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1. NORMAL MODE INITIALIZATION FOR THE ECMWF GRIDPOINT MODEL

1.1 Introduction

During the early stages of the development of the ECMWF data
assimilation system, it was envisaged that a systematic program

of research would be required to determine which of the various
available initialization techniques would be most appropriate for
inclusion in the assimilation cycle. The first technique to be
tried was normal mode initialization, which at that time had only
been applied to barotropic models (Williamson, 1976), though the
basis had already been laid for its application to multi-level
models (Dickinson and Williamson, 1972; Williamson and Dickinson
1976). The extension by Machenhauer (1977) to include nonlinear
forcing had been highly effective when applied to a barotropic
spectral model, and it was this result which provided the incentive
to try Machenhauer's technique in a multi-level gridpoint model.
The attempt proved so successful that, apart from an experiment to
confirm the great superiority of nonlinear normal mode initialization
over dynamic initialization (previously considered to be another
promising candidate), no further work was done on other initializa-

tion techniques.

Normal mode initialization methods are based on the normal mode
solutions of the forecast model, linearized about a stationary basic
state. The solutions can be classified, in terms of their frequen-
cies, into Rossby modes (low frequency) and inertia-gravity modes
(high frequency). Only the former are observed with significant
amplitude in the real atmosphere, and the purpose of initialization
techniques is essentially to provide initial conditions such that the
same is true of the numerical model atmosphere during a subsequent
integration.

In Section 1.2 of this paper we derive the normal modes of the

ECMWF multi-level gridpoint model. In Section 1.3 we apply linear
normal mode initialization, and show that it is not very successful.
In Section 1.4 we demonstrate the success of Machenhauer's nonlinear
normal mode initialization technique applied to the model.

Section 2 outlines some extensions and variations of the procedure.
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1.2 Determination of the normal modes

To keep the determination of the normal modes computationally
practicable, we require that the linearized equations be separable.
We therefore choose a simple basic state at rest, with temperature
T(o) varying only as a function of o, and constant surface pressure
ﬁs' (This implies that the model mountains are not included in the
basic state). For the moment we discretize only in the vertical.

The linearized perturbation equations are then:
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where y is divergence, and other symbols have their usual meanings.
The hydrostatic equation is
N
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and the linearized diagnostic equation for the vertical velocity o

is

=
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We define an auxiliary variable hn by

= 70 i
ghn = ¢n + RTn n Pg (7)
and a column vector by u = (ui, u2,...,uN)T, and similarly

for v, b, X, T, ¢.
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Using (6) and (7), we can rewrite Equations (1) to (5) in the form:
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b = o *+ GT . (12)
Details of the matrices 1, G, HT are given in Temperton and
Williamson (1979). Finally we can combine (10) - (12) to give

oh

g5t T X =0 (13)

where
= T
C =Gt +RT I (14)

In order to separate variables and determine the vertical structure
of the normal modes, we use the eigenvalues of C, denoted by gDm,
and the corresponding eigenvectors ?m' L.et B be the matrix whose
columns are the eigenvectors of C, and let gD be the diagonal matrix
of corresponding eigenvalues. Then

C=gBD B—1 (15)

and the vertical transformation

i=p1 u, v = Bl v, h = g1 h, X = B~ 1x (16)
gives
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Since D is diagonal, (17) - (19) represents an uncoupled system
of equations for the coefficients of each vertical mode:

Bﬁm - g o'm

3% " TVm * Fcose ax - °© (20)
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5t Ty, fage <O (21)
BEm _

= + D X, = o (22)

