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1. INTRODUCTION. -

The process of numerical weather prediction is classically viewed as an
initial value problem whereby the governing equations of geophysical fluid
dynamics are integrated forward from fully determined initial values of the
meteorological fields at some initial time. Given the peculiar mathematical
properties of the Navier-Stokes equations applied to geophysical fluids
and the complexity of energetic processes in the atmosphere, solving this
"initial value problem" is by itself a tremendous task : many a "model er"
is currently engrossed in it. Still, providing the ultimate scheme for
integrating the equations of atmospheric dynamics would only be half the
answer. For, one must also attend to the problem of determining, from
observations of the real atmosphere, the initial values of the many time-

dependent parameters which constitute one state of an atmospheric model.

In the ideal physical situation, one would expect that observations
would specify unambiguously one value for each and every state
parameter at the selected initial time t = 0. Needless to say, this ideal
case never materializes in actual meteorological forecasting for a variety

of reasons vz :

(i) conventional pressure, temperature and wind observations are
inadequately distributed around the planet and leave severe

geographical gaps where no data are available.
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(i1)

(iid)

(iv)

(v}

(vi)

conventional observations are point measurements which do not
provide a correct sampling of the highly variable meteorological
fields ; such measurements are not representative of true

volume averages as required by numerical models.

in addition, conventional observations are subject to signifi-

cant random instrumental errors.

remote observations from space leading to an indirect
determination of vertical temperature profiles, go a long way
toward providing an homogeneous global coverage leaving no
significant data gap over a 6 to 12 hours period of time. Such
observations are not synoptic, however, but distributed in
space and time following the trajectory of sunsynchronous
orbiting satellites. The input from such observing systems must

therefore be very incomplete at any one time.

remote observations of cloud motions from geostationary satel-
lites may be available at synoptic hours and provide essentially
a proper horizontal sampling of the wind field. But the

vertical resolution, limited to one or two levels, is grossly

inadequate.

finally, one will note that such indirect observations from
space always involve physical assumptions and fairly sophistica-
ted data processing for reconstructing the meteorological
parameters from remotely measured physical quantities. These
procedures have their own deficiencies, causing significant

random and systematic errors.



One must regretfully conclude from this brief discussion that single

time data sets available to numerical forecasters for updating their compu-

tations are likely to remain incomplete and inaccurate, i-e by no mean
sufficient to provide by themselves, an adequate description of the global
atmosphefe. Any forecasting scheme must therefore be initiated or "initia-
lized" at time t = 0 fsay) by merging the new cbservations with the
currently estimated meteorological fields computed on the basis of earlier
observations collected at times t < O. Formally( the‘problem consists in
optimizing the generalized N ~ dimensional "trajectory" of the model
(considered as a mechanical system with N degrees of freedom) while taking
into. account all available information at times t € 0 as well as the
dynamical constraints between successive (model) states, specified by the
governing dynamical equations. This process of merging new observational
data with the ongoing integration of a numerical forecasting model is
known as "data assimilation".or equivalently "4-dimensional data assimila-

tion" in consideration of the time-space distribution of the data base,

Whether they would recognize it or not, all numerical forecasters resort
to some form of 4-dimensional data assimilation but not all forecasters
can claim having achieved, or nearly enough, an optimal 4-dimensional data
assimilation scheme. On the contrary; most forecasting teams will readily
admit that a large part of forecasting deficiencies are rooted in the
imperfect assimilation of available data in their numerical prediction
process. During the recent years, the development of the Global Atmospheric
Research Programme (GARP) and the increasing availability of non;synoptic
remote observations from earth orbiting satellites, have fostered a growing
interest in this matter of meteorological data analysis and trigerred very
significant advances towards developing effective "optimized" data assimi-
lation methods. It is the purpose of this paper, to review briefly the

underlying physical principles which are operative in this problem.
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2. STATISTICAL GRID-POINT ANALYSIS. ~

Since observations seldom occur at the precise locations represented
by the grid-points of one particular model, some 3-dimensional interpola-
tion scheme is a necessary step whenever new data must be merged with
predicted fields, whether they are represented by grid-point values or

spectral expansion coefficients.

