TECHNICAL REPORT No. 20

A REVIEW OF THE NORMAL MODE INITIALIZATION
METHOD
, by

Du Xing-yuan

August 1980



CONTENTS

5.

6.

INTRODUCTION

LINEAR NORMAL MODE METHOD
NON-LINEAR NORMAL MODE METHOD
GENERALIZATION

BASIC STATE

NUMERICAL SCHEMES

REFERENCES

PAGE

13

16



1. INTRODUCTION

The weather forecasting eqguations are four-dimensional, non-linear partial
differential equations. One of the chéracteristics peculiar to partial
differential equations is that the initial and/or boundary conditions are
intimately connected with the equations, and cannot be given independently as
in the case of ordinary differential equations.

In the field of linear differential equation theory, it is well known that for
equations of elliptic type a boundary value problem must be posed. The Cauchy
problem'for these equations is not well posed.  The four-dimensional non-linear
partial differential equations used in weather prediction are far more
complicated. How to treat the initial data and make the forecasting problem
mathematically well-posed are by no means simple things. The initialization
problem is concerned with specifying initial conditions which are meteorologlcally
"well-posed" in that they lead to a meteorologically realistic result in the

time integration, see Tribbia (1980).

This is a very important point and it has taken quite a long time in the develop-
ment of numerical weather prediction to realize it. The lack of success of the
first numerical weather prediction by Richardson in‘1922, to a great extent,

was rooted in the disregard of this principle. So, indeed, the specification of
the initial state is one of the most important aspects of deterministic fore-

casting by numerical means, see Daley (1980) and Ballish (1980).

Richardson's failure had called attention to the need to get rid of the
oscillations of high frequencies in a forecasting model. Although such
oscillations correspond to some possible solutions of the dynamic equations for
atmospheric motion, they are at the most a very minor component of the
observational weather data. The proper calculation of true featﬁres requires a
very, very‘high accuracy in both observation and computation. The required
degree of accuracy is too high to be reached practically, at least, at the present
time and in the near future. Inevitably, cbservational and analysis errors can
produce a large component of such oscillations in the initial state, which can
then grow rapldly in the procedure of time integration, and contaminate the
weather forecasts. These high freqguency oscillations have been called
meteorological noise and they have proven themselves to be a cancer for numerical

weather prediction.



Since Rossby derived and published his vorticity formula in 1939, the main efforts
had been concentrated on the modifications of the dynamical equations,so that they
no longer permit the noise component to be a solution. Such modified equations
constitute the bases for quasi-geostrophic and quasi-non-divergent models.

These models have dominated numerical weather prediction up to the beginning of

the sixties.

Increases in observational data, progress in computational facilities, and
comprehensive understanding of the various physical factors influéncing the
behaviour of the atmosphere - all these taken together from the sixties -
stimulated investigations anew to use the primitive equations. Since an unmodi-
fied primitive equation model is kept in use, a key point is to rid the initial

state of unwanted noise.

The thermal field and mass field are related by the hydrostatic equation. This
relationship is well maintained even in the radiosonde data. It is, however, more
difficult to balance the initial mass and wind fields. The required balance is
quite subtle, and a small imbalance in the initial state will cause inertia-
gravity oscillations with amplitudes much greater than those observed in the

atmosphere, and eventually contaminate the forecast, see Wiin-Nielsen (1978).

In the early stages of applying the primitive equations in weather prediction,

the initialization borrowed the relationships from quasi-geostrophic or
quasi-nondivergent models. This means, to some extent, that the initialization
procedurewas torn away from the dynamic equations used in forecasting. Therefore,
some incompatibility may still exist between initial conditions (data) and
differential equations. This deficiency was overcome by dynamical initialization.
The dynamical initialization method, however, involves forward and backward

integration, and is time consuming, see Bengtsson (1975).

