO(Z) = exp (- -Z)
ZZ
Dl(z) = z exp (- -Z)

an(z)= D 1(z) +n Dn (2)

n+ -1

and so on.

The solution of (4) . (6) for the amplitude may be written in the forms:

a a

_ ) 1 2 2
ve=exp -V -5y -y D (2y - b)),
. a a B
i , w
B e v - Py - g v |G-
k(1-a%) B
a b, -a =
1 179 2
- —2- -1) y - as + 5 ] Dn(/iy 2 bl) +
V2.
+/§nDn_1 (@y—?bl)g
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b, -a

+ s + (a-1)y - o

2

o V2
A’ Dn(/iy -5 bl)‘_

V2
- V2n ab__, (V2y - 5 bl)(

+ s (y—yc)

~IE

Where o =
Notice that, in the adjacent ridge and trough pressure systems, u and ¢ have the
same phase, but v has a phase lag 7_2r. These synoptical facts are reflected by the

introduction of imaginary unit i in the above expressions.

2 .2
In the following calculation we will take i(w -k™) = exp(-v).



Multiplying amplitude v by sinkx, and u and ¢ by coskx, we may obtain the
wind and geopotential fields for various waves. The pattern of eastward
propagating Rossby wave in case of n=k=1 are shown in Fig. 1, wind vectors are
represented by arrows. Lengths of the arrows are proportional to the wind
speed. Iso~geopotential lines are denoted by solid lines. The south-north
extension in Fig. 1 ranges from y = -0.36 to 0.36, and the east-west extension
represents one wave length. The eastward propagating Rossby wave is peculiar
to equatorial zones,and quite different from that of high and middle-latitudes.
Fig. 1 shows that the wave amplitudes tend rapidly to zero from the equator in
both directions. Fairly large geostrophic deviations appear in this figure.

It is interesting to note that in the northern half of the equatorial low (high)
the circulation is clockwise (anti-clockwise). The reverse situation is

observed in their southern halves.

Attention must be paid to the situation when s approaches zero., In this case,
one of the four roots of equation (10) is zero: Wy = 0. Thus, in addition to
the three solutions obtained by Matsuno, we also have here an excessive solution
Wy = 0, At first sight this is a paradox. But in fact, it is quite reasonable.
For if w = 0 is put into the amplitude equations (4) . (6) with s = 0, it is
found that all amplitudes equal zero and the equations are also satisfied.
Therefore Wy = 0 is a trivial solution to equations (4) . (6) iﬁ case of s = 0.
In general, s # 0 we have wy # 0 and an eastward propagating Rossby wave is
obtained and all its amplitudes are finite. The conclusion follows that

eastward propagating Rossby waves are caused by the easterly wind shear. Its

amplitudes and frequency approach zero as the shear approaches zero.

The easterly wind shear also modified other kinds of existing waves, both
frequencies and amplitudes. But these modifications are only of quantitative
character, and qualitatively these waves remain the same as in the case s = 0

obtained by Matsuno. So the results are not given here.
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In addition to the above-mentioned, there exists another kind of wave, the
Kelvin waves. The peridional wind component in a Kelvin wave equals zero v=0.
To obtain the Kelvin wave, we must first put v=0in equations (4) ~ (6),

and obtain

Co+ ks(y-y )] utk¢ = 0 : (4a)
yu + gg =0 ‘ » (5a)
ku + [w + ks (y—yc;):l ¢ =0 ~ (6a)

From (4a) and (6a) we get

Substitution into (5a) gives
2
- 1= Y
¢ = u=const exp (-~ )

2 ;
The other alternative solution exp (%f)is neglected because it does not

satisfy boundary conditions. The dispersion relation is as follows
w=-k - ks (y-y )
c
Evidently, the Kelvin waves are also altered by the easterly wind shear.
To illustrate gquantitatively the effects of shear s on phase velocity, we
have compared the figures in Table 1 with that obtained under s = 0, and also
calculated the phase velocities of the Kelvin waves. The results are presented

in Table 2 and Table 3 for the case n =k =1

Table 2 for case n =k =1

Kinds of phase velocity
waves

s =20 s = 0.07 change
W.G. -1.86 ~1.92 -0.06
E.G. 2.11 2.05 -0.06
W.R. -0.25 -0.31 -0.06
E.R. 0 0.06 0.06
Kelvin 1 0.937 -0.063




Table 3 for case n =0, k=1

Kinds of phase velocity
waves T

s =0 s = 0.07 change
W.G. -1.00 | -1.04 -0.04
E.G. 1.62 +1.55: -0.07
W.R. ~0.62 | -0.69 . -0.07

{

E.R. 0 0.07 - ) 0.07
Kelvin 1 0.937 -0.063

‘and for the case n = 0, k = 1 respectively. From these Tables we can see that
wind shear s decreases the phase velocity with the exception of E.R. In spite
of the large difference in phase speed for various waves, the phase speed changes

caused by shear s are nearly of the same magnitude for various waves.
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APPENDIX I

DERIVATION OF EQN. (7) INCLUDING OROGRAPHIC EFFECTS

Let h be the mountain height, then the equation of continuity in its linearized
dimensionless version will take the form:
3¢ Rl du , v oh

Fra s(y-yc)é; - s(y—yc)yv et 3y s{y-y Je= =0

Assume the solutions are of the wave form exp (iyt+ikx), and the mountain
height of the form exp(ikx). Then at some initial moment, i.e., t=0, their

amplitudes satisfy the following equations:

iwu +iks(y—yc)u+ (s~y)v + ik¢ = 0O (a 1)
. do _

jov + iks (y—yc)v + yu + dy ~ 0 (a 2)

Lo + iks(y-y )¢ + iku - s(y-y )yv + = - iks(y-y )h = O @ 3)

iwg + iks{y-y )¢ + iku = sly-y Jyv + 3= - iksly-y )h =

Eliminating u from (a 1) and (A 2), we obtain:
D+ks(y—yc)]g’—ky¢+1]w+2wksyy)+ysy_] (n 4)
Eliminating u from (A 1) and (A 3), we obtain:
1[_w -k +2wks (y—y M) - I:(s—y)k + wsy(y—yc):l v +

+ I:m-H{s (y—ycﬂ g—‘-; - imks'(y—yc)h =0 (A 5)

Differentiating (A 5) with respect to y, we have:

~ — dv —
|m+ks (Y"‘Y —I —127 |ky—msy(y—y )—| >t Ik—ms(2y—y )_]v -
- iwks(y-y ) dh _ iwksh +1]m +2wks (y- Y, kz_l d¢
c dy
o+ 2iwks¢ = 0 | (a 6)
-

d
Now, from (A 4) and (A 6) we may eliminate d_(:; and obtain:
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2 )
- 2 d 2 2 a
w +2uks (y-y [] —QY-+|Bky+(k -w )sy(y-y f] ey
- c dY2 - c- dy

. 2
- iw ks(y—yc)gg - iwzksh +

- 2 2 2 2
+ {Qk—m sy + (w —k2)(wg+syc—y2) + 2mks(y—yc) (2w -k —y2X] v +
- 2 2 2
+ 1|207ks + (mz—k Yky + 2wk sy(y—yci] % =0 (a 7)
And, at last, eliminating ¢ from (A 5) and (A 7), we have:

d2v

dv 2

.___+ — —

5 (ao+a1y)dy + (bo+b1y y v +
dy .

2
k'y sy
dh c

+ ik — — e i — = 0.

iks (y Yc)dy i " h 0

The last two terms on the left hand side reflect the mountain effect.
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