Thus the coefficients of the mth vertical mode satisfy the shallow
water equations with mean depth Dm. Table 1 lists the equivalent
depths for the vertical modes of a 9-level version of the ECMWF
model, using global means from a particular analysis to define the
basic vertical temperature profile T(o). Also listed are the
corresponding phase speeds of the gravity waves on a non-rotating
earth,vrgﬁg. The corresponding eigenvectors (vertical normal modes)
are shown in Fig. 1. The first eigenvector (the external mode),
with the largest equivalent depth, has the same sign throughout.
Each successive internal mode has one additional sign change until
the last internal mode, with the smallest equivalent depth, which
changes sign between each model level. The vertical modes are

orthogonal only if the basic temperature profile T(o) is isothermal.
For each vertical mode, we can now determine the corresponding
horizontal normal modes. The longitudinal dependence of the

variables in (20) - (22) is separated out simply by Fourier
transforming the equations. Setting

i (k, Gj, m) exp (ikki) (23)
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Table 1. Equivalent depths (m) and corresponding gravity
wave phase speeds (ms—-1) of vertical normal modes,
9-level model

Vergigzi EOde depth (D) phase speed (‘Eﬁ;)
1 10153 315.4
2 4701 214.6
3 851 91.3
4 205 44 .8
5 65 25.2
6 20 14.0
7 7.3 . 8.4
3 2.4 .8
9 0.5 .2

and similarly for the other variables, we obtain equations of the

form:

BGJ ~ 1k7 e
3t [fv]j * 8 Fcos6. hj =0 (24)
IV,

+1 ~ ~
sp0 C o+ [ful g,y + B (s ), =0 (25)
ah D, ) 3
T YT {ik'uj + (ée(vcose))j} =0 (26)

J

where, to simplify the notation, we have dropped the vertical mode
index m and the Fourier wavenumber k from the variables. The

longitudinal differencing is taken account of by defining

k' = (sin % kAMA)/(} AX) (

[}
=~
p—g

The details of the Coriolis terms [f?z]j and [ fu]

Temperton and Williamson (1979).

j+% are given 1n

165



Equations (24) - (26) represent a set of coupled simultaneous
equations for uj, Vj+%’ hj as j runs from pole to pole. The only
possible further separation is to write u., v h. as the sum of

cai1s
two components, respectively symmetric ang an%I;ymmgtric about the
equator. We can then solve two smaller sets of simultaneous
equations in which j runs from pole to equator, one for "symmetric'
components (ﬁ, h symmetric, v antisymmetric), and similarly for

"antisymmetric'" components.

Using the transformation

A~ ~ A M ~ —%"'
.= UL L = - . . = : 2
U Uy s Vg iviyg o hJ (g/Dp)" hJ (28)
and defining
¥ = (ul, hl’ vl% s e e e uj, hj’ Vj+%"") (29)

which represents a vector of variables defined from pole to

equator, (24) - (26) can now be written in the form:
Y
Q 3t 1L¥ =0 (30)

where Q is diagonal (and positive) and L. is symmetric. To recast
(30) in standard form, define

vy=qtvy,L=qtyqg? (31)
so that

oY ~n

3¢ - Y=o (32)

(Reminder: we have an equation of the form (32) for each vertical
mode m, each Fourier wavenumber k, and each of the two symmetry
conditions).

To determine the normal modes of (32), let E be the matrix whose
columns WQ are eigenvectors of ﬁ, and let A be the diagonal matrix

A

of corresponding eigenvalues vzﬁ' Since L was symmetric, so is L,

and hence (32) becomes
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3¢ ~ ihe =0 (33)
where
~ 1
c=©8T vy =z" Q% (34)

Since A is diagonal, (33) is a set of uncoupled equations of the

form

Bc2 ,
e 1v2 C,= O (35)

Each cy is the coefficient of the corresponding normal mode wg’
and (35) is a linear equation for its evolution in time, with

solution
= < N
cy (t) = ¢, (o) exp (1v2 t) (36)

Bach normal mode Yﬂ has 2 characteristic meridional structure given
by its components (u,v,h). For each matrix E, the modes can be
classified into three groups, according to their frequencies v;

the low-frequency westward propagating Rossby modes and the high-
frequency eastward and westward propagating gravity modes. The
modes within each group can be indexed in terms of their frequency
ordering. For the larger equivalent depths there is a close
correspondence between the indexing and the number of zero crossings
of each variable between the poles, just as in the continuous case
(Longuet-Higgins, 1968). The magnitudes of the frequencies of the
gravity modes increase with increasing index, while those of the
Rossby modes decrease. For the smaller equivalent depths (high
internal modes), the horizontal modes resemble the continuous

modes less closely, tending to be more of a computational nature.