2. LINEAR NORMAL MODE METHOD

Recently a relatively new method, based upon normal mode solutions to linearized
systems of the forecasting equations, has broken fresh ground in the
initialization field. This method was first used by Flattery (1970) in his

Hough function analysis. The variation of the meteorological elements in the
vertical direction (along the p-coordinate) was approximated by empirical
orthogonal functions. The first seven terms in the empirical orthogonal expansion
were used to describe the initial data on the 12 isobaric surfaces from 1000 mb

to 50 mb. Then the three-dimensional weather forecasting problem was reduced



to a two-dimensional one in the horizontal. In this case the governing equations
are equivalent to the shallow water equations, which are then linearized about a
basic state at rest. Their nbrmal modes are Hough fuhctions, which were first
introduced in tidal research. In the west-east direction all the waves with wave
lengths less than 15° are neglected. In the north-south direction from northern
to southern poles only the first 24 terms are retained. That is to say, the
atmospheric data are expanded in terms of the same Rossby modes for all levels.
The use of only the Rossby modes made the initial fields free of gravity

oscillations.

Flattery's work has been used in operational routine analyses at the NMC, USA.
He succeeded in finding an analytical solution to the linearized forecasting

equations at the cost of using a basic:state at rest and empirical orthogonal
functions in the vertical. In a more general approach the linear normal mode

initialization on a sphere was studied by Wiin-Nielsen (1979b).

A linear normal mode filtering method and a general approach to find the normal
modes for a numerical model was proposed by Dickinson and Williamson (1972). Their
approach was illustrated by application to a global finite difference two-layer
model. The basic state around which the shallow water equations are linearized
is also at rest and the vertical dependence is separated from the horizontal.
Along each latitude the data are expanded in truncated Fourier series.'Along

each longitude the derivatives are approximated by centred differences with a
special treatment at the polar points. Normal modes obtained in their numerical
form are compared with the analytical solutions and are classified as westward
propagating Rossby waves, westward propagating inertia-gravity waves and.eastward

propagating inertia-gravity waves.

The number of normal modes for each zonal wavenumber is equal to the number of

the grid points. For each kind of wave the normal modes are ordered according to
the zero crossings between two poles, and so each mode has its own index. It is
well-known thgt the fewer grid points contained in a wave length, the less accur-
ately the wave can be described. When the normal mode index is equal to or more
than half the number of grid points, this mode cannot be represented properly.
Dickinson and Williamson (1972) called these kinds of modes "computational®. But one
must remember that no matter how many grid points are taken, all the numerically
obtained normal modes taken together are always still in number less than the
number of the normal modes included in differential eguations. The number of

normal modes is a countable infinity for differential equatioms.



In the linear normal mode initialization the observational data are expanded in
terms of the complete set of normal modes, and then the expansion coefficients of
unwanted "computational" and gravity modes are set to zero. These unwanted modes
have a much larger amplitude in the reél synoptical data than in climate simulation
studies. Williamson (1976) had applied this principle to a global barotropic grid
point model. This method deos reduce the unrealistic large-amplitude, high-
frequency oscillations, which occur during the initial states of the forecasts
with a conventional initialization procedure. But these unwanted high-frequency
oscillations can be regenerated during the time integration due to non-linear
interactions. This deficiency to a significant extent may be eliminated by non-

linear normal mode initialization.

3. -NON-LINEAR NORMAL MODE METHOD

Non-linear normal mode initialization is defined as a filtering procedure for
which the time derivatives of the gravity mode coefficients are set equal to zero,
while the gravity mode coefficients are modified in such a way that the linear
contribution to the tendency of each coefficient (which depends only on the
coefficient itself) compensates the contribution from the non-linear interactions

between all the modes.

The non-linear normal mode initialization procedures were proposed by
Machenhauer (1977) and Baer (1977). For accomplishing the procedure, an iterative
scheme was proposed, and after only two or three iterations the gravity

oscillations in practice are eliminated almost completely.

To apply the normal mode technique to a baroclinic primitive equation model, it is
preferable to separate the vertical variables from the horizontal ones. This can
easily be done in the absence of mountains and with the assumption that the basic
state of the atmosphere is at rest. For the NCAR GCM with z coordinate the normal

mode decomposition was carried out by Williamson and Dickinson (1976).