The simplest approach (very bad) consists in substituting the observed
value for the corresponding meteorological parameter at the nearest grid-
point. The next simplest and most common approach consists in deriving
the correction of some computed parameter at one particular location as a
linear combination of the departures of actual observations obtained in
the vicinity from the (interpolated) computed field values. This linear
combination is usually made on the basis of appropriate coefficients or
"weights” attributed to individual observations according to the radial
distance of their location and their assumed "quality". GANDIN (1963} has
originally described how these weights may be optimally determined in order
to minimize in a statistical sense, the resulting interpolation error at
each grid-point, taking into account the known spatial structure of the
meteorological field. This so-called "optimal analysis scheme" was origi-
nally applicable to scalar fields only, i-e to one‘variable at a time. A
fairly recent and interesting generalisation has been promoted by SCHLATTER
whereby different meteorological parameters may be simultaneously analysed
in term of grid-point values in a single multi-variate statistical inter-
polation process. Interpolation coefficients in such multivariate analysis
schemes are computed on the basis of cross-correlation coefficients between
different meteorological variables such as geopotential height and one
component of the wind velocity, for example. Second-order correlations
could in principle be derived directly from observations of the real
meteorological fields. This is not usually done, however, because the

autocorrelation statistics of the geopotential field are much better
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established than any other second-order moment of the multivafiate<field.
It is current practice therefore, to compute the various statistical mo-
ments from the geopbtential autocorrelation function alone, using. the
geostrophic approximation to link the wind variables with the geopotential
field. Through this dévice, the multivariate analysis of wind and
geopotential data forces a degree of geostrophic balance which turns out

to be beneficial generally, although certainly not justified by any careful
consideration of the dynamical effects. The student of 4-dimensional data
assimilation should, however, be alert to the fact that excessive filtering
of the ageostrophic component of the real atmospheric flow could follow
when multivariate interpolation is applied in data sparse regions and is

too efficient at "reconstructing" the missing observed field values.

A further remark could be made regarding the spatial resolution of the
grid (or equivalent spectral expansion) used for this analysis. The princi-
ple of multivariate interpolation is to induce a degree of geostrophic
balance ‘in the vicinity of data points. This objective however is attaina-
ble only if the model provides a large enough member of degrees of freedom
within the influence area around the particular data point. Now, . cbserva-
tions of meteorological fields indicate an effective correlation range of
the order of 1000 to 1500 km. This means that a multivariate analysis
scheme could be effective only when applied to a model with significantly

better spatial resolution, i-e no less than 300-500" km.

This condition is normally fulfilled by modern general circulation mo-
dels. But multivariate interpolation schemes may be, for this reason,
ineffective when applied to the analysis of mesoscale features for which

a much smaller correlation range is indicated.
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3. THE DYNAMICS OF ADJUSTMENT. -

The very first attempt at numerical weather prediction by RICHARDSON,
called attention to the need to eliminate the spurious high freguency
oscillations which inevitably result from inserting data taken from an
external reference (in this instance, the real atmosphere), in the course
of the computation. These oscillations, also referred to as "meteorological
noise", have the character of gravity waves superimposed on the quasi-
geostrophic flow which constitutes the "meteorological signal®. The
existence of these waves would not be too serious if they were essentially
independent modes, uncoupled to the main flow. But this is not so in the
fully (non-linear) interactive case of a primitive equations model
gravity modes can draw energy from the main flow and grow rapidly in the
course of time integration. The problem of dealing with high frequency

meteorological noise has thus become a central issue in data assimilation.

It is permissible, as a convenient educational device, to rely on the
simple model of the linearized shallow-water equations describing an
incompressible fluid in a rotating frame for the purpose of discussing the
basic concepts of adjustment dynamics. We shall follow this traditional
approach and write down the familiar set of governing equations for one

.
component of the FOURIER expansion corresponding to wavevector k.

Y _

3 £x (1)
oX _

E—flp-gh (2)
3h

Prale Hk ¥ (3)

Here, the two scalar fields : stream function ¥ and velocity potential ¥,
fully determine the 2-dimensional velocity field, while h is the departure
of the free surface altitude from the mean level H. All three variables

Y, ¥ and h are first order guantities for a small perturbation of the
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state of rest of the fluid. One recognizes above, the vorticity equation (1),
the divergence equation (2) and the continuity equation (3). This set of
equations admits of three linearly independent solutionsor normal modes

[\
for each wavevector k namely :

—~ one geostrophically balanced mode which turns out to be stationary

in this simple model.