The model equations may be modified by Fourier filtering or chopping
the time-tendencies of the variables in order to increase the

maximum stable timestep (Burridge and Haseler, 1977). This
modification can be included in the normal mode analysis by modifying

the matrix @ in (30); the details are given in Temperton (1977).



1.3 Linear normal mode initialization

In linear normal mode initialization, the initial data is first
expanded into normal modes, the coefficients of the unwanted gravity
modes are set to zero, and a modified set of initial data is
reconstructed from the remaining modes. The expansion is done
sequentially following the analysis of Section 1.2. The basic

state is first subtracted from the prognostic variables, then a
field of the auxiliary variable h is constructed using (7). The
data are expanded into vertical modes using (16), and each vertical
mode is expanded into Fourier modes using the inverse of (23).

The symmetric and antisymmetric components are found by averaging or
differencing the values from the two hemispheres, and scaled

using (28). Finally, each scaled Fourier mode of each vertical
mode is expanded into latitudinal modes by (34).

Those coefficients corresponding to unwanted modes can then be

set to zero, and the expansion procedure reversed to obtain a

new set of gridpoint data. For the multi-level o-coordinate
model, there is one remaining problem: we have obtained a new
field of the auxiliary variable h, which then has to be decomposed
into new fields of Pg and $G(and hence T). As shown by

Andersen (1977) and Temperton and Williamson (1979), the correct
procedure is to define the change in &n (ps) by

T 1

C " g Ah (37)

~

Afn (ps) =1

Given new fields of o and h, the new temperature field can easily

be computed.

The question remains as to whether it is necessary to initialize
all the model's gravity mode coefficients in this way. We saw in
Section 1.2 that the frequencies of the highest internal gravity
modes (with the smallest equivalent depths) are so low that they
do not contribute to the problem of spurious high-frequency
oscillations. It is convenient to zero all the gravity mode
coefficients for the first m vertical modes, and in practice m=5

has been found a suitable choice.
In this section and the next, we descfibe initialization experiments

using a 9-level global model with a horizontal resolution of
A = A8 = 3.75° (N24). The initial data consisted of global fields
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of temperature, wind and surface pressure for 00Z on 1 March 1965,
as analysed at GFDL and subsequently interpolated to the ECMWF
model grid. The results of each initialization experiment were
used as initial data for a 24-hour adiabatic forecast. At each
timestep, the values of selected variables at four horizontal
gridpoints were written to a history file. Time-filtering and
horizontal diffusion were switched off, in order to show up any

high-frequency oscillations in the forecasts.

Fig. 2 shows the evolution of surface pressure at two gridpoints
for the two 24-hour forecasts, one from the original data, and
one from a linear initialization experiment in which the gravity
mode coefficients were set to zero for the first 5 vertical modes.
The forecast from the original data is severely contaminated by
high-frequency oscillations, implying a poor state of balance in
the initial conditions. As in the shallow-water experiments of
Williamson (1976), linear normal mode initialization reduces the

amplitude of the oscillations, but by no means eliminates them.

Two factors contribute towards this resuit. Firstly, the high-
frequency gravity modes, although absent from the initial data,

are rapidly regenerated in the model through nonlinear interactions.
Secondly, the initialization is very poor over mountains. As
pointed out in Section 1.2, the basic state is defined assuming no
topography. Consequently, over high topography there will be

large deviations from the basic state, and these will be misinter-
preted as gravity waves, removal of which requires large adjustments
to the mass field. TFortunately, as we shall see in Section 1.4,
this problem is solved by extending the normal mode initialization

procedure to include nonlinear forcing.

1.4 Nonlinear normal mode initialization

As we saw in Section 1.3, the device of setting to zero the initiai

values of the gravity mode coefficients does not prevent these |

modes from oscillating, because of forcing by the model's nonlinear

terms. Machenhauer (1977) proposed a nonlinear correction technique
in which the initial time tendencies of the gravity mode coeffic-

ients are set to zero, rather than the coefficients themselves.