Normal mode initialization has also been put into the multi-level grid point model
in ECMWF, see Temperton and Williamson (1979). The basic state is a function of
sigma and is assumed to be a hydrostatic mean state at rest. All the non-linear
terms are put in the right-hand side of each equation and combined into one term.
The vertical variation was discretized at the beginning. ILet us denote the
number of levéls by n. Then an n-dimensional vector is defined for each
variable. The components of the vector are the variables on various levels.
There are five such vector variables: zonal and meridional wind wvelocities,
geopotential, temperature, and surface pressure. Then five vector differential
equations are used: two equations of motion, thermodynamic equation,

equation of continuity and hydrostatic equation. A new combined vector

variable is defined such that its derivative gives the linearized horizontal



pressurgfgradient. Then the last three equations are combined into one. The
coefficient matrix on the left-hand side of this combined vector equation, in
general, must have non-zero off-diagonal elements. In order to separate variables
and determine the vertical structure of the normal modes, this matrix is
diagonalized. That is, it is right multiplied by a matrix and left multiplied by
its inverse matrix. Each column of this multiplying matrix is referred to as a
vertical mode. Each entry in the diagonalized matrix is the corresponding eigen-
value, and enters into the shallow water equation as the eguivalent geopotential
depth. With these transformations the original system decouples into n independ-

ent systems, each having the form of the shallow water equations.

Despite the use of the combined vector variable, the vertical normal modes really
are found in sigma coordinates, e.g., they properly take into account the
boundary conditions & =0 at o =0 and 1. There is an implicit assumption of no
mountains, because otherwise the basic state would change in time due to non-
zero pressure gradients. So, in this case, the assumed basic state (no motion,
~and temperature is a function of sigma only) is inconsistent, except in the

special case of an isothermal atmosphere (temperature is independent 'of sigma) .

A topographic experiment was performed by Daley (1979), using an isothermal basic
state for the initialization process. It was found that in this case, the
initially adjusted fields and the time behaviour of the subsequent model inte-
gration were very similar to the case where basic state temperature was allowed
to vary with sigma. The vertical motion fields produced by the initialization
procedure are consistent with the inclusion of topography, i.e. upward (downward)

on the upstream (downstream) side of mountain barriers.

The non-linear normal mode initialization routine for the global spectral model

at ECMWF was implemented'by Andersen (1977).The technique used in separating
variables and in finding vertical modes is the same as for the grid point model.
The non-linear terms during the separation are considered as constants. The
horizontal dependencies are expressed by a truncated spectral expansion in
spherical harmonics with a triangular truncation. The results of the experiment
performed with the 9-level ECMWF spectral model agree with those of that performed
at the University of Copenhagen with a 5-level hemispheric spectral model of

rhomboidal truncation.



The first set of one day forecasts performed with the normal mode initialization
showed a substantial improvement judged by the standard deviation, as well as

from the S1 skill score. This is especially true in the low-latitudes -
equatorward of 300, where the uninitialized case shows the presence of gravity
waves with unrealistic height variations. These numerical experiments are con-
sistent with Wiin-Nielsen's (1979a) comparative study. Using an idealized

initial field consisting of only low order modes, Wiin-Nielsen reached the
conclusion that the normal mode initialization should be particularly important
at low latitudes on the large scale. One possible way to further improve initial-
ization at low latitudes is to include zonal wind and its shear into the basic

state, see Zhou, Di and Du (1980).

A comparative study with the normal mode initialization experiments also showed
that nearly the same results are obtained if this filtering method is applied to
the one day forecasts instead of the initial data. This indicates that the
improvement is a result of the smoothing due to the initial filtering rather than
an improvement in the forecasts. These facts imply that the gravity oscillations
and/or the computational modes neither grow nor influence significantly the
meteorological modes during the one day integration. This conclusion has been
reached by all normal mode initialization without considering diabatic processes.
It might not be valid when the model includes forcing terms such as the release
of latent heat which are strongly influenced by the gravity waves. Inclusion of
these terms into the non-linear normal mode initialization deserves special
investigation, as it violates the fundamental assumption made in the non-linear
correction procedure. This assumption is that the non-linear terms vary in time
much more slowly than the modes being modified, and thus may be considered as

nedrly constant.

This fundamental agsumption can also be violated when applied to multiple level
models. The number of vertical modes is equal to the number of levels used in the
model. The gravity modes corresponding to the small equivalent depths have very
low frequencies. When all the vertical modes are included, the time scales of the
non—linear terms are no longer greater than those of the modes being modified.

The experience in ECMWF suggests that the optimum version is to make two iterationé
with five vertical modes included for both 9-level and 15-level models, see

Temperton and Williamson (1979).