- two high frequency modes corresponding to propagating gravity waves

along the forward and backward directions, respectively.

One could also view each ﬁormal mode as an eigenvector X; corresponding

to each of the three eigenvalues A1 = 0, A, = V gik? + £2 and A3 = - Az.

If one now projects the equations (1) . through (3) onto these normal modes,
one obtains a set of ordinary differential equations which may be written

symbolically as :

>'( = - iAX ' (4)

where X is a column vector of normal mode expansion coefficients and A is

a diagonal matrix, the elements of which are the three eigenvalues ki'

Initializing this simple dynamical model with an arbitrary state vector X
at time t = 0 or equivalently,an arbitrary selection of the fields Y, ¥
and h, will normally result in exciting all three normal modes about
equally. In the simple linear model, the initial distribution of pertur-
bation energy will simply be invariant at all times t > 0 without

amplification nor damping.

In the more realistic non-linear dynamical models, however, the non-linear

. advection terms and the forcing terms have a non~zero projection on the
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set of normal modes X, so that equation (4) would now read :
X =~ ilX + N (X, X) (5)

and allow modal coupling, which in turn induces a tendency towards
equipartition of energy among the three competing modes. It is a fact that,
barring ad hoc precautions, numerical models develop a much larger amount
of gravity wave energy than actually found in the real atmosphere. Conver-
sely, one could well take the view that the absence of significant gravity
oscillations in free atmospheric flows, is a remarkable and yet not fully
explained property of the Earth atmosphere. One possible reason for it
might be found in the major energy conversion process associated with
baroclinic instability, which favours the generation of eddy mechanical
energy in the form of guasi-geostrophic perturbations of the mean flow.
Blternately, another cause for selective dissipation of gravity oscilla-
tions might be looked for in the basic non-linear dynamics of spectral
energy transfer which favours the concentration of guasi two-dimensional
motions in the larger scales, while the energy of 3-dimensional gravity
waves is allowed to cascade towards smaller scales and dissipate by fric-
tion. Yet another possible explanation could be seen in the dynamics of
small scale energetic processes (like moist convection) which could be

selectively triggered by gravity oscillations.

Whatever the main cause for the damping of gravity modes in the real

atmosphere, it is imperative to develop filtering technigues for removing

the spuriously large gravity oscillations induced in numerical models by

non-~linear interaction, as well as the insertion of heterogeneous data.

The simplest and historically the first approach was simply to exclude

the possibility of such high frequency oscillations by reducing the model
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atmosphere dynamics to the only quasi-geostrophic response allowed by a
"filtered equation " like the balance equation. This approach so severely
restricts the model dynamics, however, that corresponding forecasts are
not useful beyond a few hours. We must therefore concern ourselves with
the so-called primitive equation models which do allow the unrestricted
propagation and eventual amplification of gravity waves and, lacking a
fundamental understanding of the real processes which limit gravity oscil-

lations in the atmosphere, we must provide an artificial damping scheme

suitable for smothering the unwanted waves and restoring the quasi-geostrophic

balance of the model flow.

Many ingenious damping schemes have been proposed in the literature and
found to reduce significantly the level of "meteorological noise" in the
models. But taking the large view, one may say that no such scheme could
provide a satisfactory answer to the problem of data assimilation, for one
basic dynamical reason. Artificial damping is needed in the normal course
of numerical modelling to replace the small scale dissipation
processes which must occur in the real atmosphere, but which lie beyond
the range of scales explicitely represented in the model flow. In other
words, the artificial damping must somehow stand for sub-gridscale processes
which are, by necessity, not included in the finite number of degreés of
freedom of the model flow. For dynamical consistency, the dissipation rate
introduced by artificial damping must be commensurate with the spectral
transfer rate which would develop naturally within the spectral range of
motions explicitely represented in the model. These spectral transfers are
determined by the laws of geophysical fluid dynamics and cannot Be artifi-
cially increased without causing severe discrepancies with regard to the
real atmosphere dynamics. The consequence is an unbreakable dilemma : the