If the nonlinear terms are included, Eq. (35) becomes

acz o,
3¢ —ivye, =1, (38)
where rZ represents the nonlinear contribution to the tendency of
the coefficient 02‘ The basis of Machenhauer's technique is the
assumption that T, varies much more slowly than the linear
frequency of the modes being modified, and can thus be treated

as a constant. In this case the solution of (38) is

r r )
e, (t) = £+ [c (o) - A exp (iv)t) (39)
i\)2 ivl' _

If we set cl(o) = rl/ivk; then the oscillatory term in (39) vanishes
and the coefficient Cy becomes independent of time. Since the
nonlinear terms are not constant, and in fact depend partly on

the initial values of the mode coefficients themselves, Machenhauer
proposed the following iterative procedure to zero the initial

time tendencies of the gravity mode coefficients:

[eg(od]yy = [rg(od] /ivy” . (40)

where [rl(o)]u is computed from the nonlinear terms using initial
conditions from [CZ(O)]u‘ The simplest way to implement (40) is
just to run the model for one forward timestep: Eq. (38) then

becomes

[Cz(At)]u - [cg(o)]u = ivk‘At [cl(o)]u + r, (o) At (41)
and hence, by substituting in (40),

[CZ(At)]u - [Cz(o)]u

[ep(l 4y = Teg(dl -+ (42)

. r .
ivy At

Eq. (42) contains no explicit reference to the nonlinear terms, so
there is no need to modify the model code to extract them. Note
that the timestep length At in (42) cancels out with the forward
difference, so the iterative procedure is independent of the choice
of At.

170



SURFACE PRESSURE (mb)

SURFACE PRESSURE (mb)

I B N I R N I R B
sigl (D) .
996 -
sle -
994 H
Jd
614
992 +|
612H
990 ]
988 | elof
! |
\
986 | - €081
Iy
984 (- U _ 606~‘ ,l
WY
soal- UV
Y-V-5 "N U NN NN NN NON N ' N HNNN NN N - M Y oyl
0 6 12 18 24 0 6 2 18 24
HOURS HOURS
Fig. 2 Surface pressure vs. time before ( y and after (—==) linear normal
node initialization: (a) 40°N, 90°W; (b) 309N, 90°E.
T T T T T T —
(a) | (b)
616
996 -
994 - 614
992 - szt
990 4 -
A s10f
‘ e = '/’ » ey
988 1 N -
608 i
o86H -
806 - V
984 |- -
o2 1 4 4 Wy 4804
0 6 2 18 24 0 6 12 I8 24

Fig. 3 Surface pressure vs. time at (a) 40°4, 90°v,

(by 30°N, 90°E after non-

1inear normal mode initialization of O, 3 and 5 vertical modes.

171



Fig. 3 shows the evolution of surface pressure during 24-hour adia-
batic forecasts from the same initial data as before, after applying
2 iterations of Machenhauer's nonlinear normal mode initialization
technique to the first 3 and 5 vertical modes, compared with the same
forecast from uninitialized data (o vertical modes). Initialization
of 5 vertical modes virtually eliminates all high-frequency oscilla-
tions, leaving variations only on synoptic time-scales.

This highly successful result was obtained after only two itera-
tions of the procedure; is even the second iteration necessary?
Fig. 4 compares results after one and two iterations (note that
the scale is greatly expanded). Most of the improvement comes
from the first iteration, but the second does provide'additional
improvement.

We have not yet examined the question of convergence of the
iterative procedure. As we are trying to force the initial time
tendencies of the gravity modes to zero, a coanvenient quantity to
monitor (Andersen, 1977) is

acl(o) 2
BALm = f ['—"a—'t———] N (43)

where the sum isitaken over all the gravity modes being initialized,
for vertical mode m. Fig. 5 shows this quantity for vertical

modes 1 < m < 5 during 4 iterations. Little reduction occurs

after the first two iterations - i.e., BALm does not actually
converge to zero - but by this time the gravity mode time tendencies
have been reduced by several orders of magnitude.