4. GENERALIZATION

The above mentioned fundamental assumption in non-linear normal mode initialization
is always valid in problems with low Rossby number, a condition satisfied for
many atmospheric flow regimes. Therefore, it is naturally possible to examine
this problem from a more general point of view, using the method of expansion on
small parameters. This quite different but more general approach was proposed by
Baer(1977)and Baer and Tribbia (1977). They non-dimensionalized the forecasting
eguations such that non-linear terms seemed to be of order of the Rossby number
which is assumed to be small. The coefficients of the eigenvectors of the linear
system are expanded in a series of powers of the Rossby number. Using both a fast
(external gravity mode) and a slow (inertia motion) time scale, the resulting
equations were solved to different orders of the Rossby number. The reguired

initial conditions are established to any order in Rossby number such that no

gravity-inertia oscillations will occur to that order. Thus, zero and first
order solutions are equivalent to the linear normal mode initialization. The
second order solutions are similar to non-linear normal mode initialization,which
give the adjustment necessary to remove high frequency oscillations from the non-
linear terms in the forecasting equations. The scheme has been satisfactorily
tested on a simple shallow water model and shows significant reduction of

gravitational oscillations with the second-order adjustment.

This problem was also investigated by Leith (1979) in a model wave vector space.
Following Leith (1979) we will call the set of Rossby modes Y and the set of

gravity modes Z. If we now project the equations of the assimilating model onto
its normal modes, we will obtain a set of ordinary differential equations, which

we write symbolically as

N
]

—iAZz + NZ(Z,Y), (1)
v o= —iAyY + Ny(Z,Y) s ' (2)

where Z and Y are column vectors of gravity mode and Rossby mode expansion
coefficients, respectivelyj AZ, Ay are diagonal matrices whose elements are the
individual.eigenfrequencies of the normal modes; NZ;N are the projections of the

nonlinear and forcing terms of the model on the sets of normal modes Z and Y,

respectively.

The terms —iAZZ and—iAyY come from the linear terms of the model equations, which
appear in this diagonalized form because the normal modes are eigenfunctions of

the linearized equations. We note that because N is a nonlinear operator, it is a



function of all the normal mode expansion coefficients Z and Y.

Machenhauer (1977) showed that, for the nonlinear shallow water equations, the
linear gravity modes Z contained a low-frequency component as well as the expected
high-frequency component. This low-frequency component is essentially due to a
balance between the two terms on the right-hand side of Eg. (1). An approxima-
tion for the low-frequency balancing component ZB can be obtained by dropping

the time derivative Z,; which gives

-— 0 _1 »
zp = (1A) ° N (Z,Y). . (3)

FR— 5> Y
YB

Fig. 1 The slow manifold diagram (after Leith, 1979)

For a f—plane model, Leith (1979) has'identified the vector ZB with the low-

frequency ageostrophic flow.

The set of Rossby modes Y plus the low-frequency balancing component ZB constitutes
the slow manifold of Leith (1979). Fig. 1, which is a modified version of Fig. 1
of Leith (1979), illustrates the slow manifold concept. The multi-dimensional
phase space of model states, where each dimension is a normal mode amplitude,

is schematically represented by a simple two-dimensional diagram. The Rossby

mode amplitude Y is the abscissa and the ordinate is the gravity mode amplitude Z.
The curved line M represents the locus of low-frequency model states, which

Leith (1979) calls the slow manifold. The projection of M on Z gives the balanc-
ing component ZB. Provided the nonlinear terms of the model are not too large,

the balancing component ZB is relatively small compared to ¥, so that the slow

manifold is not far from the Y axis.



This slow manifold concept has been used to interpret four-dimensional data

assimilation by Daley and Puri (19279).

As a matter of fact, the degrees of freedom of the data field expanded in normal
modes is always in number more than the number of gravity and/or computational
modes which should be filtered out. This means that there exists many possible
ways to modify the data field to filter out the gravity and/or computational
high frequency oscillations. Based on this argument Daley (1978) developed a
variational formulation, and applied it to the shallow water equations. Various
weights are used in accordance with the confidénce in the original fields. Most

existing initialization methods seem to be special cases with particular weights.

5. BASIC STATE

For all normal mode initialization methods discussed above, the basic state of
the atmosphere is assumed to be at rest. However, in reality, the atmosphere

always has a sheared mean zonal wind.