rate of artificial damping may be chosen either small enough to match the

Y
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real atmosphere sub-gridscale dissipation rate or large enough to reduce
effectively the meteorological noise but both desirable conditions cannot
be met simultaneously. Increasing the artificial damping rate is inevita-
bly detrimental to the ability of the forecasting model to simulate the
real atmosphere and results in serious deviations from the reality

in data sparse regions where an accurate simulation is needed. On the other
hand, decreasing the artificial damping rate results in excessive meteoro-
logical noise induced by new data inputs. A consequence of this situation
is the unexpected but theoretically obvious fact that adding more noisy
data into a well-tuned meteorological analysis routine results in a worse
forecasting skill even though the new data do include additional informa-
tion which could serve to improve the definition of the real atmosphere
initial state. The most spectacular example of that was afforded by the
protracted argument . regarding the degree of usefulness of satellite
temperature profile data. For the lack of a suitable optimization of their
analysis scheme, many operational forecasting services were led to deve-
loping a "Dont bother us with new data " attitude when they found
that satellite temperature data inserted in their normal procedure would

not improve and could even degrade short and medium-term predictions.

We must conclude then, that the provision of artificial damping is not
the proper way for reducing the amplitude of the high frequency oscilla-
tions induced by the insertion of heterogeneous (and possibly noisy) data
in the course of numerical modelling of the atmosphere circulation. The
only proper solution is thus to avoid triggering such oscillations by

appropriate data conditioning before insertion. This is the topic of the

next section on normal mode initialization procedures.
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4. NORMAL MODE INITIALIZATION. -

This method is based on the obvious idea of separating from the outset
the contribution to updating the balanced quasi-geostrophic motion of the
model flow,from the contribution to the excitation of spurious gravity
oscillations, by means of a suitable modal decomposition of the raw
correction field resulting from the input of a new data set. Such an
approach, based upon normal mode solutions to a linearized version of the
forecasting equations, was first used by FLATTERY (1970) in his original
analysis scheme featuring HOUGH functions which are the solutions of the
linearized shallow water equations on a sphere, first introduced in tidal
research. DICKINSON and WILLIAMSON (1972} later proposed a general method
to find the normal modes for an arbitrary general circulation model and a
corresponding linear mode filtering scheme for initializing numerical

forecasts.

In the linear filtering procedure, the observational data are expanded
in terms of the complete set of normal modes for the linearized governing
equations, and then the amplitudes of the unwanted computational and
gravity modes are set equal to zero. This method does reduce the unrealis-
tic large high-frequency oscillations which occur during the initial period
of the forecasts when no a-priori filtering is used. But the technique
suffers from a deficiency which is apparent from equation (5) above :
because of the presence of a non-linear coupling term, the unwanted high-
frequency oscillations can be regenerated fairly rapidly in the course of
the time integration. This deficiency may be eliminated to a large extent

by the so-called non-linear normal mode initialization defined as a normal

mode filtering procedure for which the time derivatives of the gravity
modes coefficients (but not the initial values of these coefficients) are

set equal to zero. Gravity mode coefficients are modified so that the

vee/unn
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linear tendency corresponding to the diagonal part -iAX of the evolution
‘matrix, compensates for the contribution N (X,X) from the non-linear
interactions between all modes. See the original discussions by
MACHENHAUER (1977) and BAER (1977) who first proposed this refinement of

the normal mode filtering technigque.

This idea is equivalent to the concept developed by LEITH (1979), of
projecting the initial (noisy) meteorological fields produced by straight-
forward interpolation of the observational data, onto the slow manifold
constitued by all slowly varying dynamical solutions of the model equations
while excluding all rapidly oscillating states (represented in configura-

tion space by fast oscillations about the slow manifold).

Various versions of this refined filtering procedure with or without
precautions for minimizing the rejection of original data inputs, have
been discussed by DALEY and PURI (1980) and a procedure of this kind has
been implemented with encouraging results by the European Center for
Medium Range Weather Forecasts. It remains to be seen whether one standard
modal expansion, 5ased on the normal mode solutions of the linearized
equations about one simple state of the model flow (i-e the state of rest)
is adequate for all initial meteorological conditions, or whether a much
more cumbersome diagonalization procedure for each one initial state is

actually needed.