A further question concerns the influence of the choice of basic
vertical temperature profile T(¢); in the experiments described

so far T(o) was taken from the data being initialized. Fig. 6
compares these results with an experiment in which a warm isothermal
atmosphere was used as the basic state, T(o) = 300°K. Very little
deterioration results from using this quite unrealistic basic state,
and in most subsequent work an approximate ICAO standard atmosphere
has been used to provide the basic profile.
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Also shown in Fig. 6 is the evolution of surface pressure after

6 hours of dynamic initialization, usiﬁg the scheme due to

Okamura (Nitta, 1969). As expected, the highest frequencies

are eliminated, but substantial oscillations remain with periods

of the order of eight hours. It is clear that dynamic initializa-
tion is much less successful than nonlinear normal mode initializa-
tion - and yet 6 hours of dynamic initialization takes about

40 times as much computer time as each iteration of nonlinear
normal mode initialization!
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2. EXTENSIONS AND VARIATIONS OF THE ECMWF NORMAL
MODE INITIALIZATION PROCEDURE

2.1 Inclusion of physics

In Section 1 we demonstrated the success of Machenhauer's (1977)
nonlinear iterative technique in initializing an adiabatic version
of the forecast model. In practice, of course, the model includes
a wide variety of parameterizations of sub-gridscale physical
processes, all of which contribute to the nonlinear term r2

in Eq. (38), and thereby alter the balance which the initializa-
tion procedure is seeking to obtain. The simplest example is
perhaps the modification of geostrophic balance by friction in

the boundary layer. In fact boundary layer processes are not a
serious problem, at least in the context of data assimilation;
examination of the structure of the vertical modes (Fig. 1) shows
that such processes will be described mainly by the highest
internal modes (with small equivalent depths and correspondingly
low frequencies), which are not initialized anyway. If the
original data has consistently balanced fields in the boundary
layer (for example generated by the model in providing the first-
guess field, and preserved by the analysis scheme), then this
balance will not be destroyed by an adiabatic initialization of

the external and first few internal modes of the model.

A more serious problem concerns those processes which operate
through a considerable depth of the atmosphere, for example
convection and latent heat release.’ Concern has been expressed

at the treatment of the mean meridional circulation, in particular
the equatorial Hadley cell, by the adiabatic initialization
procedure. Figs. 7 and 8 show the mean meridional circulation in
the first-guess field and subsequent analysis during a particular
data assimilation experiment; note that the strength of the

Hadley cell has been well preserved in the analysis. Fig. 9

shows the corresponding circulation after the standard initializa~
tion scheme; the Hadley cell has been almost obliterated, since
the adiabatic initialization procedure can see no reason for
maintaining it. (Note, incidentally, that the mean meridional
circulation consists entirely of gravity modes, since the Rossby

modes for zonal mean flow are characterized by v = 0).
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In principle there seems to be no reason why the contribution of
physical processes to the nonlinear forcing should not be included
in the term rg(o) in Eq. (40); indeed, this feature at first
appeared to be a further advantage of nonlinear normal mode
initialization over other techniques. Unfortunately, this is the
one aspect of the procedure which has not lived up to its

original promise. When the physical processes are included in the
nonlinear forcing, the initialization procedure tends to diverge
rather rapidly. Presumably this results from violation of the
assumption that the nonlinear forcing changes only slowly compared
with the linear frequencies of the modes, and/or excessive non-
linearity of the iterative procedure due to the feedback of modes
upon themselves. However, all is not lost; in the next section

we suggest a possible solution to the problem.

2.2 Linear difference initialization

Daley and Puri (1980) considered several possible normal mode
initialization schemes for use in data assimilation. One of
these, suggested on the grounds that it is computationally
inexpensive, consisted of a linear normal mode initialization
performed on the difference between an analysis and the model-
generated field used as first-guess for the analysis. In other
words, the analysis scheme is only allowed to change the Rossby
modes, and the gravity modes are taken directly from the first-
guess. Provided that the first-guess is reasonably accurate,
the changes in the Rossby modes should not seriously upset the
balance between the nonlinear forcing and the linear time
tendencies of the gravity modes. The technique is inexpensive
because no iteration is required, nor is it necessary to run the

single~timestep model forecast.