Some evidence of the unsatisfactory performance of normal mode initialization has
been found in regions of high topography. Temperton and Williamson (1979) have
given an explanation of these phenomena. Over high topography there are large
deviations from the chosen basic state from which the normal modes have been
computed. The linear initialization procedure is in effect unaware of the
presence of topography, and thus misinterprets these large deviations as gravity

waves, which are then removed.

Although this kind of deficiency may be reduced by the non-linear forcing
correction in non-linear normal mode initialization, it is quite desirable to use
a more reazlistic basic state in obtaining normal modes. So, in parallel with the
assumption of a basic state at rest in operational initialization, the effect of
latitudinally varying zonal wind on the normal modes has throughout been the

subject of researches.

Dicksinson and Williamson (1972) had tackled this problem numerically in their grid
point model, using a very stable barotropic zonal wind profile. No complex eigen-
frequencieé appear in their calculation. They had found that the mean wind

changes the frequencies by both a Doppler shift and by changing the effective
Coriolis parameter. Small but noticeable changes in latitudinal structures are
observed for low-order Rossby modes. The higher-indexed Rossby modes are
drastically affected in latitudinal structure. But for the gravity modes the

changes caused by mean zonal wind are within graphical accuracy.



Although a zonal wind exists, these authors discard the latitudinal variation of

geopotential. This of course is physically inconsistent. Machenhauer (1977) used

the balance equation to determine the latitudinal variation of geopotential from

the given non-divergent zonal velocity field. The latter in turn is determined

from the observational data. Some weak instability with an e-folding time

of

about 25 days was observed in the computation for some of the Rossby modes

with low zonal wave numbers.

Alfhough Machenhauer's device was rid of physical inconsistency, it, to some

extent,breaks off relations with the forecasting equations to use a non-divergent

wind-pressure field. This may impair the non-linear normal mode initialization

methods.

In
is
To
at
of

as

our opinion, the best way to take a more realistic basic state into consideration
to appeal to the forecasting equations. The idea is as follows

use the non-linear normal mode methods, the forecasting equations are linearized
the beginning. In the linearized equations only the terms of the first order
magnitude are retained and the terms of finite quantities are considered

known. So the linearized equations must be controlled by the zero order

equations. For the shallow water equations in spherical goordinates, the zero

order equations have the following form

2

U—tge + 2 wsind U+gg
a a

a = ° (4)

in which 8 is latitude, w the angular velocity and a the radius of the Earth.

the Earth.

From this equation we can see that if H is taken as constant, then U must be either

zero, or equal to - 2 w acos 6. The latter case means the atmosphere is in a

solid rotation.

Du,

Zhou and Di (1979) supposed the following empirical formula for the latitudinal

variation of mean zonal wind:

n 98 B< E ’
—UEcos ~§— . — 9
u(e) = n (5)
U cos {18 11 1 I
W {‘7@ - Izﬂ] ' ) <6 5.2 ’

10
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‘Fig. 2

The mean zohal wind ‘- (solid lines in metres per second) and
height (dashed lines in hundred metres) profiles for non-

jet pattern.
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Fig. 3 The mean zonal wind (solid lines in metres per second) and.
height (dashed lines in hundred metres) profiles for jet
pattern. '
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The latitudinal variation of mean zonal height can be obtained by integrating
Egq. (4). The results are given iﬁ'Fig. 2 and Fig. 3. Fig. 2 represents a h
non-jet pattern in which n = 2, and Fig. 3 is typical for jet pattern in which

n = 22. These mean zonal winds (solid lines) and heights (dashed lines)
profiles are used in calculating normal modes. One can see that for these wind
profiles barotropic instability shoula occur, see Kuov(1949). But since a
finite-difference method is used in the north-south direction, the barotropic
growth may be obscured by the truncation error. The results of ordinary second-
order finite difference schemes are compared with that of the fourth-order scheme.
The result of 4th order differencing is significantly better, and does reveal
more barotropic growth. The e-folding times of the barotropic instability, in

general, are about 10 - 20 days, - a little shorter than Machenhauer's.