A very positive indication of the success of this method for filtering
out the meteorological noise from the outset, is seen in the remarkable
ability of the ECMRWF forecasting procedure, to accept large amounts of
unconventional non-~synoptic satellite data and produce a definite improve-
ment over forecasts based on synoptic data only. In this instance, we find
at last that more information, even if it is noisy information, yields a

more accurate description of the real atmosphere.
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5. THE MATHEMATICAL PROBLEM OF 4-DIMENSIONAL ASSIMILATION. -

The mathematical basis for understanding the continuous or discontinuous
adjustment process involved in 4-dimensional data assimilation is not well
established. Coming back to the introductory remarks, we can see that one
reason for the unavailability of a sound theoretical background may be the
lack of strong existence and unicity theorems for the solutions of the
Navier—Stokes eguations in the case of a fully developed turbulent flow
(large REYNOLDS number). The fact is that forcing successive corrections
onto the on-going time integration of a general circulation model is a

purely numerical process which has no counterpart in the physical world.

Consequently the eventual convergence of this process or the lack thereof,
cannot be judged on the basis of gqualitative physical arguments or limited
numerical experimentation. A thorough theoretical approach is a very
difficult, possibly intractable problem, however. A linear theory of the
convergence of one particular dynamical initialization method based on
repeated forcing the same set of field values on the computed fields obtai~-
ned in successive forward and backward time-integrations, has been attempted
by TALAGRAND (to be published). This.iterative procedure lends itself
readily to a proper definition of "convergence" while convincing numerical
experiments have shown it to be essentially equivalent to successive forcing
of an ongoing forecast with the same amount of external data as provided in
the forward-backward assimilation process during a given time interval.

This linear theory proved to be inconclusive, however.

A more demonstrative approach has also been tried by TALAGRAND when the
flow can be legitimately approximated by solutions or any linear combina-
tion of solutions, of the linearized shallow water equations (1) to (3) ;

a similar reasoning can also be developed in the case of a multilevel model.
This approach is based on the consideration of the perturbation energy

invariant :
E=%~ [gh2+HV2:[ ds (6)
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14



where %-gh2 is the perturbation available potential energy and %‘HV2 is

the perturbation kinetic energy per unit area (assuming an incompressible
fluid of unit density). Now, since a linear combination of two solutions

of the linearized problem is also a solution, it follows that the gquadratic

différence

D=3 J [gh-ho)® + 8 G - Vo)? | as (7

is also invariant in the course of the unperturbed time integration of the
initial value problem starting with the reference field (hy, $0) and with
the "first-guess"” field or trial field (h, §). But D is obviously changed
by forcing "observationalv”data taken from the reference model state onto
the evolution of the trial field. Indeed, substituting values of parameters
ho or go from the reference field at time t, for the corresponding
parameters h or 6 in the trial field nullifies the contribution to
expression (7) at this time and place. Thus, the straightforward substitu-
tion of any subset of reference field values for the corresponding subset
of parameters in the trial field always reduces the quadratic difference D
between the two model states. The resulting monotonous decrease of the
quadratic difference does not, by itself, guarantee that the difference
will eventually decrease to zero, i-e that the successive forcing process
would converge. It can be shown in the case of backward-forward integration
tion that the process does converge if and only if the "observational data"
available during the time interval of one cycle specify a unique solution
of the governing equations. This is obviously a necessary condition for

convergence ; it is also sufficient in this simple case, irrespective of

the nature of the reference state, i-e geostrophically balanced or not.

The convergence of 4-dimensional data assimilation, towards one particular
solution of the model equations, does not depend here upon geostrophic
adjustment nor damping gravity waves generated by the straightforward

substitution of heterogeneous field values. One must indeed consider that
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the very special role played by the guasi-geostrophic modes in meteorolo-
gical forecasting is a contingent and indeed very fortunate circumstance
which reduces the 4-dimensional assimilation problem to the consideration
of the "slow-manifold" instead of the full range of all possiﬁle solutions

of the equations of geophysical fluid dynamics.

But one should not forget that this special circumstance is not central
to the mathematical problem of the convergence of this rather exotic

numerical procedure described as 4-dimensional data analysis.

\
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