The experiments described by Daley and Puri (1980) used a barotropic
model, so the question of physical processes did not arise. With a
complex model as the vehicle for data assimilation, the "linear
difference initialization’ technique may produce better results than
adiabatic nonlinear normal mode initialization, as well as being

more economical.
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In order to visualize this statement, we modify the "slow

manifold" diagram of Leith (1980). We consider any given state

of the model as a point in phase space. The coordinates of the
phase space may be gridpoint values of each variable, spectral
coefficients, or in this case the coefficients of the Rossby and
gravity modes. Schematically we can represent the multi-dimensional
bhase space on a two-dimensional diagram (Fig.10) with axes R ‘
(Rossby modes) and G (gravity modes). If all the gravity mode
coefficients are zero, then the state of the model lies on the
R-axis; this would be the case after linear normal mode initializa-
tion. Nonlinear normal mode initialization is an attempt to balance
the linear and nonlinear time tendencies of the gravity modes,

in order to remove all high-frequency oscillations; the set of
model states in which this has been achieved is called the "slow
manifold", indicated by MA on Fig. 10. If the model is integrated
adiabatically from an initial state in MA’ then the subsequent model
states will lie in MA (approximately; here we neglect second-order
complications). Initial states outside MA will lead to integrations

oscillating about MA'

We now recognize that there are actually two slow manifolds to
consider: MA for an adiabatic version of the model, and a different
slow manifold Mp for the model with physical processes included.

Let the point A in Fig. 10 represent a particular analysis. L and N
represent the same analysis after linear and nonlinear normal mode
initialization respectively. Let F represent the first-guess field,
which we may (optimistically)assume to be in the slow manifold Mp,
since it is model-generated. Then the linear difference initializa-
tion technique will take us to the point X, which is closer to the
slow manifold Mp than is the point N obtained by adiabatic nonlinear
initialization. Of course the diagram has been constructed in such
a way as to ensure this result, but it is plausible that the gravity
modes from the first-guess field, balanced with respect to physical
processes by actually running the model, may be more appropriate than
those obtained by nonlinear normal mode initialization, which are
correctly balanced with respect to adiabatic nonlinear forcing only,.

Returning to the question of the mean meridional circulation, Fig. 11

shows the results after linear difference initialization applied to
the analysis of Fig. 8, together with the first guess field of
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Fig. 7. Fig. 11 should be compared with Fig. 9 (adiabatic
nonlinear normal mode initialization); notice in particular

the much better preservation of the Hadley cell. Fig. 12 shows
the evolution of surface pressure during 24-hour forecasts with
physics from this analysis, before and after linear difference
initialization; note that this initialization technique is just
as effective in preventing high-frequency oscillations as was

nonlinear normal mode initialization.

The only remaining question concerns the stability of the technique
in a long data assimilation run. Preliminary results (after a
24-hour five-cycle assimilation experiment) are encouraging, but
complete confidence awaits a longer experiment.

2.3 Variational normal mode initialization

One aspect of any initialization technique which we have ignored

so far is that it inevitably)changes the analysed fields. If the
changes are small relative to the expected analysis error, then
this is of no importance, but in practice we have found that the
changes in the wind field due to normal mode initialization are
usually acceptably small, while the changes in the mass field
(principally the surface pressure) are rather larger than one
would hope. This is simply a consequence of geostrophic adjustment
theory, which tells us that for most scales of motion the mass
field will adjust to the rotational part of the wind field.

Linear, nonlinear and "linear difference" normal mode initialization
methods all change the gravity mode components of the analysed
fields, leaving the Rossby modes untouched. The basic idea of
variational normal mode initialization (Daley, 1978) is to use

these extra degrees of freedom to add a change in the Rossby modes
which in some sense compensates for the change in the gravity modes.

Formally, we minimize a variational integral of the form

AL 2 2
} | w (AT + wy (47} dX cose de do (44)
ouarf/a2 0O

I =

subject to the specified changes in the gravity modes. In the
definition of I, AV, Ah represent changes in the wind field and mass

field respectively. w_ and w, are specified weights reflecting our

v
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confidence in the analysis of the wind and mass fields. Ideally
Wy and wy would be functions of A, 6 and o, but in order to keep
the minimization problem tractable we assume here that they are

specified as functions of 6 only.