The effects of latitudinal shear on equatorial waves have been studied by Boyd,
(1978), Du and Zhou {(1980) with different approximate methods. Some kind of
eastward propagating Rossby waves may be induced by easterly wind shear. Their
amplitude and freguency tend to zero as the shear tends to zero. The sensitivity
of the initializatioﬁ to the assumption of a restiné basic state for the calcula-
tion of normal modes is also presently being investigated by Williamson and

others.

6. NUMERICAL SCHEMES

From the above analyses, one can see that the normal mode analysis can also
provide information on the assessment and validity of various numerical schemes.
It is helpful to find means of improving the stability of a computational scheme,
and increasing the accurécy in order not to mask the physical essence. In this

direction we can still list the following examples.

Applying Arakawa's (1972) stéggered finite-difference formulation (C-grid) to the
ECMWF grid point forecast model with H defined at points (i,3), u at (i + %, 3)

and v at (i, j + %), Temperton (1977) had computed the normal modes of the shallow-
water equation. The basic state of the atmosphére is assumed to be at rest, and
an ordinary second-order difference scheme is used. The numerical normal modes on
the staggered 10° grid resemble those of the non-staggered 5° grid. The computa-
tional Rossby modes, which appear on the non-staggered grid, do not appear on the

staggered grid.

Compared with the second-order finite difference scheme, the results obtained by
the fourth-order finite difference scheme in non-staggered grid are nearer to
Temperton's (1977) results. The three kinds of results for frequencies of Rossby

modes for H = 10 km, k = 1, are presented in Table 1.
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. A )
Table 1. The frequencies (s ) of Rossby modes in some different
numerical schemes. L is an index for the frequencies.

2nd-order . 2nd-order 4th-order

L __staggered non-staggered non-staggered
0 6.11 :107° 6.07 .107° 6.3188 .107°
1 1.44 .107° 1.39 .107° 1.3918 107>
2 8.64 .107° 8.08 .107° 8.6623 .107°
3 5.72 .107° 5.12 .107% 5.5311 .107°
4 3,98 .107° 3,32 .107° 3.9347 .107°
5 2.87 .107° 2.13 .107° 2.6239 .10°°
6 2.14 .107° 1.27 .107% 1.8867 .107°
7 1.63 .107° 5.96 107/ 1.1350 .107°
8 1.27 .107° -2.07 .107%° '8.5484 107/
9 1.01 .107° -5.96 .10’ 3.1890 .107°
10 8.10 .107/ -1.27 .107° ~4.7556 .107/
11 6.62 .107/ -2.13 .107° ~1.3028 .107°
12 5.52 .10 A -3.32 .107° ~2.2466 .107°
13 4.70 .10/ -5.12 .107° ~4.0780 .107°
14 4.11 1077 -8.08 .107° ~7.0341 107°
15 3.75 1077 ~1.39 .107° ~1.4018 .107°
16 3.13 107/ -6.07 .107° -7.9917 107>

Similar results for frequencies of eastward gravity modes are given in Table 2.

14



.Table 2. The frequencies (s—l) of eastward gravity modes in some :
different numerical schemes. L is an index for the frequencies.

2nd-oxder- 2nd-order i 4th-oxder

L staggered non-staggered - ‘non-staggered
0 ~5.44 .,107° ~5.35 .107° -5.4134 1077
1 -1.31 1074 -1.28 .107% 1.3263 107"
2 -1.87 .10 _1.p1 .107% ~1.8888 107"
3 2.35 21074 222 107 _5.3768 .10
4 ~2.79 107 _2.55 .107% o.8217 107"
5 ~3.22 .107% 2,78 .107" _3.2321 107"

6 3.63 .10 593 .107" _3.5866 .107"
7 ~a.01 .107% -3.11 .10__4 _3.8082 .107%
8 _a.36 .107° ‘ —3.86f.10—4 " ~3.9659 1072
9 ~4.69 .107* -3.86 .107% ~a.a134 .10

10 4,98 .107% 3.0 .107% —4.4117 .107%

11 -5.23 .107* ~2.85 .10 ~3.9006 .10

12 5.44 .107" '—2.60_.10—4 © _3.5574 .107%

13 _5.61 .10 2.30 .107% _3.1235 .107%

14 _5.72 1074 ~1.97 1074 -2.5736 1074

15 -5.94 .10 % “1.65 .107" _1.9942 .107%

16 ~5.94 .107* Syt .07t -iste2 L1070
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