A suitable variational integral for the og-coordinate model is

T/ T
o= ] r ?{éwv((Au)2+(AV>2>+g2wh(Ah)2} dicose de do
o -m/2 O
(45)

where h is the auxiliary height variable defined by (7), and 9
is an arbitrary geopotential depth included for dimensional
consistency. Daley (1978), using a spectral barotropic model,
proceeded by using Lagrange multipliers to convert the minimiza-
tion problem into a set of linear equations for the changes.

Here we take a different (but presumably equivalent) approach.

Discretizing in the vertical,

L m/2 oW
p= 3|1 Ty () 2e(av)®)+e2u, 4n)21ax cose as ], (a0),
el o (46)

To proceed further we assume that we are using normal modes based
on an isothermal atmosphere. In this case the vertical normal
modes are orthogonal with weight function (Ac)l, and we can replace

Eg. (36) by a sum over vertical normal modes:

L m/2 27
r= 3 [ fTea @) ?e(a9)%)+e% w, (sB)2)ax coss as |

m=1"~m/2 © m

(47)

where u, v, h are defined by (16). Furthermore the orthogonality
of the vertical normal modes implies that we can minimize over each

vertical mode separately.
Similarly, for each vertical mode m we can discretize along latitude

rows and use the orthogonality of the Fourier modes to reduce the

problem to one of minimizing an integral of the form
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m/2
I(m,k) = [ {2 w, (o 2r(a5)%) +g2 wh(Ah) } cosg dp (48)
-T/2

for each zonal wavenumber k, where u, v, h are defined by (23).

Discretizing (48), using the transformation (28), and treating

symmetric and antisymmetric modes separately (again using orthogon-

ality), we find that

I(m,k) = W aY |, (49)
where Y is the vector containing values of u, v, h defined in (31),
and W is a diagonal matrix containing values of @mv and (gDm)wh
(Dm is the equivalent depth for vertical mode m).

Now, the change in Y due to gravity modes, (AY)G, is specified as
a strong constraint. In order to minimize I(m,k) we define a change
due to Rossby modes,

(8%)g = Ep Acy | (50)

where ER is a matrix whose columns are the Rossby mode eigenvectors,
andAcR is a vector of (unknown) changes to the Rossby mode
coefficients. Since (AY) = (AY)G + (AY)R, the problem of minimizing
I(m,k) reduces to solving the linear least-squares problem

Wi By acp = - WP o(aT)g (51)
The whole procedure can conveniently be interpreted on the "slow
manifold" diagram, see Fig.13. Changing the gravity mode
coefficients (e.g. by the usual nonlinear correction procedure)
takes us from the analysis point A to the point N, on or near the
slow manifold. Changing the Rossby mode coefficients by solving
Eq. (51) takes us along a line parallel to the R-axis, until a
minimum value of the variational integral I is found, at point M.
The procedure can of course be iterated; it is then convenient,

as in Daley (1978), to define I in terms of changes over each
iteration rather than over the whole procedure.
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It remains to determine suitable functions Wy s Wp- Some results

are presented in Figs. 14 and 15, which show the root mean square
changes in by and vector wind Y as functions of latitude. Setting
Wy, = 0, Wy = 1 in an attempt to minimize the changes in the mass
field results in catastrophic changes in the tropical wind field.
Setting wv=1, W, =0 results in large (but not so drastic) changes

4

in the surface pressure field. Setting ¢ = ng, Wy = 0.04 cos9,

wy = 1 - Wy produces more reasonable results. It should be
mentioned that, recognizing that most of the changes take place

on medium and large horizontal scales, the minimization was only
performed for zonal wavenumbers o < k < 15, and only 15 latitudinal
Rossby modes were used for each (m,k). Extending the truncation
might further improve the results. Finally, test integrations
confirm that variationally initialized data sets still yield

forecasts almost completely free of high-frequency oscillations.
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